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fi ndings on the mechanisms of  endothelial dysfunction in 
diabetes, which could contribute to the development of  
new treatment options are discussed.

PHYSIOLOGIC ROLE OF THE VASCULAR 
ENDOTHELIUM

The healthy endothelial monolayer is optimally positioned 
in order to respond to physical and chemical signals, by 
producing a wide range of  factors that regulate vascular 
tone, cellular adhesion, thromboresistance, smooth 
muscle cell proliferation, and vessel wall infl ammation. 
The importance of  the endothelium was fi rst recognized 
by its effect in limiting the vascular tone.[9] The vascular 
endothelium also regulates blood fl ow and, limits leukocyte 
adhesion and platelet aggregation by producing nitric 
oxide (NO), prostacyclin, and ectonucleotidases. As such, 
infl ammatory activity in the vessel wall is blunted. In 
addition, the endothelium regulates vascular permeability to 
nutrients, macromolecules, and leukocytes; limits activation 
of  the coagulation cascade by the thrombomodulin/
protein C, heparin sulfate/antithrombin, and tissue factor/
tissue factor pathway inhibitor interactions; and regulates 
fi brinolysis by producing tissue activator of  plasminogen 
(t-PA) and its inhibitor, PAI-1.[10] 

INTRODUCTION

According to the World Health Organization, diabetes 
mellitus now affects about 220 million people worldwide,[1] 
and the growth in its prevalence represents a global health 
crisis already accounting for more than 10% of  the total 
healthcare expenditure in many countries.[2] In the USA, 
over 24 million children and adults (almost 8% of  the 
entire population) have diabetes, whereas another 57 
million have prediabetes and are thus likely to develop 
the disease unless they make lifestyle changes.[3] Diabetes 
without proper treatment can cause many complications, 
with cardiovascular diseases accounting for up to 80% of  
premature mortality.[4] 

The endothelium, once considered a mere selectively 
permeable barrier between the bloodstream and the 
outer vascular wall, is now recognized to be a crucial 
homeostatic organ, fundamental for the regulation of  
the vascular tone and structure.[5] Therefore, endothelial 
dysfunction during diabetes has been associated with a 
number of  pathophysiologic processes.[6] A considerable 
body of  evidence in humans indicates that endothelial 
dysfunction is closely associated with the development of  
diabetic retinopathy,[7] nephropathy, and atherosclerosis in 
both type 1 and type 2 diabetes.[8] In this article, the recent 
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DIABETES-INDUCED ENDOTHELIAL 
DYSFUNCTION

The term endothelial dysfunction refers to a condition 
in which the endothelium loses its physiologic properties 
and shifts toward a vasoconstrictor, prothrombotic, and 
proinfl ammatory state.[11] Endothelial dysfunction has 
been associated with a variety of  processes, including 
hypertension, atherosclerosis, aging, heart and renal failure, 
coronary syndrome, obesity, vasculitis, infections, sepsis, 
rheumatoid arthritis, thrombosis, smoking as well as with 
type 1 and type 2 diabetes [6]

Diabetes mellitus, often simply referred to as diabetes, is 
a condition with elevated blood glucose levels, as a result 
of  either the body not producing enough insulin, or 
because cells do not properly respond to the insulin that is 
produced. The latter condition is characterized by fasting 
hyperglycemia and by a high risk of  atherothrombotic 
disorders affecting the coronary, cerebral, and peripheral 
arterial trees.[12] Despite improvement in the management 
of  patients with unstable coronary syndromes, diabetes 
is still linked to a substantial increase in mortality and 
morbidity among these patients.[13] Accordingly, developing 
new therapies for the treatment of  diabetic patients is of  
great clinical importance.[14,15]

In diabetes, dysfunction of  the vascular endothelium is 
regarded as an important factor in the pathogenesis of  
diabetic micro- and macroangiopathy.[8] There are three 
main sources contributing to endothelial dysfunction in 
diabetes: (1) hyperglycemia and its immediate biochemical 
sequelae directly alter endothelial function; (2) high glucose 
(HG), which influences endothelial cell functioning 
indirectly by the synthesis of  growth factors and vasoactive 
agents in other cells and alters endothelial monolayer 
permeability; and (3) the components of  the metabolic 
syndrome that can affect endothelial function.[8]

There are many signaling molecules involved in the 
pathogenesis of  endothelial dysfunction. In the following 
paragraphs, recent studies on this topic, mainly focusing 
on the roles of  arginase and reactive oxygen species (ROS), 
protein kinase C (PKC), and tumor necrosis factor (TNF), 
are addressed.

