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Abstract
The MM (minorization–maximization) principle is a versatile tool for constructing optimization
algorithms. Every EM algorithm is an MM algorithm but not vice versa. This article derives MM
algorithms for maximum likelihood estimation with discrete multivariate distributions such as the
Dirichlet-multinomial and Connor–Mosimann distributions, the Neerchal–Morel distribution, the
negative-multinomial distribution, certain distributions on partitions, and zero-truncated and zero-
inflated distributions. These MM algorithms increase the likelihood at each iteration and reliably
converge to the maximum from well-chosen initial values. Because they involve no matrix inversion,
the algorithms are especially pertinent to high-dimensional problems. To illustrate the performance
of the MM algorithms, we compare them to Newton’s method on data used to classify handwritten
digits.
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1. INTRODUCTION
The MM algorithm generalizes the celebrated EM algorithm (Dempster, Laird, and Rubin
1977). In this article we apply the MM (minorization–maximization) principle to devise new
algorithms for maximum likelihood estimation with several discrete multivariate distributions.
A series of research papers and review articles (Groenen 1993; de Leeuw 1994; Heiser 1995;
Hunter and Lange 2004; Lange 2004; Wu and Lange 2010) have argued that the MM principle
can lead to simpler derivations of known EM algorithms. More importantly, the MM principle
also generates many new algorithms of considerable utility. Some statisticians encountering
the MM principle for the first time react against its abstraction, unfamiliarity, and dependence
on the mathematical theory of inequalities. This is unfortunate because real progress can be
made applying a few basic ideas in a unified framework. The current article relies on just three
well-known inequalities. For most of our examples, the derivation of a corresponding EM
algorithm appears much harder, the main hindrance being the difficulty of choosing an
appropriate missing data structure.
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Discrete multivariate distributions are seeing wider use throughout statistics. Modern data
mining employs such distributions in image reconstruction, pattern recognition, document
clustering, movie rating, network analysis, and random graphs. High-dimension data demand
high-dimensional models with ten to hundreds of thousands of parameters. Newton’s method
and Fisher scoring are capable of finding the maximum likelihood estimates of these
distributions via the parameter updates

where ∇L(θ) is the score function and M(θ) is the observed or the expected information matrix,
respectively. Several complications can compromise the performance of these traditional
algorithms: (a) the information matrix M(θ) may be expensive to compute, (b) it may fail to
be positive definite in Newton’s method, (c) in high dimensions it is expensive to solve the
linear system M(θ)x = ∇L(θ(n)), and (d) if parameter constraints and parameter bounds intrude,
then the update itself requires modification. Although mathematical scientists have devised
numerous remedies and safeguards, these all come at a cost of greater implementation
complexity. The MM principle offers a versatile weapon for attacking optimization problems
of this sort. Although MM algorithms have at best a linear rate of convergence, their updates
are often very simple. This can tip the computational balance in their favor. In addition, MM
algorithms are typically easy to code, numerically stable, and amenable to acceleration. For
the discrete distributions considered here, there is one further simplification often missed in
the literature. These distributions involve gamma functions. To avoid the complications of
evaluating the gamma function and its derivatives, we fall back on a device suggested by
Haldane (1941) that replaces ratios of gamma functions by rising polynomials.

Rather than tire the skeptical reader with more preliminaries, it is perhaps best to move on to
our examples without delay. The next section defines the MM principle, discusses our three
driving inequalities, and reviews two simple acceleration methods. Section 3 derives MM
algorithms for some standard multivariate discrete distributions, namely the Dirichlet-
multinomial and Connor–Mosimann distributions, the Neerchal–Morel distribution, the
negative-multinomial distribution, certain distributions on partitions, and zero-truncated and
zero-inflated distributions. Section 4 describes a numerical experiment comparing the
performance of the MM algorithms, accelerated MM algorithms, and Newton’s method on
model fitting of handwritten digit data. Our discussion concludes by mentioning directions for
further research and by frankly acknowledging the limitations of the MM principle.

2. OVERVIEW OF THE MM ALGORITHM
As we have already emphasized, the MM algorithm is a principle for creating algorithms rather
than a single algorithm. There are two versions of the MM principle, one for iterative
minimization and another for iterative maximization. Here we deal only with the maximization
version. Let f (θ) be the objective function we seek to maximize. An MM algorithm involves
minorizing f (θ) by a surrogate function g(θ|θn) anchored at the current iterate θn of a search.
Minorization is defined by the two properties

(2.1)

(2.2)
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In other words, the surface θ ↦ g(θ|θn) lies below the surface θ ↦ f (θ) and is tangent to it at
the point θ = θn. Construction of the surrogate function g(θ|θn) constitutes the first M of the
MM algorithm.

