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Abstract
Clinical evidence, in particular the wide use of theophylline as bronchodilator, suggests that
methylxanthines can cause seizures in patients without known underlying epilepsy. Theophylline is
also known to be an added risk factor for seizure exacerbation in patients with epilepsy. The
proconvulsant activity of methylxanthines can best be explained by antagonizing the brain’s own
anticonvulsant adenosine. Recent evidence suggests that adenosine dysfunction is a pathological
hallmark of epilepsy contributing to seizure generation and seizure spread. Conversely, adenosine
augmentation therapies are effective in seizure suppression and prevention, whereas adenosine
receptor antagonists such as methylxanthines generally exacerbate seizures. The impact of the
methylxanthines caffeine and theophylline on seizures and excitotoxicity depends on timing, dose,
and acute versus chronic use. New findings suggest a role of free radicals in theophylline-induced
seizures and adenosine-independent mechanisms for seizure generation have been proposed.

A. Introduction
Seizures, ranging from altered states of consciousness to clonic and/or tonic convulsions, are
commonly encountered in patients who do not have epilepsy (Delanty et al. 1998). Among
other potential triggers, such non-epileptic seizures can be provoked by medication or
medication withdrawal. Within this context, seizures are potentially severe or fatal
complications of theophylline therapy. Theophylline can trigger seizures in patients without
known underlying epilepsy and is an added risk factor for seizure exacerbation in patients with
epilepsy. Most of these seizures result from toxic theophylline serum concentrations and are
difficult to control. Nevertheless, clinical diagnosis and management of theophylline-induced
seizures are underappreciated compared to other drug toxicities. Despite a long clinical history
of theophylline-induced seizures, relatively little is known about the underlying molecular
mechanisms that contribute to methylxanthine-induced seizure generation. Knowledge gained
from patient data, but most notably from animal or in vitro studies aimed at elucidating the
role of endogenous adenosine in seizure control contributes to our current understanding how
methylxanthines influence the excitability of the brain.

B. Clinical findings
Anecdotally, caffeinated beverages are “known” to lower seizure thresholds in patients with
epilepsy and the avoidance of excessive caffeine has been recommended in patients with
epilepsy (Kaufman and Sachdeo 2003). However, due to the lack of well-designed,
randomized, and placebo-controlled clinical trials, this concept has been challenged (Asadi-
Pooya et al. 2008). Clinical findings in support of a proconvulsive role of methylxanthines are
largely based on theophylline (or aminophylline, a mixture of theophylline with
ethylenediamine that is 20 times more soluble than theophylline alone) which, clinically, is
widely used to manage bronchospasms in reversible airway obstruction associated with stable
asthma and chronic bronchitis (Barnes 2005; Van Dellen 1979). In addition, aminophylline is
indicated in asystolic cardiac arrest and periarrest bradycardia refractory to atropine, whereas
caffeine is used to treat diabetic cardiac autonomic neuropathy (Duby et al. 2004). Theophylline
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has a narrow therapeutic window with an optimal plasma concentration of 10–20 mg l−1 (55–
110mmol l−1). Above this concentration, side effects such as arrhythmias and convulsions may
occur, especially when given rapidly by intravenous injection (Nolan et al. 2005).
Theophylline-associated seizures (TAS) or status epilepticus are considered a neurological
emergency with potentially fatal outcome (Nakada et al. 1983). These seizures – largely focal
onset generalized motor seizures – tend to be the only sign of theophylline toxicity, and can
occur in neurologically intact patients (Aminoff and Simon 1980; Nakada et al. 1983).
Remarkably, anticonvulsant therapy is ineffective in controlling these seizures, which often
progress to status epilepticus and become intractable (Nakada et al. 1983; Yoshikawa 2007).
Thus, in a recent clinical study the usual first-line treatment of diazepam was found to be more
likely ineffective in TAS cases compared to non-TAS cases (Yoshikawa 2007); the failure of
diazepam to stop those seizures might be based on interactions of theophylline with
benzodiazepines (see below) (Yoshikawa 2007).

