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Abstract
Remote monitoring of physical activity using body-worn sensors provides an alternative to
assessment of functional independence by subjective, paper-based questionnaires. This study
investigated the classification accuracy of a combined surface electromyographic (sEMG) and
accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke.
sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they
carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to
evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were
analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to
identify the minimal sensor configuration needed to accurately classify the identification tasks, with
a minimal number of misclassifications from the nonidentification tasks. The results demonstrated
that the highest sensitivity and specificity for the identification tasks was achieved using a subset of
four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one
thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity
of 99.7% for the identification tasks, and a mean misclassification error of <10% for the
nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable
sensor system for automatic recognition of motor tasks used to assess functional independence in
patients with stroke.
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I. Introduction
Stroke can result in a profound restriction of physical functioning, which may negatively impact
the quality of life for stroke survivors and their care givers. Stroke is the leading cause of
serious, long-term disability in the United States [1]. Approximately 4.8 million Americans
are currently diagnosed with stroke and more than a million are reported to have residual
difficulties in carrying out activities of daily living (ADL) [2]. The psychological and financial
advantages of returning these patients to their home following acute care must be weighed
against the increased health risks for falls and other catastrophic injuries that can result when
discharge plans are implemented prematurely or with insufficient home-based support. Falls
in the home are the leading cause of injury-related deaths among people ages 65 and older in
the U.S. and represent a public health burden in health care costs that is on par with that of
stroke [2].

Decisions about home-readiness in these patients rely heavily on comprehensive assessments
of mobility and physical functioning. Most of the clinical assessment tools currently in use are
based on either self-report or observer-rated measures. Self-report measures, although simple
to acquire, can be vague or inaccurate due to poor patient memory, unsound perceptions of
performance, or misjudgments of actual capability [3], [4]. Observer-rated surveys by
caregivers are often time-consuming, involve limited opportunity for repeated observations,
and rarely capture changes in functional status that may fluctuate throughout the day [4].

Instrumented devices that automatically and continuously monitor physical activity and
functioning provide an alternative to subjective assessment tools. The objectivity and
comprehensiveness of a patient’s physical performance record could be improved by a system
that automatically identifies the activities carried out by the individual throughout the day,
particularly in remote locations such as the patient’s home or community. Sensor-based activity
monitors currently in use provide general measures of physical activity or energy expenditure
based on data from accelerometer (ACC), gyroscope, or EKG sensors. ACCs are the most
common sensors found in current activity monitors because of their versatility and relative ease
of use. When placed on the body, ACC sensors provide kinematic information based on
measurements of acceleration and position with respect to gravity. ACC signal features have
been processed using neural networks to successfully differentiate sedentary activities, such
as sitting or lying down, from more physically demanding activities, such as walking or running
[5]–[10]. These features have also been effective in monitoring movement disorders such as
tremor [11] and dyskinesia [12] in patients with Parkinson’s disease. However, ACC sensors
have inherent limitations in differentiating between an active versus passive performance of a
movement, or a loaded versus unloaded performance of an activity. In contrast, surface
electromyographic (sEMG) sensors have an inherent advantage in distinguishing between
active versus passive movements or degrees of loading because the amplitude of the sEMG
signal is monotonically related to muscle torque [13]. These sensors have been used for deriving
kinematic information based on the timing, frequency, and amplitude of muscle activity [14].
sEMG-based activity monitors are a rarity, however, with the majority of such devices limited
to classification of gait disorders [15] or movement disorders such as tremor [16].

The work described in this paper evolved from earlier work in evaluating the feasibility of
using sEMG sensors to monitor 11 specific ADL activities among a healthy control population
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[17]. That study achieved a sensitivity of 90% for a complement of eight sensors, and 82% for
combinations of 4–6 sensors using an adaptive neuro-fuzzy inference system (ANFIS).
Subsequent work [18], [19] also with normal healthy subjects, analyzed a similar set of ADL
activities and demonstrated that accelerometer data combined with EMG data could
significantly improve the classification performance compared to a system limited to EMG
sensors. More recent attempts at classifying these ADL activities in a patient population with
stroke using only sEMG sensors resulted in unacceptably low classification results of 80%
sensitivity [20]–[22].