In the second M of the algorithm, we maximize the surrogate g(θ|θn) rather than f (θ). If θn+1

denotes the maximum point of g(θ|θn), then this action forces the ascent property f (θn+1) ≥ f
(θn). The straightforward proof

reflects definitions (2.1) and (2.2) and the choice of θn+1. The ascent property is the source of
the MM algorithm’s numerical stability. Strictly speaking, it depends only on increasing g(θ|
θn), not on maximizing g(θ|θn).

The art in devising an MM algorithm revolves around intelligent choices of minorizing
functions. This brings us to the first of our three basic minorizations

(2.3)

invoking the chord below the graph property of the concave function ln x. Note here that all
parameter values are positive and that equality obtains whenever  for all i. Our second
basic minorization

(2.4)

restates the supporting hyperplane property of the convex function −ln(c + x). Our final basic
minorization

(2.5)

is just a rearrangement of the two-point information inequality

Here α and αn must lie in (0, 1). Any standard text on inequalities, for example, the book by
Steele (2004), proves these three inequalities. Because piecemeal minorization works well, our
derivations apply the basic minorizations only to strategic parts of the overall objective
function, leaving other parts untouched.

The convergence theory of MM algorithms is well known (Lange 2004). Convergence to a
stationary point is guaranteed provided five properties of the objective function f (θ) and the
MM algorithm map M(θ) hold: (a) f (θ) is coercive on its open domain; (b) f (θ) has only isolated
stationary points; (c) M(θ) is continuous; (d) θ* is a fixed point of M(θ) if and only if it is a
stationary point of f (θ); (e) f [M(θ*)] ≤ f (θ*), with equality if and only if θ* is a fixed point
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of M(θ). Most of these conditions are easy to verify for our examples, so the details will be
omitted.

A common criticism of EM and MM algorithms is their slow convergence. Fortunately, MM
algorithms can be easily accelerated (Jamshidian and Jennrich 1995; Lange 1995a; Jamshidian
and Jennrich 1997; Varadhan and Rolland 2008). We will employ two versions of the recent
square iterative method (SQUAREM) developed by Varadhan and Roland (2008). These
simple vector extrapolation techniques require computation of two MM updates at each
iteration. Denote the two updates by M(θn) and M ◦ M(θn), where M(θ) is the MM algorithm
map. These updates in turn define two vectors

The versions diverge in how they compute the steplength constant s. SqMPE1 (minimal

polynomial extrapolation) takes , while SqRRE1 (reduced rank extrapolation) takes

. Once s is specified, we define the next accelerated iterate by θn+1 = θn − 2su + s2υ.
Readers should consult the original article for motivation of SQUAREM. Whenever θn+1

decreases the log-likelihood L(θ), we revert to the MM update θn+1 =M ◦ M(θn). Finally, we
declare convergence when

(2.6)

In the numerical examples that follow, we use the stringent criterion ε = 10−9. More
sophisticated stopping criteria based on the gradient of the objective function and the norm of
the parameter increment lead to similar results.

3. APPLICATIONS
3.1 Dirichlet-Multinomial and Connor–Mosimann Distributions

When count data exhibit overdispersion, the Dirichlet-multinomial distribution is often
substituted for the multinomial distribution. The multinomial distribution is characterized by
a vector p = (p1,…, pd) of cell probabilities and a total number of trials m. In the Dirichlet-
multinomial sampling, p is first drawn from a Dirichlet distribution with parameter vector α =
(α1,…,αd). Once the cell probabilities are determined, multinomial sampling commences. This
leads to the admixture density

(3.1)

where , Δd is the unit simplex in ℝd, and x = (x1,…, xd) is the vector of cell counts.

Note that the count total  is fixed at m. Standard calculations show that a random
vector X drawn from h(x|α) has the means, variances, and covariances
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If the fractions  tend to constants pi as |α| tends to ∞, then these moments collapse to the
corresponding moments of the multinomial distribution with proportions p1,…, pd.