Interestingly, TAS is most common in pediatric patients under 5 years of age (Korematsu et
al. 2008; Yoshikawa 2007), which can be considered to be naïve to theophylline or caffeine.
In a recent study of eight pediatric TAS cases without underlying epilepsy, all had fever at the
onset of TAS (> 38 °C), and six out of eight had a family history of febrile seizures and/or
idiopathic epilepsy (Korematsu et al. 2008). The authors of this study concluded that in infants
with an idiopathic reduced seizure threshold and fever, theophylline administration might
possibly be sufficient to trigger a seizure. Apart from TAS discussed here, methylxanthine-
induced seizures have also been described after the consumption of caffeinated energy drinks
(Iyadurai and Chung 2007), and theophylline, caffeine, and aminophylline are used clinically
to prolong seizure durations in electroconvulsive therapy for major depression (Stern et al.
1999). The potential risks associated with theophylline therapy are now well recognized. Due
to concerns of CNS stimulant effects, theophylline use in patients with insomnia has been
included in the 2002 Criteria for Potentially Inappropriate Medication Use in Older Adults
(Fick et al. 2003).

Pharmacokinetic drug interactions of methylxanthines need also to be considered.
Theophylline is largely metabolized by the hepatic enzyme CYP1A2, which is induced not
only by a variety of antibiotics (Gillum et al. 1993) but also by the commonly used enzyme-
inducing antiepileptic drugs, phenobarbital, phenytoin, carbamazepine, and primidone, and
might require an increase in the therapeutic dose of theophylline (Patsalos et al. 2002; Spina
et al. 1996). In view of the potential seizure-inducing effects of theophylline, the use of
theophylline in patients with epilepsy is now limited despite the fact that second generation
antiepileptic drugs do not interfere with the pharmacokinetics of theophylline (Patsalos et al.
2002). Of note, caffeine comedication in combination with phenobarbital during the first
trimester of pregnancy leads to a significant increase in congenital malformations in offspring
(Samren et al. 1999).

C. Experimental findings
The preconvulsive potential of methylxanthines has been corroborated in countless animal
studies that reach back to more than 35 years (Roussinov et al. 1974). Early studies suggest
slight differences in the convulsive role of methylxanthines: intraperitoneal administration of
caffeine produced immediate excitation and seizures followed by an encephalopathy, whereas
progression from encephalopathy to seizures was observed following aminophylline
administration (Chu 1981). The proconvulsant and convulsant effects of methylxanthines are
generally depend on dose and mode of application: Aminophylline at 100 mg/kg is known to
increase the susceptibility of rats to pilocarpine or pentylenetetrazol induced seizures
(Chakrabarti et al. 1997; Turski et al. 1989), whereas higher doses of aminophylline (250 mg/
kg) lead to seizures and death in rats (Chakrabarti et al. 1997). These detrimental effects of
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high doses of aminophylline could be avoided by using equivalent doses of theophylline in
preparations of acepifylline (theophylline ethanoate of piperazine) (Chakrabarti et al. 1997).
Aminophylline-induced seizures directly depended on cerebrospinal fluid concentrations of
theophylline and were not influenced by metabolites of theophylline (Ramzan and Levy
1986). In several experimental combinations it was shown that methylxanthines reduce or
abolish the anticonvulsant activity of several antiepileptic drugs (Kulkarni et al. 1991). In
contrast, the anticonvulsant effectiveness of felbamate was only affected at higher doses of
aminophylline and caffeine (Gasior et al. 1998) and aminophylline did not alter the ability of
gabapentin to protect mice against seizures induced by electroconvulsive shock (Luszczki et
al. 2007). The concept that methylxanthines can exacerbate seizures in epilepsy has recently
been challenged by Loscher, arguing that CNS stimulants exert (pro)convulsant activity only
at supratherapeutic doses (Loscher 2009).