ROLE OF ARGINASE AND REACTIVE OXYGEN 
SPECIES IN DIABETES-ASSOCIATED 

ENDOTHELIAL DYSFUNCTION

Conditions contributing to diabetic vascular remodeling 
and dysfunction include the effects of  oxidative stress 

and decreased NO bioavailability.[16-19] NO production 
by endothelial NOS (eNOS) is critically involved in 
maintaining the integrity and stability of  the vascular 
endothelium, preventing platelet aggregation and leukocyte 
adhesion, and maintaining blood fl ow.[20] Availability of  the 
semi-essential amino acid L-arginine is required for eNOS 
activity and NO production and is therefore essential for 
vascular integrity and function. Arginase is a hydrolytic 
enzyme, which converts L-arginine into urea and ornithine 
and exists as 2 isoforms: arginase I and II.[21] Whereas 
arginase I is a cytosolic enzyme, expressed at high levels in 
the liver, arginase II is a mitochondrial enzyme expressed 
primarily in the extrahepatic tissues, especially in the kidney. 
Knockdown of  arginase I has been shown to restore NO 
signaling in the vasculature of  old rats.[22] Both arginase I 
and II have been found in endothelial cells, arginase I being 
the dominant isoform.[23] 

Arginase and eNOS compete for their common substrate, 
L-arginine. As such, increased arginase activity can lead to 
eNOS dysfunction.[23,24] We have shown that hepatic and 
vascular arginase activity is increased in diabetic rats and 
that arginase I expression and activity are increased in aortic 
endothelial cells exposed to HG.[24] TNF has also been 
shown to induce arginase activity.[25] Furthermore, arginase 
actions causing endothelial dysfunction, as indicated by 
decreased NO availability, are blocked by the Rho kinase 
inhibitor Y-27632.[26] Additionally, an inhibitor of  arginase 
reversed diabetes-induced endothelial dysfunction in the 
coronary vessels of  diabetic rats.[24] Also, arginase was 
found to mediate retinal infl ammation in lipopolysaccharide 
(LPS)-induced uveitis.[21]

Taken together, these fi ndings[21-26] suggest that arginase and 
RhoA may be mediators of  diabetes-induced infl ammatory 
effects in vascular disease. Apart from arginase, ROS also 
play an important role in vascular dysfunction in diabetes, 
although the source of  their generation remains elusive. 
Overproduction of  superoxide can lead to scavenging of  
NO and to its reduced bioavailability.[27,28] ROS have been 
implicated in increased arginase activity and expression. 
Indeed, arginase activation can cause uncoupling of  eNOS 
by reducing the supply of  L-arginine. The uncoupled eNOS 
uses molecular oxygen to produce superoxide, thereby 
further reducing NO and increasing ROS formation 
[Figure 1].

IMPLICATION OF PROTEIN KINASE C

An important glucose-induced alteration in cellular 
metabolism that may account for endothelial dysfunction 
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is activation of  PKC. Hyperglycemia causes de novo 
synthesis of  diacylglycerol, leading to the activation of  
PKC, a pathway now demonstrated in all vascular tissues 
involved in diabetic complications.[29] Of  interest, the 
adverse effects of  elevated glucose levels on acetylcholine-
induced relaxation of  rabbit aorta and rat pial arterioles 
were restored by the addition of  PKC-inhibitors.[30,31] 
Diabetes-induced translocation of  PKC-alpha to renal 
membranes was associated with increased nicotinamide 
adenine dinucleotide phosphate oxidase-dependent 
superoxide generation.[32] It has been proposed that HG 
concentrations rather specifically activate the beta II 
isoform of  PKC.[33] However, the PKC alpha isoform, 
which is activated by HG in bovine aortic endothelial 
cells, has also been suggested to play an important role 
in diabetes mellitus-associated endothelial dysfunction, 
since specific antisense or pharmacologic inhibition 
completely abolished the effects of  HG on endothelial 
cell permeability.[34] The reported activity of  PKC-alpha 
on endothelial permeability is at least partially mediated by 
inducing phosphorylation of  p115RhoGEF,[35] a guanine 
nucleotide exchange factor (GEF) for Rho GTPase.[36] 
Because active RhoA is implicated in arginase induction,[24] 
it suggests that PKC-alpha might also be involved in 
regulation of  arginase activity.