The purpose of this study was to investigate the relative merits of combining sEMG and ACC
sensor data for automatic recognition of these ADL activities in a stroke patient population.
The feasibility of this approach among a target patient population rather than among healthy
controls is considered a critical step in the evolution of this work towards clinical use. The
general approach taken in this study was to adapt the analysis procedures from these earlier
investigations to this investigation and optimize the classification algorithms to a minimal set
of sensor data starting from a relatively large number of EMG and ACC sensors. Developing
a device with as few sensors as possible is a desirable aim in minimizing the cost and
maximizing the usability of a wearable sensor system. If a combined sensor approach provides
increased sensitivity and specificity of ADL task recognition, then hybrid sensors that detect
sEMG and ACC signals from a single sensor encapsulation might reduce the overall number
of sensors needed for functional activity monitoring among these patients.

II. Method
A. Subjects

Ten subjects (five females and five males) with a verifiable history of stroke by CAT and/or
MRI scan provided written informed consent prior to their participation in this study. The age
of the subjects ranged from 33 to 67 years (mean age 51.7± 11.4 years) and the average duration
since the onset of their stroke was 7.5 ± 6.0 years. The subjects were within Brunnstrom’s
Stage III–V rating of recovery from hemiplegia (i.e., they all had clinical signs of increased
muscle tone, spasticity, and synergistic movements). Functionally, they were able to walk
independently for at least 30 m with or without an assistive device, and were independent in
most, but not all, daily activities. A comprehensive battery for assessing functional ability was
administered prior to their participation in the study using the Fugl–Meyer assessment
questionnaire [23]. Fugl–Meyer scores for these subjects confirmed that they had mild to
moderate functional deficits. Further details regarding the subject population are summarized
in Table I. All subjects read and signed an informed consent form approved by an Institutional
Review Board.

B. Data Acquisition
Signals were recorded from pairs of sEMG and ACC sensors which were placed adjacent to
one another at eight anatomical sites (Fig. 1), corresponding to bilateral Anterior Deltoid,
Flexor Digitorum Superficialis, Erector Spinae (L1 spinal level), and unilaterally from the
Vastus Lateralis (hemiparetic side), and Rectus Abdominus (nonhemiparetic side) muscles.
Selection of these sites was based on a preliminary study among healthy control subjects where
data from these locations identified a similar set of motor tasks with an accuracy of 90%
[17]. The sEMG signals were acquired using eight active electrodes (Model DE-2.1 DelSys,
Inc.) and a Bagnoli-16 (DelSys, Inc.) system that provided a total gain of 3000, a bandwidth
of 20–450 Hz (12 dB/oct roll-off), and a baseline noise < 1.25 μV (rms). A reference electrode
was attached to the skin at the elbow bony prominence. The ACC signals were acquired from
eight miniature uni-axial accelerometers (Analog Devices ADXL105JQC) which were
preamplified to provide signals with a dynamic range of ±5 g, a maximum resolution of 10 mV
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(40 milligravities), and a bandwidth of dc-30 Hz. Both sEMG and ACC signals were sampled
at 1000 Hz using a 16-bit A/D board (PCI-6035E, National Instruments) and EMGworks 3.0
acquisition software (DelSys, Inc). All sensors were secured to the skin by a double-sided
adhesive interface.

C. Activities Monitored
Data from the sensors were acquired while the subjects carried out the same set of 11 ADL
activities (referred to as identification tasks) as in previous studies [17]–[21]. The identification
tasks were originally based on the functional independence measure (FIM) [24], the most
widely used scale for assessing functional independence. The FIM is comprised of six
subcategories of ADL activities that include feeding, grooming, dressing, transferring,
ambulating, and personal care tasks, and two tasks from each of these categories were selected
to develop the identification task set (Table II). In order to test for the likelihood of false
detection associated with motor activities not belonging to these 11 identification tasks, an
additional set of 10 tasks (referred to as nonidentification tasks) was also monitored (Table II),
as described in previous investigations [17]–[21]. They included fine- or gross-motor activities
utilizing similar muscle groups and/or limb trajectories as those of the 11 identification tasks.
All of the subjects were read the same set of instructions for each task and were not coached
in the manner in which they performed the task, thereby allowing for some of the realistic
variability found in “real life.”