Whereas methylxanthine induced seizures are refractory to diazepam in patients, it is important
to point out that levetiracetam and several other antiepileptic drugs that do not act via activation
of GABAA receptors are highly effective in suppressing caffeine-induced seizures in mice
(Klitgaard et al. 1998). Astemizole, a novel histamine H1 receptor antagonist, at a dose of 2
mg/kg increased the threshold for aminophylline-induced seizures (Swiader et al. 2005), an
interesting observation since these drugs are usually combined during the treatment of asthma.

Pharmacokinetic and pharmacodynamic drug interactions have also been studied in animal
models. Of note are interactions of the fluoroquinolone class of antibacterials with
theophylline. In one study, chronic pretreatment of rats with the fluoroquinolone pefloxacine
was shown to exacerbate aminophylline-induced seizures without altering brain concentrations
of theophylline (Imperatore et al. 1997). Likewise certain environmental toxins, such as
toluene, were shown to reduce thresholds for methylxanthine induced seizures (Chan and Chen
2003).

D. Adenosine, seizures, and excitotoxicity
Several potential mechanisms have been discussed that could explain the proconvulsive role
of acute theophylline (Yoshikawa 2007): (i) general decrease of seizure thresholds; (ii)
inhibition of adenosine A1 receptors (A1Rs) that normally suppress seizures by blocking the
release of excitatory amino acids; (iii) inhibition of cerebral blood flow via adenosine
antagonism (Puiroud et al. 1988); (iv) inhibition of 5’-nucleotidase and decrease in endogenous
adenosine production; (v) inhibition of pyridoxal kinase, an enzyme needed for the synthesis
of GABA; (vi) increase in cyclic GMP that is involved in maintaining the epileptic discharge;
and (vii) a presumed direct inhibition of the GABAA receptor (Sugimoto et al. 2001), although
interactions between GABAA receptors and the adenosine system might also be involved
(Bonfiglio and Dasta 1991; Phillis 1979). Overall, it appears that theophylline does not trigger
seizures as such, but rather potentiates pre-existing brain hyperexcitability, a mechanism
consistent with the role of A1Rs in preventing seizure spread and in mediating seizure arrest
(Fedele et al. 2006; Lado and Moshe 2008; Young and Dragunow 1994). Given the dominant
role of the adenosine system in seizure control within the context of theophylline toxicity, the
following sections focus on the role of adenosine in epilepsy.

1. Adenosine deficiency and seizure generation
The role of adenosine as an endogenous regulator of hippocampal excitability was first
recognized by Dunwiddie almost 30 years ago (Dunwiddie 1980). In a subsequent study it was
shown that theophylline and other alkylxanthines antagonized electrophysiological responses
to adenosine and adenosine-stimulated cyclic AMP formation, indicating that alkylxanthines
increase hippocampal excitability by antagonizing the actions of adenosine (Dunwiddie et al.
1981). Thus, several adenosine receptor agonists that activate the A1R were shown to suppress
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seizures in a variety of models, albeit accompanied by sedative and hypothermic side effects
(Dunwiddie and Worth 1982). Endogenous adenosine is a potent regulator of hippocampal
activity and was recently shown to control hippocampal sharp waves in CA3 via activation of
A1Rs (Wu et al. 2009). It is now well recognized that adenosine is an endogenous
anticonvulsant and regulator of brain activity (Boison 2005; Dunwiddie and Masino 2001;
Fredholm et al. 2005a; Fredholm et al. 2005b; Ribeiro et al. 2002). The anticonvulsant activity
of adenosine is largely mediated by activation of A1Rs, since A1R knockout mice experience
spontaneous seizures (Li et al. 2007a) and are highly susceptible to seizure spread (Fedele et
al. 2006). Conversely, A1R agonists are highly effective in the suppression of seizures
(Benarroch 2008; Fredholm 2003; Jacobson and Gao 2006), and have been demonstrated to
suppress seizures that are resistant to conventional antiepileptic drugs (Gouder et al. 2003).
Decreased extracellular adenosine levels and reduced A1R activation as a consequence of
kindling or caused by hypercapnia in a hippocampal slice preparation provide a plausible
mechanisms for seizure generation (Dulla et al. 2005; Rebola et al. 2003).