TUMOR NECROSIS FACTOR: A MOONLIGHTING 
CYTOKINE IN ENDOTHELIAL DYSFUNCTION

Human TNF is a 51-kDa homotrimeric protein. TNF is 
generated as a membrane-bound precursor that is cleaved 
by the metalloproteinase family member TNF-alpha 
converting enzyme, giving rise to the soluble protein.[37] The 
main sources of  the cytokine are activated macrophages 
and T cells. TNF binds to 2 different TNF receptors, 

TNF-R1 (55 kDa) and TNF-R2 (75 kDa), at least one of  
which is expressed in most somatic cells.[37] Soluble TNF 
has the highest affi nity for TNF-R1, whereas membrane-
bound TNF preferentially interacts with TNF-R2.[38] Apart 
from the ligand TNF, also the receptors exist as membrane-
associated and soluble forms.[37] TNF-R1, but not TNF-R2, 
contains a death domain, which signals apoptosis upon 
the formation of  the death-inducing signaling complex[37] 
Although not carrying a death domain, TNF-R2 has 
nevertheless been implicated in apoptosis regulation in 
microvascular endothelial cells.[39] 

Spatially distinct from its receptor binding sites, TNF 
carries a lectin-like domain, recognizing specific 
oligosaccharides, such as N,N′-diacetylchitobiose and 
branched trimannoses,[40] which can be mimicked by the 
17-amino acid circular TIP peptide (amino acid sequence: 
CGQRETPEGAEAKPWYC).[41] Three residues, namely, 
T105, E107, and E110, appear to be crucial for this activity. 
The TIP peptide exerts a lytic activity toward bloodstream 
forms of  African trypanosomes,[41] which occurs upon 
binding to the oligosaccharides expressed in the variant-
specifi c glycoprotein of  the parasites. More importantly, 
the TIP peptide also increases sodium transport in lung 
microvascular endothelial cells.[42] Interestingly, the activities 
of  the lectin-like domain of  TNF cannot be inhibited by 
the soluble TNF receptors.[41] 

TNF is one of  the key infl ammatory mediators that is 
expressed during a variety of  infl ammatory conditions 
and initiates the expression of  an entire spectrum of  
infl ammatory cytokines ranging from many interleukins 
to interferons.[43] It is suggested that infl ammation is an 
effector of  not only endothelial dysfunction, but also insulin 
resistance and atherosclerosis.[44] Under inflammatory 
conditions, TNF can increase the expressions of  adhesion 
molecules, such as vascular cell adhesion molecule (VCAM-
1) and intercellular adhesion molecule (ICAM-1); and as 
such promote the adherence of  monocytes.[45] Moreover, 
TNF can affect NO production by decreasing eNOS 
expression[46] and increase the production of  ROS in 
neutrophils and endothelial cells through NAPH oxidase,[47] 
xanthine oxidase,[48] and uncoupled NOS.[49] The pivotal 
role of  TNF in diabetes-induced endothelial dysfunction 
can also be manifested by the observation that endothelial 
function is close to normal in a TNF-knockout diabetic 
mouse model.[50] 

The generation of  TNF is increased during diabetes, and 
the cytokine has been shown to upregulate the expression 
of  arginase in endothelial cells, which leads to endothelial 
dysfunction during ischemia reperfusion injury in mice.[25] 

Figure 1:  Mechanisms leading to endothelial dysfunction in diabetes
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Recent studies have indicated that TNF can affect 
endothelial barrier integrity.[51] by means of  (1) inducing 
apoptosis of  lung microvascular endothelial cells,[39] which 
can contribute to the disruption of  the endothelial barrier 
during acute lung injury and acute respiratory distress 
syndrome;[52] (2) by inducing the production of  ROS;[53] 
and (3) by directly increasing endothelial permeability in a 
RhoA/ROCK-dependent manner.[54] PKC-alpha activation 
was proposed to be involved in TNF-mediated increases 
in permeability of  pulmonary microvessel endothelial 
monolayers.[55] On the other hand, the lectin-like domain of  
TNF, mimicked by the TIP peptide, can increase endothelial 
monolayer resistance in the presence of  bacterial toxins, 
by means of  inhibiting listeriolysin-induced PKC-alpha 
activation, which in turn inhibits RhoA activation and 
myosin light chain phosphorylation.[56] Moreover, the lectin-
like domain of  TNF can reduce ischemia-reperfusion–
induced ROS generation in a lung transplantation model[57] 
As such, the lectin-like domain of  TNF can potentially 
oppose the deleterious receptor-mediated activities of  the 
cytokine on the endothelium.[58]

CONCLUSION

The present communication has reviewed some recent 
studies on diabetes-induced endothelial dysfunction and has 
discussed the important roles of  arginase, PKC and TNF in 
this complicated pathological condition. The interactions 
between these molecules and the proposed mechanism of  
diabetes-induced endothelial dysfunction are summarized 
in Figure 1. New insights into these mechanisms and into 
crucial targets of  endothelial dysfunction in diabetes may 
lead to novel strategies for treatment in the future. 
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