The identification tasks were repeated twice by the subject in order to provide training and test
data sets for the algorithms that were designed for the subsequent data analysis. Identification
tasks that involved repetitive activity (e.g., brushing teeth, combing hair, and cutting food)
were performed continuously by the subject for 1 min. All the other identification tasks were
performed as a set of 15 repetitions. These numbers were specified on the basis of a previous
study demonstrating their sufficiency for training the neural network algorithms among healthy
control subjects [17]. Rest periods were allowed on an “as-needed” basis between tasks to
minimize fatigue.

D. Data Processing and Analysis
Data processing and classification of tasks were accomplished in four parts consisting of feature
extraction algorithms, a multilayer feed forward neural network, an adaptive neuro-fuzzy
inference system, and an optimization procedure to minimize number of sensors. This model
was based on a previously-reported investigation among a nondisabled population [17]. The
process is schematically presented in Fig. 2.

Feature Extraction—Surface EMG features were computed using 4 s epochs, which was
the time necessary to complete the longest identification task (supine-to-sit). The features
included: 1) the root mean square (rms) value of the raw sEMG signal to represent overall
muscle activity, 2) the amplitude range of the auto-covariance function of the sEMG envelope
to represent the modulation of muscle activity, 3) the dominant frequency component of the
sEMG envelope to represent the periodicity of muscle activity, and 4) the co-activation
intervals between muscle pairs to represent muscle co-contraction. The raw sEMG signals were
initially filtered with a fifth-order high-pass Butterworth filter with zero phase lag (cutoff
frequency 45 Hz) to attenuate artifacts, followed by calculation of the RMS energy. The
envelope of the sEMG signal was then obtained using a 12 Hz low-pass filter (FIR implemented
using a 201-coefficient Hamming window) and down sampled by a factor of 10. The auto-
covariance of the sEMG envelope was computed for lags between −2s and +2 s and the
amplitude range of this function was extracted for each channel. The dominant frequency was
computed using the squared magnitude of the FFT of the envelope between 0 and 10 Hz. The
spectrum was binned in intervals of 1 Hz, and the bin with the greatest magnitude was
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designated the dominant frequency component. Co-activation between pairs of channels was
derived for each channel using a statistically-based algorithm of double-threshold detectors
that operates on the raw sEMG signal [25]. The feature extraction procedure resulted in a total
of 52 numerical values for each sEMG epoch: (eight channels) × (three features) + (28 values
representing the percent co-activation for all possible pairs of eight sEMG channels). Features
from a total of 40 epochs were extracted for each task.

ACC features were also extracted using 4 s epochs. The data were down sampled by a factor
of 10 after applying an antialiasing filter. To measure changes in body orientation relative to
the gravity vector, the rms and range of auto-covariance were calculated from data low-pass
filtered at 15 Hz. Measures related to body acceleration were computed from the RMS, range
of auto-covariance, dominant frequency, and percent co-activation of high-pass filtered data
at 1 Hz. This processing resulted in a total of 68 numerical values for each ACC epoch: (eight
channels) × (two features from low-pass ACC + three features from high-pass ACC) + (28
values representing the percent co-activation for all possible pairs of eight ACC channels).