In adult brain synaptic levels of adenosine are largely regulated by an astrocyte-based
adenosine cycle (Boison 2008). Under physiological conditions synaptic adenosine is largely
derived from vesicular release of ATP from astrocytes followed by extracellular cleavage into
adenosine (Pascual et al. 2005), although astrocytic release of ATP via hemichannels has been
demonstrated (Iglesias et al. 2009; Kang et al. 2008). In adult brain adenosine is rapidly
phosphorylated into 5′-adenosine monophosphate by the astrocyte-based enzyme adenosine
kinase (ADK; EC 2.7.1.20) (Boison 2006, 2008). In contrast to conventional neurotransmitters,
such as glutamate or glycine, there is no transporter-based regulatory mechanism to terminate
the synaptic activity of adenosine. Due to the presence of two types of equilibrative nucleoside
transporters in the astrocyte membrane (Baldwin et al. 2004), intracellular ADK is able to fulfill
the role of a metabolic reuptake system for adenosine (Boison 2008). Based on its low KM for
adenosine, ADK is the key regulator for ambient concentrations of adenosine (Boison 2006;
Etherington et al. 2009; Lloyd and Fredholm 1995).

ADK has recently been identified as a molecular link between astrogliosis and neuronal
hyperexcitability in epilepsy (Li et al. 2008). Astrogliosis – a pathological hallmark of the
epileptic brain – is associated with upregulation of the adenosine removing enzyme ADK
(Gouder et al. 2004; Li et al. 2008). Remarkably, the development of spontaneous
electrographic seizures coincides both spatially (Li et al. 2008), as well as temporally (Li et al.
2007a) with astrogliosis and upregulated ADK. Uncoupling of astrogliosis from
epileptogenesis in ADK-transgenic mice (Adk-tg) (Li et al. 2009) has demonstrated that
overexpression of ADK, rather than astrogliosis per se, can be the cause for seizures. In line
with these findings, Adk-tg mice express spontaneous recurrent electrographic seizures (Li et
al. 2007a). Conversely, therapeutic augmentation of the adenosine system is very effective in
suppressing seizures (Boison 2009). Together, these findings demonstrate that adenosine-
deficiency and therefore deficient activation of A1Rs can be a direct cause for seizures. This
conclusion supports the notion that methylxanthines have proconvulsant activity due to
antagonizing the function of the endogenous anticonvulsant adenosine.

2. Adenosine deficiency and excitotoxicity
Adenosine, acting via A1Rs, is not only an endogenous anticonvulsant of the brain, but also a
powerful neuroprotectant (Cunha 2005; Fredholm 1997). Thus, in addition to a proconvulsant
role of A1R deficiency or increased adenosine clearance (overexpression of ADK), these
conditions lead to increased vulnerability to excitotoxic injury. Consequently, A1R knockout
mice are highly susceptible to seizure-induced (Fedele et al. 2006) or traumatic (Kochanek et
al. 2006) brain injury and A1R knockout mice experience highly aggravated neuronal cell loss
after status epilepticus (Li et al. 2007a).
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Pharmacological studies in a model of oxygen glucose deprivation (OGD) suggest that whereas
A1Rs desensitize after prolonged agonist exposure, A2AR mediated facilitation of glutamate
release by endogenous adenosine remains fully operational under long-term OGD (Sperlagh
et al. 2007). Thus, the inhibition of A2ARs might be a more effective approach to attenuate
glutamatergic excitotoxicity than the stimulation of A1Rs (Cunha 2005). Consequently,
A2AR antagonists are actively investigated clinically for their neuroprotective potential (Chase
et al. 2003; Hauser et al. 2003).