One of the most unappealing features of the density function h(x|α) is the occurrence of the
gamma function. Fortunately, very early on Haldane (1941) noted the alternative representation

(3.2)

The replacement of gamma functions by rising polynomials is a considerable gain in simplicity.
Bailey (1957) later suggested the reparameterization

in terms of the proportion vector π = (π1,…, πd) and the overdispersion parameter θ. In this
setting, the discrete density function becomes

(3.3)

This version of the density function is used to good effect by Griffiths (1973) in implementing
Newton’s method for maximum likelihood estimation with the beta-binomial distribution.

In maximum likelihood estimation, we pass to log-likelihoods. This introduces logarithms and
turns factors into sums. To construct an MM algorithm under the parameterization (3.2), we
need to minorize terms such as ln(αj + k) and −ln(|α| + k). The basic inequalities (2.3) and (2.4)
are directly relevant. Suppose we draw t independent samples x1,…, xt from the Dirichlet-
multinomial distribution with mi trials for sample i. The term −ln(|α| + k) occurs in the log-
likelihood for xi if and only if mi ≥ k + 1. Likewise the term ln(αj + k) occurs in the log-likelihood
for xi if and only if xij ≥ k + 1. It follows that the log-likelihood for the entire sample can be
written as

(3.4)

The index k in these formulas ranges from 0 to maxi mi −1.

Applying our two basic minorizations to L(α) yields the surrogate function
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up to an irrelevant additive constant. Equating the partial derivative of the surrogate with
respect to αj to 0 produces the simple MM update

(3.5)

Minka (2003) derived these updates from a different perspective.

Under the parameterization (3.3), matters are slightly more complicated. Now we minorize the
terms −ln(1 + kθ) and ln(πj + kθ) via

and

These minorizations lead to the surrogate function

up to an irrelevant constant. Setting the partial derivative with respect to θ equal to 0 yields the
MM update

(3.6)

The update of the proportion vector π must be treated as a Lagrange multiplier problem owing
to the constraint Σj πj = 1. Familiar arguments produce the MM update

(3.7)

The two updates summarized by (3.5), (3.6), and (3.7) enjoy several desirable properties. First,
parameter constraints are built in. Second, stationary points of the log-likelihood are fixed
points of the updates. Virtually all MM algorithms share these properties. The update (3.7) also
reduces to the maximum likelihood estimate
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(3.8)

of the corresponding multinomial proportion when θn = 0.

The estimate (3.8) furnishes a natural initial value . To derive an initial value for the
overdispersion parameter θ, consider the first two moments

of a Dirichlet distribution with parameter vector α. These identities imply that

which can be solved for θ = 1/|α| in terms of ρ as θ = (ρ − 1)/(d − ρ). Substituting the estimate

for ρ gives a sensible initial value θ0.

To test our two MM algorithms, we now turn to the beta-binomial data of Haseman and Soares
(1976) on male mice exposed to various mutagens. The two outcome categories are (a) dead
implants and (b) survived implants. In their first dataset, there are t = 524 observations with
between m = 1 and m = 20 trials per observation. Table 1 presents the final log-likelihood,
number of iterations, and running time (in seconds) of the two MM algorithms and their
SQUAREM accelerations on these data. All MM algorithms converge to the maximum point
previously found by the scoring method (Paul, Balasooriya, and Banerjee 2005). For the choice
ε = 10−9 in stopping criterion (2.6), the MM algorithm (3.5) takes 700 iterations and 0.1580
sec to converge on a laptop computer. The alternative MM algorithm given in the updates (3.6)
and (3.7) takes 339 iterations and 0.1626 sec. Figure 1 depicts the progress of the MM iterates
on a contour plot of the log-likelihood. The conventional MM algorithm crawls slowly along
the ridge in the contour plot; the accelerated versions SqMPE1 and SqRRE1 significantly
reduce both the number of iterations and the running time until convergence.