Neural Network—The next step of the analysis procedure was implemented by analyzing
the data using a multilayer feed forward artificial neural network (ANN) to identify the
relationship between feature sets and identification tasks, and to identify the ANN topology
with the highest performance metrics for classifying the identification tasks. Four different
ANN topologies were evaluated for this purpose: two ANN topologies with a single hidden
layer containing 22 and 33 neurons, respectively; and two neural networks with two hidden
layers containing either 44 and 33 or 44 and 22 neurons, respectively. A larger number of
neurons were not considered to avoid the possible requirement for a larger training data set
than provided in this study. The selection of these topologies was based on comparisons of
different ANN configurations carried out in previous studies among control subjects [17]–
[19]. Each of the 11 identification tasks was assigned to one output neuron. This is an important
characteristic of the design resulting in orthogonal outputs that decrease the likelihood of
misclassification errors. A sigmoid (anti-symmetric hyperbolic tangent) transfer function was
used for the neurons of the hidden layers, and a linear transfer function for the neurons of the
output layer [26].

Training of the neural networks was accomplished by the use of a scaled conjugate gradient
algorithm [27] with weights and biases of neurons selected using a technique proposed by
Nguyen and Widrow [28] for nonlinear transfer functions. For neurons with linear transfer
function, the weights and biases were initialized by random values selected between −1 and 1
[26]. The neural network was trained on a subject-by-subject basis utilizing 440 data sets (40
epochs × 11 identification tasks). The features were normalized for each input neuron so that
the mean was 0 and the standard deviation was 1. The target outputs of the neural network
were determined by setting one neuron of the output layer to 1 and all the other neurons to 0,
so that each identification task was associated with one active output neuron. The training
algorithm was run for different numbers of iterations (100, 250, 350, 500, and 1000) using an
“early stopping” procedure to achieve the greatest sensitivity for a given value of specificity
or misclassification [29].

The detection of the identification task by the ANN was based on the L2-norm distance between
the outputs of the neural network and each of the targets where the L2-norm distance for the

jth target is defined as . The minimum of {d1, d2 …, d11} was
selected and compared to different threshold values that varied between 0.1 to 5, by steps of
0.02 to identify all possible classification decisions and to optimize performance. If this
minimal distance was smaller than the threshold value, the corresponding identification task
was accepted as the final output of the classifier algorithm module. If the minimal distance was

Roy et al. Page 5

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2010 September 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



greater than the threshold value, the dataset was deemed as belonging to a nonidentification
task. Sensitivity, specificity and misclassification were then calculated with each of the possible
thresholds based on all the data sets. The ANN topology that resulted in the highest levels of
identification task sensitivity and specificity was selected for the next step of processing using
ANFIS [30].

Neuro-Fuzzy Inference System—The use of the ANFIS was implemented to determine
whether the outputs of the selected ANN resembled the orthogonal pattern expected of an
identification task, or the nonorthogonal pattern of a nonidentification task (Fig. 2). The
usefulness of this procedure was demonstrated in previous investigations among healthy and
stroke populations [17]–[21] and was therefore adopted in this investigation. The ANFIS was
trained using examples of orthogonal and nonorthogonal patterns associated with the
identification and nonidentification tasks, respectively. The training set consisted of 20 epochs
for each of the identification tasks and 20 epochs for a subset of the nonidentification tasks.
An additional 20 epochs of data from the identification and nonidentification tasks was used
for the test set. A subtractive clustering method [30] was utilized to build the fuzzy inference
system and determine the number of rules and antecedent membership functions [31], [32]. A
least-square estimation approach was used to determine the rule’s consequent equations,
resulting in a Takagi-Sugeno-Kang inference system [31], [32] with outputs approximating 0
for the identification tasks and 1 for the nonidentification tasks. The output of the ANFIS (a
value between 0 and 1) was compared to a threshold value, such that outputs below the threshold
would consider the ANN output as orthogonal, in which case the corresponding identification
task was accepted. Outputs exceeding the threshold would consider the neural network output
as nonorthogonal and the identification task would be rejected in favor of the output
representing the nonidentification task category. A threshold value of 0.65 was used for the
ANFIS in this study based on a preliminary investigation [17] in which this value resulted in
the greatest sensitivity for the identification tasks when misclassification of the
nonidentification tasks was arbitrarily set to less than 10%. A more detailed description of the
ANFIS can be found in related studies [19], [21].