3. Adenosine-based therapeutic approaches
Given the prominent role of adenosine as endogenous anticonvulsant and neuroprotectant,
adenosine augmentation therapies (AATs) are highly effective in preventing seizures (Boison
2009). Pharmacologically, seizures can be suppressed by A1R agonists (Benarroch 2008) or
by ADK inhibitors (McGaraughty et al. 2005), however systemic augmentation of the
adenosine system is associated with significant side effects, including the suppression of
cardiac function and depression of blood pressure, and therefore not a therapeutic option
(Dunwiddie and Masino 2001). Alternatives are focal AATs to avoid systemic side effects and
to restore adenosinergic signalling within a localized area of adenosine dysfunction, which can
be equated with an epileptogenic focus (Li et al. 2008). Strategies that have been explored
include the implantation of adenosine-releasing silk-based polymers into the infrahippocampal
fissure in kindled rats. Rats treated with these polymers were protected both from established
seizures, as well as from developing epilepsy (Szybala et al. 2009). Likewise, rats with focal
implants of adenosine-releasing encapsulated fibroblasts or ADK-deficient stem cells were
protected from kindled seizures or kindling development, respectively (Huber et al. 2001; Li
et al. 2007b). Stem-cell derived adenosine-releasing implants that were placed into the
infrahippocampal fissure in mice were shown to suppress acute chemoconvulsant induced
seizures with associated injury (Ren et al. 2007), and to suppress epilepsy-development and
spontaneous seizure expression in a model of CA3-selective focal epileptogenesis (Li et al.
2008). Together, these data demonstrate that focal re-constitution of adenosine signalling
within an area of acquired adenosine dysfunction (i.e. within an epileptogenic focus) constitutes
a powerful approach to suppress seizures.

E. Methylxanthines, seizures, and excitotoxicity
The above paragraphs suggest that methylxanthines – via antagonizing adenosine’s
anticonvulsant and neuroprotective actions (Fredholm et al. 1999; Nehlig et al. 1992) – are
proconvulsants that aggravate excitotoxicity. There are, however, additional interactions that
need to be considered: the influence of methylxanthines on seizures and excitotoxicity is
context- and receptor-dependent, and appears to be influenced by pathways not related to
adenosine.

1. Acute versus chronic caffeine
Whereas the proconvulsive activity of acute methylxanthines has long been recognized (see
above), the chronic dosing of caffeine has different effects. Thus, caffeine administered at a
dose of 60–70 mg/kg per day in mice over a period of two weeks (resulting in plasma levels
of caffeine in the range of 6 to 14 μM, corresponding to chronic caffeine use in humans) reduced
N-methyl-D-aspartate (NMDA)-, bicuculline-, and pentylenetetrazol- induced seizures in mice
in the absence of changes in A1R, A2ARs, or GABAARs (Georgiev et al. 1993; Johansson et
al. 1996). The effect was due to the combined effects of theophylline, to which caffeine is
metabolized in brain, and caffeine itself but could not be ascribed to changes in A1 and A2A
adenosine or GABAA receptors (Johansson et al. 1996). In contrast, higher plasma
concentrations of caffeine (100 μM) after chronic dosage for 12 days resulted in increased
A1R densities, whereas mRNA levels or A2ARs were not affected (Johannson et al. 1993).
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Remarkably, chronic caffeine administration in rats (40 mg/kg, twice daily for seven days)
increased the thresholds for subsequent theophylline-induced seizures (Zhi and Levy 1990).
This phenomenon of effect inversion might be an explanation why children (which are
considered to be caffeine-naïve) appear to be more sensitive to TAS-induced seizures (see
above). Effect inversion of chronic adenosine receptor antagonists has also been described
within the context of ischemic excitotoxicity (de Mendonca et al. 2000). Whereas acute
methylxanthines generally aggravate ischemic injury, the chronic use of caffeine or of the
A1R-selective antagonist DPCPX protects the brain from ischemic injury (de Mendonca et al.
2000). The phenomenon of effect inversion of acute versus chronic caffeine has intensively
been studied and has been explained by antagonism of an endogenous agonist that
downregulates A1Rs without affecting gene transcription (Jacobson et al. 1996). Evidence for
effect inversion by caffeine or adenosine receptor ligands has been obtained through changes
in physiological outcome parameters such as susceptibility to seizures or to seizure- and
ischemia- induced neuronal cell death (Jacobson et al. 1996). Despite these clear physiological
changes the molecular mechanisms behind this phenomenon appear to be more complex since
upregulation of A1Rs as a consequence of chronic caffeine was not always observed (Georgiev
et al. 1993; Johansson et al. 1996). Later studies have ruled out upregulation of A1Rs as a
consequence of the long-term use of caffeine or theophylline in reasonably normal doses,
indicating that upregulation of A1Rs is triggered only by excessively high or toxic doses of
methylxanthines (Svenningsson et al. 1999). Thus, selected doses and durations of exposure
and withdrawal, as well as A2AR mediated effects (see below) might play an important role.