The Dirichlet-multinomial distribution suffers from two restrictions that limit its applicability,
namely the negative correlation of coordinates and the determination of variances by means.
It is possible to overcome these restrictions by choosing a more flexible mixing distribution as
a prior for the multinomial. Connor and Mosimann (1969) suggested a generalization of the
Dirichlet distribution that meets this challenge. The resulting admixed distribution, called the
generalized Dirichlet-multinomial distribution, has proved its worth in machine learning
problems such as the modeling and clustering of images, handwritten digits, and text documents
(Bouguila 2008). It is therefore helpful to derive an MM algorithm for maximum likelihood
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estimation with this distribution that avoids the complications of gamma/digamma/trigamma
functions arising with Newton’s method (Bouguila 2008). The Connor–Mosimann distribution
is constructed inductively by the mechanism of stick breaking. Imagine breaking the interval
[0, 1] into d subintervals of lengths P1,…, Pd by choosing d − 1 independent beta variates Zi
with parameters αi and βi. The length of subinterval 1 is P1 = Z1. Given P1 through Pi, the
length of subinterval i + 1 is Pi+1 = Zi+1(1 − P1 − ⋯−Pi). The last length Pd = 1 − (P1 + ⋯ +
Pd−1) takes up the slack. Standard calculations show that the Pi have the joint density

where γj = βj − αj+1 − βj+1 for j = 1,…, d − 2 and γd−1 = βd−1 − 1. The univariate case (d = 2)
corresponds to the beta distribution. The Dirichlet distribution is recovered by taking βj =
αj+1 +⋯+αd. With d − 2 more parameters than the Dirichlet distribution, the Connor–Mosimann
distribution is naturally more versatile.

The Connor–Mosimann distribution is again conjugate to the multinomial distribution, and the
marginal density of a count vector X over m trials is easily shown to be

where . If we adopt the reparameterization

and use the fact that xj + yj+1 = yj, then the density can be re-expressed as

(3.9)

Thus, maximum likelihood estimation of the parameter vectors π = (π1,…, πd−1) and θ = (θ1,
…, θd−1) by the MM algorithm reduces to the case of d − 1 independent beta-binomial problems.

Let x1,…, xt be a random sample from the generalized Dirichlet-multinomial distribution (3.9)
with mi trials for observation xi. Following our reasoning for estimation with the Dirichlet-
multinomial, we define the associated counts

for 1 ≤ j ≤ d − 1. In this notation, the reader can readily check that the MM updates become
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3.2 Neerchal–Morel Distribution
Neerchal and Morel (1998, 2005) proposed an alternative to the Dirichlet-multinomial
distribution that accounts for overdispersion by finite admixture. If x represents count data over
m trials and d categories, then their discrete density is

(3.10)

where π = (π1,…, πd) is a vector of proportions and ρ ∈ [0, 1] is an overdispersion parameter.
The Neerchal–Morel distribution collapses to the multinomial distribution when ρ = 0.
Straightforward calculations show that the Neerchal–Morel distribution has means, variances,
and covariances

These are precisely the same as the first- and second-order moments of the Dirichlet-
multinomial distribution provided we identify πi = αi/|α| and ρ2 = 1/(|α| + 1).

If we draw t independent samples x1,…, xt from the Neerchal–Morel distribution with mi trials
for sample i, then the log-likelihood is

(3.11)

It is worth bearing in mind that every mixture model yields to the minorization (2.3). This is
one of the secrets to the success of the EM algorithm. As a practical matter, explicit
minorization via inequality (2.3) is more mechanical and often simpler to implement than
performing the E step of the EM algorithm. This is particularly true when several minorizations
intervene before we reach the ideal surrogate. Here two successive minorizations are needed.

To state the first minorization, let us abbreviate

and denote by  the same quantity evaluated at the nth iterate. In this notation it follows that
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with weights . The logarithm splits ln ∏ij into the sum

for θ = ρ/(1 − ρ). To separate the parameters πj and θ in the troublesome term ln(πj + θ), we
apply the minorization (2.3) again. This produces

and up to a constant the surrogate function takes the form

Standard arguments now yield the updates

Table 2 lists convergence results for this MM algorithm and its SQUAREM accelerations on
the previously discussed Haseman and Soares data.

3.3 Negative-Multinomial
The motivation for the negative-multinomial distribution comes from multinomial sampling
with d + 1 categories assigned probabilities π1,…, πd+1. Sampling continues until category d
+ 1 accumulates β outcomes. At that moment we count the number of outcomes xi falling in
category i for 1 ≤ i ≤ d. For a given vector x = (x1,…, xd ), elementary combinatorics gives the
probability

(3.12)
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This formula continues to make sense even if the positive parameter β is not an integer. For
arbitrary β > 0, the most straightforward way to construct the negative-multinomial distribution
is to run d independent Poisson processes with intensities π1,…, πd. Wait a gamma distributed
length of time with shape parameter β and intensity parameter πd+1. At the expiration of this
waiting time, count the number of random events Xi of each type i among the first d categories.
The random vector X has precisely the discrete density (3.12).