Performance Measurement and Optimization—The final stage of the analyses to
quantify classification performance was implemented by first calculating sensitivity and
specificity for the identification tasks, and misclassification for the nonidentification tasks.
Sensitivity measures the percentage of correct classifications of identification tasks, whereas
specificity measures the percentage of mistaken classifications of one identification task for
another. Misclassification measures the percentage of nonidentification tasks mistaken for
identification tasks. The receiver operating characteristics (ROC) curves of the ANN and
ANFIS were evaluated by plotting sensitivity versus specificity and sensitivity versus
misclassification for all possible thresholds [29]. The equations for computing these outcomes
are listed below

An optimization procedure was then implemented to obtain maximum sensitivity and
specificity for a given value of misclassification for successively smaller combinations of ACC
and sEMG sensor configurations. Because the ACC and sEMG sensors were placed adjacent
to one another in most locations on the body to explore the possible benefits of combining such
measures in a single hybrid sensor, a goal of the optimization procedure was to identify the
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fewest number of such combined locations needed to provide “acceptable” classification
results. Acceptability was defined as achieving at least 90% sensitivity and specificity,
respectively, for misclassifications errors no greater than 10%. This specification was based
on our intent to achieve results for stroke patients that were comparable to the previously
reported results among healthy subjects without stroke.

The first step of the optimization was to compare the classification results for the full
complement of 16 channels of data, the full complement of ACC data (eight channels), and
the full complement of sEMG data (eight channels), respectively. These results were used to
determine whether the ACC or sEMG data provided higher levels of classification for these
tasks. The classification algorithms were then reanalyzed using all possible combinations of
successively fewer numbers of sensor data as inputs to the neural networks. Details of this
process are provided in the Results section of the paper.

III. Results
A qualitative analysis of the raw data demonstrated that the sEMG and ACC signals patterns
were visibly different for the different identification tasks. Fig. 3(a) provides examples of signal
patterns from three activities monitored in the same subject. The first two plots were derived
from data recorded while the subject buttoned his shirt and combed his hair, respectively. As
might be expected, the sEMG and ACC patterns for these tasks are visibly different because
these two identification tasks require very different uses of the upper extremities. However,
the third task in the figure, bringing a telephone receiver to the ear, is a nonidentification task
with a similar use of the upper extremities as the hair combing task, making the task of
automated recognition likely more difficult than the previous examples. This likelihood is
supported by examining channels 1 and 3 for both tasks, which appear to have similar signal
patterns. However, there are visible differences in the amplitude modulation of the sEMG and
ACC signals in channels 2 and 4 for these tasks, highlighting the fact that similar tasks may
have dissimilar signal features in some channels which the classification algorithms can
exploit. Classification algorithms must not be too sensitive to differences in signal patterns;
otherwise it might mistakenly identify the normal variability of performing the same task as
different tasks. Fig. 3(b) provides an example of signal patterns from a second subject
performing the same tasks as in Fig. 3(a). It illustrates that tasks retain many of the same signal
pattern characteristics even when different individuals are performing these tasks.

The results of comparing classification percentages for different neural network topologies are
summarized in Fig. 4(a) and (b). This stage of the analysis was performed without the fuzzy-
inference postprocessing in order to establish the relationship between ANN topology and
operating characteristic performance. Training algorithms were stopped after 250 iterations
because performance did not improve beyond this number. The figure demonstrates that
differences in operating characteristics were primarily related to the number of layers in the
network, with maximum sensitivity for given values of specificity and misclassification
obtained for the three-layer neural network with 44 and 22 neurons in the hidden layers. This
was the preferred topology used for the remainder of the analysis which incorporated the fuzzy-
inference postprocessing.