In a recent study a single dose of acute caffeine (40 mg/kg i.p.) given after the onset of seizures
in a new mouse model of sudden unexplained death in epilepsy (SUDEP) significantly
increased the survival time from 24 to 55 minutes (Shen et al. 2009). This protective effect of
acute caffeine can best be explained by antagonizing a seizure-induced surge of adenosine,
which had experimentally been exacerbated by pharmacological disruption of adenosine
clearance. In this model of SUDEP excessive seizure-induced concentrations of adenosine are
thought to induce cardiac and respiratory failure by overstimulation of brainstem adenosine
receptors, an effect that can be ameliorated by caffeine-induced blockade of these receptors
(Shen et al. 2009).

2. Caffeine: A1 and A2A receptor-mediated actions
Whereas the anticonvulsant role of A1Rs is well established, newer findings suggest that
A2ARs play an important role in modulating the susceptibility to seizures. Thus, A2AR
knockout mice are partially resistant to limbic seizures induced by chomoconvulsants or to
seizures induced by ethanol withdrawal (El Yacoubi et al. 2009; El Yacoubi et al. 2001).
Interestingly, the attenuation of clonic pentylenetetrazole-induced seizures in A2AR knockout
mice could be mimicked in wild-type mice exposed to chronic caffeine (0.3 g/l caffeine in
drinking water) during a period of 14 days prior to the seizure tests (El Yacoubi et al. 2008).
However, A2AR knockout mice under chronic caffeine were less protected from clonic seizures
than water treated A2AR KO mice, a conflicting result that was not further addressed (El
Yacoubi et al. 2008). Together, these findings indicate that the protective effects of chronic
caffeine might best be explained by antagonizing the A2AR and thus causing a state of
decreased neuronal excitability; however, these studies also indicate a proconvulsive role of
chronic caffeine under conditions, during which A2AR-dependent signalling is abolished.

3. GABAA receptor and phosphodiesterase (PDE) inhibition
In contrast to adenosine receptors, which are affected by caffeine plasma concentrations
attainable by normal human caffeine consumption, 10 to 100 times higher concentrations are
needed to inhibit GABAARs or PDE (Fredholm et al. 1999). Therefore, a direct preconvulsive
role of “physiological” doses of methylxanthines via GABAARs or PDE appears to be unlikely.
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However, caffeine can inhibit the binding of benzodiazepines to the GABAAR (Marangos et
al. 1979), which might contribute to a convulsant role of high or toxic doses of methylxanthines.
Inhibition of benzodiazepine binding to GABAARs might be an explanation for the clinical
findings that TAS-induced seizures are usually refractory to treatment with diazepam or other
drugs that act via the GABAAR (Yoshikawa 2007).

4. Ryanodine receptor activated calcium induced calcium release
Changes in Ca2+ homeostasis and persistent increases in intracellular Ca2+ contribute to the
initiation and maintenance of acquired epilepsy (DeLorenzo et al. 2005). Ryanodine receptor
(RyR) mediated calcium-induced calcium release (CICR) plays a key role in regulating
intracellular calcium concentrations in epileptic conditions (Pal et al. 2001). The brain RyR is
a caffeine-sensitive calcium release channel and mediates the caffeine induced mobilization
of Ca2+ from internal stores (McPherson et al. 1991; Usachev et al. 1993). The caffeine-induced
release of Ca2+ from ryanodine-sensitive calcium stores in the neuronal endoplasmic reticulum
and pathological mechanisms that potentiate this response may render neurons more vulnerable
to excitotoxicity and to the expression of seizures (Chan et al. 2000; Verkhratsky 2005).
Interestingly, in cultered hippocampal neurons the newer antiepileptic drug levetiracetam led
to a 61% decrease in caffeine-induced peak height of intracellular Ca2+ (Nagarkatti et al.
2008), indicating that levetiracetam might interact with adenosine-related signsalling.

5. Free radicals in theophylline-induced seizures
A possible role of free radicals in theophylline-induced seizures was recently suggested (Gulati
et al. 2005; Gulati et al. 2007; Ray et al. 2005). In the underlying studies aminophylline (50 to
250 mg/kg) dose dependently induced convulsions and mortality in rats. Seizures and mortality
were attenuated by anti-oxidants (melatonin, N-acetylcysteine) and by nitric oxide (NO)
synthase inhibitors (L-NAME, 7-nitroindazole). Combination of anti-oxidant and NO-
reducing treatments augmented the anticonvulsant effects of single treatments. Further, the
authors found increased concentrations of malondialdehyde and NO metabolites in brain
homogenates of mice with aminophylline-induced seizures; accumulation of these metabolites
could be attenuated by melatonin or L-NAME pretreatment. These studies suggest the
contribution of free radicals in the mechanism of theophylline induced ictogenesis.

6. Inhibition of TREK-1 channels by methylxanthines
TREK-1, a member of the two-pore-domain K(+) (K(2P)) channel superfamily, plays a major
role in regulating the resting membrane potential of neurons, and thus contributes to controlling
neuronal excitability (Honore 2007). Using whole-cell patch-clamp recordings on human
TREK-1 channel expressing CHO cells, Harinath and Sikdar demonstrated reversible
inhibition of the channels, and depolarization of the membrane potential, by caffeine and
theophylline in a concentration-dependent manner (Harinath and Sikdar 2005). Inhibition by
caffeine and theophylline was attenuated in channels with a mutation of a protein kinase A
(PKA) consensus sequence indicating involvement of the cAMP/PKA pathway. Thus,
inhibition of TREK-1 dependent membrane-depolarization may contribute to seizure
generation by toxic doses of caffeine or theophylline.

F. Conclusions and outlook
Although adenosine-independent mechanisms have been proposed, the majority of evidence
indicates that the proconvulsant roles of methylxanthines are based on antagonism of the
brain’s endogenous adenosine-based seizure control system. Whereas inhibition of A1Rs by
methylxanthines can directly contribute to ictogenesis and seizure spread, under certain
conditions methylxanthines can also contribute to seizure suppression. First, this can be the
case after chronic drug exposure leading effect inversion and alterations in gene expression

Boison Page 7

Handb Exp Pharmacol. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Svenningsson et al. 1999). Second, antagonism of A2ARs by methylxanthines may have direct
anticonvulsant and neuroprotective consequences.

A detailed understanding of the convulsant role of methylxanthines is of importance since
many new drugs are in clinical trials that act on adenosine receptors. For example, in recent
clinical trials conducted with the A1R antagonist rolofylline, which facilitates diuresis and
preserves renal function in patients with acute heart failure (AHF) with renal impairment, the
occurrence of seizures was described in some patients that were treated with higher doses of
the drug (Cotter et al. 2008). This example demonstrates that caution is needed when evaluating
the clinical use of new adenosine-related therapeutic agents; however, understanding the
mechanisms involved in the adenosine-related control of seizure mechanisms will allow the
safe use of novel drugs that act on new therapeutic principles. New approaches using gene-
array based strategies might unravel novel pathways and interactions that might help explain
the complex role of methylxanthines in determining the brain’s susceptibility to seizures and
excitotoxicity (Yu et al. 2009).
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