The ROC curves using the preferred neural network topology are compared for data from the
full set of sensors (sEMG and ACC) versus data from either the sEMG sensors or the ACC
sensors (Fig. 5). The results indicate that relatively high sensitivity was achieved with the 16-
channel sEMG/ACC data set (94.9% ± 1.4%) and the 8-channel ACC data set (93.2% ± 1.7%),
but not for the 8-channel sEMG data set (68.7%±3.4%). Maximum specificity was relatively
high for all three data sets and resulted in mean values of 99.1% ± 0.5% for 16-channel sEMG/
ACC data, 96.8% ± 0.4% for 8-channel ACC data, and 95.1% ± 1.6% for 8-channel sEMG
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data. The inability of the 8-channel sEMG data set to achieve relatively high sensitivity
percentages for misclassification limited to 10% suggests that a solely sEMG-based sensor
system would not be sufficient for effectively monitoring these tasks in this population.

Optimization of the classification results to obtain a system that would require a minimal
number of sensors began by repeating the analysis for all possible combinations of successively
fewer numbers of the eight ACC sensors (Fig. 6). This strategy was dictated by the previously
described finding that the eight ACC sensor configuration resulted in the best ROC curve. As
might be expected, and as was indicated in the figure, successively fewer numbers of ACC
sensors was associated with a decrease in the sensitivity obtained for a given value of specificity
or misclassification. Examination of the sensitivity versus misclassification curves [Fig. 6(a)]
reveals a precipitous drop in performance when the numbers of sensors were reduced to less
than 4. Sensitivity versus specificity performance [Fig. 6(b)] also supported this finding. The
4-channel ACC system associated with peak performance was attained for sensor locations on
both upper arms, the forearm of the preferred side, and the thigh of the nonpreferred side, and
resulted in a maximum mean sensitivity of 86.5% and specificity of 99.7% for
misclassifications limited to 10%

Further analysis was conducted to determine whether the ROC curves for this 4-ACC data set
could be improved by adding EMG data from the adjacent sensors. The result (Fig. 7)
demonstrated that sensitivity percentages were significantly improved, with maximum
sensitivity and specificity values averaging 95.0% and 99.7%, respectively. Sensitivity
improved for 10 of the 11 identification tasks as a result of adding this data set (Table III).

IV. Discussion
This study provides evidence that automated monitoring of a variety of activities of daily living
can be accomplished in patients with stroke using a wearable sensor system in combination
with a neural network and fuzzy logic processing technique. Although other reports in the
literature have achieved similar levels of classification accuracy for wearable activity monitors,
the identification tasks in those reports were nonspecific and were restricted to investigations
on normal healthy subjects [8]–[10]. In the present study, the identification tasks were more
specific and related to FIM activities that are useful for evaluation the functional mobility of
patients with motor disorders. But, more importantly, this study suggests that movement
assessment technology can be used to monitor the abnormal ADLs of a patient population,
which in our case consisted of hemi paretic stroke patients having mild to moderate
dysfunction. By using hybrid ACC and sEMG sensor pairs only four pairs were required to
provide the highest sensitivity and specificity for the identification tasks. One pair was located
on each arm, one pair on the forearm, and one pair on the thigh.

The high levels of sensitivity and specificity (i.e., better than 90% on average) that were
achieved in this study were accomplished while limiting misclassifications of nonidentification
tasks to an average of less than 10%. The inclusion of nonidentification tasks into the study
design was also unique compared to some other activity monitoring studies [5], [7]–[9]. The
inclusion of nonidentification tasks was done to develop a more “real-world” monitoring
condition where tasks containing similar limb trajectories and movements as the identification
task set could be analyzed to see whether they confound the classification algorithms. In fact,
the neural networks were designed so that the output represented the identification tasks as
orthogonal in order to minimize such misclassifications. This approach decreased the
likelihood that the output of the neural network would select a target associated with an
identification task when processing a feature set derived from a nonidentification task. The
neural network also provided a reduction of the dimensionality of the classification space that
was necessary for utilizing the adaptive neuro-fuzzy inference system. Fuzzy postprocessing
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proved beneficial because when it was implemented, the neural network provided sensitivity
and specificity values above 90% for all 11 identification tasks. Without the ANFIS, only 8 of
the 11 identification tasks achieved this 90% level of performance, for misclassifications
averaging below 10%. This task-specific advantage of using the ANFIS was consistent with
findings from previous studies [17]–[21].

The inclusion of both sEMG and ACC sensors for monitoring functional activities has rarely
been reported in the literature [18]–[21]. The results of this study demonstrate that the inclusion
of sEMG sensors to an ACC-based monitoring system was useful in attaining the highest level
of classification accuracy with the least number of sensors for patients with stroke. This
advantage was not seen in previous work among healthy control subjects where a 4 sEMG
sensor system was sufficient in achieving sensitivity and specificity results in the 90% range
for misclassifications less than 10%, providing that a neuro-fuzzy inference system was
included as a part of the analysis [18]–[20]. The scarcity of EMG-based approaches for activity
monitoring may be due to the generally held belief that sEMG techniques are not amenable to
home use. This perception has likely been perpetuated because of previous sensor technologies
that did not incorporate active electronics at the recording site, thereby requiring time-
consuming skin preparation and immobilization of sensor leads to reduce baseline noise and
motion artifact, respectively. Recent advances in sEMG sensor design and signal conditioning
hardware have greatly reduced the need for such preparations. Improvements in sensor
miniaturization and digital circuitry also make it feasible to consider combining ACC and
sEMG signal detection into the same hybrid sensor circuit board and encapsulation.

In our attempt to reduce the overall number of sensors, we considered the ACC sensors as the
“primary” sensors for classification because the predominant number of wearable monitoring
systems in the literature rely on ACC sensors [8]–[10]. Furthermore, as reported in preliminary
work on control subjects, ACC data provided better classification performance overall than
sEMG data when classifying these tasks [17], [18]. However, there were several individual
identification tasks that were classified with greater sensitivity and specificity when sEMG
data were combined with ACC data. It may be that the ability of sEMG data to characterize
such motor control features as muscle coordination, loading, and co-contraction was
particularly useful in identifying these tasks.

There are several basic limitations associated with the methodology of this study that will need
further development in the future to provide a wearable sensor system for use in the home
under “real world” conditions. The algorithms were trained separately for each individual and
required multiple repetitions of the task to obtain sufficient data for training and testing
purposes. The need for such individualized training may be unrealistic for use on people with
moderate to severe motor impairments who might not have the stamina or time for this
requirement. A generic approach will need to be developed that utilizes algorithms that are
applicable to a population of targeted users without the need for extensive individualized
training. This study was also limited to monitoring “scripted” tasks in a laboratory environment.
Some of these tasks were repetitive, such as walking or brushing teeth, whereas others were
nonrepetitive, such as bringing a telephone receiver to the ear. Although all tasks were repeated
for the purposes of training, it is not clear what the impact is of identifying repetitive versus
nonrepetitive activities in a larger task set encountered in real life. Monitoring was also limited
to tasks performed in isolation during well-delineated time segments. It is not known how well
the algorithms developed in this fashion would perform for data collected outside the laboratory
during unscripted free-form activities. These conditions will need to be explored and dealt with
before this system can be implemented effectively for clinical use.
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Fig. 1.
Schematic overview of the location of ACC (dark round) and sEMG (dark rectangular) sensors
on a frontal view of the subject. Lightly shaded sensors indicate posterior placement on the
subject. The directions for measurement of acceleration by each accelerometer are indicated
by arrows where X refers to the anterior-posterior direction, Y refers to the medial–lateral
direction, and Z refers to the superior–inferior (gravity) direction.
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Fig. 2.
Schematic diagram showing each stage of the data processing system for activity classification,
based on earlier work [17]. Raw sEMG and ACC signals provide the input into the system,
which culminates in the output classification of 11 identification tasks. Feature extraction
parameters describe various characteristics of the input signals related to muscle activity and
movement. The features serve as inputs to a neural network, which is trained to identify the
identification tasks. The output is directed to an adaptive neuro-fuzzy inference system which
identifies whether the outputs of the neural networks resembled the orthogonal pattern expected
of an identification task, or the nonorthogonal pattern of a nonidentification task.
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Fig. 3.
(a) Example of raw sEMG and ACC data from one of the subjects tested in this study. Twenty
seconds of data are displayed for a subset of sensors placed on the upper extremity (sEMG
sensors located on the biceps brachii and wrist flexor muscles, respectively; ACC sensors
located immediately adjacent to the sEMG sensors). Data were recorded for two identification
tasks (shirt buttoning and hair combing) and one nonidentification task (bringing a telephone
receiver to the ear). (b) A similar data set from a second subject performing the same tasks as
in (a).
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Fig. 4.
ROC curves for neural networks with different topologies. Results are for algorithms trained
using 250 iterations. The left panel is a plot of sensitivity versus misclassification; the right
panel is a plot of sensitivity versus specificity. Dashed lines with and without squares represent
two-layer neural networks with 22 and 33 neurons in the hidden layer, respectively. Continuous
line plots with and without circles represent three-layer neural networks with either 44 and 33
neurons in the first and second hidden layers or 44 and 22 neurons in the first and second layer,
respectively.
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Fig. 5.
ROC curves for classification of the identification and nonidentification tasks for data from all
16 sensors (eight sEMG plus eight ACC; solid line), from just the eight ACC sensors (dash/
dot line) and from just the eight sEMG sensors (dotted line). Results were derived from all of
the subject data using an ANN with a three-layer neural network with 44 and 22 neurons in
the hidden layers and an ANFIS.
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Fig. 6.
ROC curves for data from different numbers of ACC sensors used in the analysis. Each ROC
curve represents the best performance for a specified number of sensors when all possible
combinations of that number of sensors were analyzed using the ANN algorithm. The curves
demonstrate that classification performance, in general, is reduced by decreasing the number
of ACC sensor. Secondly, these results demonstrate that reducing the number of sensors to
fewer than 4 results in a dramatic reduction in sensitivity, particularly when the goal of limiting
misclassifications to 10% is enforced.
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Fig. 7.
Comparison of ROC curves for data from four hybrid sensors (dashed line) versus data from
four ACC sensors (solid line). Results are for the set of sensors with data that produced the
highest % sensitivity and % specificity. The findings demonstrate that classification of these
tasks can be improved with a hybrid sensor that combines sEMG and ACC detection.
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TABLE II

List of the Identification and Nonidentification Tasks Studied in This Report. FIM Category Identifies Which of
the Specific FIM Categories Are Being Represented by the Identification Task

Identification Tasks FIM Category non-Identification Tasks

Food-Cutting
Food-Lifting

Feeding Typing
Box: Waist-to-Head

Tooth-Brushing
Hair-Combing

Grooming Open/Close Drawer
Phone Call

Shirt-Buttoning
Pant-Lifting

Dressing (upper/lower body) Flipping Pages
Box: Floor-to-Waist

Sit-to-Stand
Supine-to-Sit

Sitting

Transfers Organizing Small Objects
Writing

Walking Locomotion Folding Clothes
Standing

Bowel Movement Toileting
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TABLE III

Individual Task Performance for the Best 4-ACC and 4-Hybrid Sensor Combination Is Compared. Sensitivity
and Specificity Results Are for Misclassification Rates ≤ 10%. Analysis Included Postprocessing Using an
Adaptive Neuro-Fuzzy Inference System

Task

4 - ACC 4 - Hybrid

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Food-Cutting 91.6 100.0 96.8 100.0

Food-Lifting 97.3 100.0 98.8 100.0

Tooth-Brushing 70.3 99.2 89.9 99.1

Hair-Combing 85.3 99.0 94.6 99.0

Shirt-Buttoning 85.0 99.3 95.4 99.3

Pant-Lifting 84.8 99.6 94.7 99.5

Sit-to-Stand 85.3 100.0 95.8 100.0

Sitting 69.0 100.0 92.5 100.0

Bowel Movement 85.5 100.0 96.5 100.0

Supine-to-Sit 93.3 5100.0 97.0 100.0

Walking 92.8 99.1 92.5 100.0

Mean (%) 85.5 99.7 95.0 99.7
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