The Poisson process perspective readily yields the moments

(3.13)

Compared to a Poisson distributed random variable with the same mean, the component Xi is
overdispersed. Also in contrast to the multinomial and Dirichlet-multinomial distributions, the
counts from a negative-multinomial are positively correlated. Negative-multinomial sampling
is therefore appealing in many applications.

Let x1,…, xt be a random sample from the negative-multinomial distribution with mi = |xi|. To
maximize the log-likelihood

we must deal with the terms ln(β + k). Fortunately, the minorization (2.4) implies

leading to the surrogate function

up to an irrelevant constant. In view of the constraint  the stationarity
conditions for a maximum of the surrogate reduce to

(3.14)

Unfortunately, it is impossible to solve this system of equations analytically. There are two
resolutions to the dilemma. One is block relaxation (de Leeuw 1994) alternating the updates
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and

This strategy enjoys the ascent property of all MM algorithms.

The other possibility is to solve the stationarity equations numerically. It is clear that the system
of equations (3.14) reduces to the single equation

for β. Equivalently, if we let

then we must find a root of the equation f (α) = αcn − t ln(αm ̄ + 1) = 0. It is clear that f (α) is a
strictly convex function with f (0) = 0 and limα→∞ f (α) = ∞. Furthermore, a little reflection
shows that f′ (0) = cn −tm̄ < 0. Thus, there is a single root of f (α) on the interval (0,∞). Owing
to the convexity of f (α), Newton’s method will reliably find the root if started to the right of
the minimum of f (α) at α = t/cn − 1/m ̄.

To find initial values, we again resort to the method of moments. Based on the moments (3.13),
the mean and variance of |X| = Σk Xj are

These suggest that we take

where
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When the data are underdispersed (s2 < x̄), our proposed initial values are not meaningful, but
a negative-multinomial model is a poor choice anyway.

3.4 Distributions on Partitions
A partition of a positive integer m into k parts is a vector a = (a1,…, am) of non-negative integers
such that Σi ai = k and |a| = Σi iai = m. In population genetics, the partition distributions of
Ewens (2004) and Pitman (Pitman 1995; Johnson, Kotz, and Balakrishnan 1997) find wide
application. We now develop an MM algorithm for Pitman’s distribution, which generalizes
Ewens’s distribution. Pitman’s distribution

involves two parameters 0 ≤ α < 1 and θ > −α. Ewens’s distribution corresponds to the choice
α = 0. We will restrict θ to be positive.

To estimate parameters given u independent partitions a1,…, au from Pitman’s distribution,
we use the minorizations (2.3) and (2.4) to derive the minorizations

where c is a different irrelevant constant in each case. Assuming aj is a partition of the integer
mj, it follows that the log-likelihood is minorized by

where

Standard arguments now yield the simple updates

If we set α0 = 0, then in all subsequent iterates αn = 0, and we get the MM updates for Ewens’s
distribution. Despite the availability of the moments of the parts Ai (Charalambides 2007), it
is not clear how to initialize α and θ. Unfortunately, the alternative suggestion of Nobuaki
(2001) does not guarantee that the initial values satisfy the constraints α ∈ [0, 1) and θ > 0.
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3.5 Zero-Truncated and Zero-Inflated Data
In this section we briefly indicate how the MM perspective sheds fresh light on EM algorithms
for zero-truncated and zero-inflated data. Once again mastery of a handful of inequalities rather
than computation of conditional expectations drives the derivations.

In many discrete probability models, only data with positive counts are observed. Counts that
are 0 are missing. If f (x|θ) represents the density of the complete data, then the density of a
random sample x1,…, xt of zero-truncated data amounts to

Inequality (2.5) immediately implies the minorization

where c is an irrelevant constant. In many models, maximization of this surrogate function is
straightforward.

For instance, with zero-truncated data from the binomial, Poisson, and negative-binomial
distributions, the MM updates reduce to

For observation i of the binomial model, there are xi successes out of mi trials with success
probability p per trial. λ is the mean in the Poisson model. For observation i of the negative-
binomial model, there are xi failures before mi required successes.

More complicated models can be handled in similar fashion. The key insight in each case is to
augment every ordinary observation xi > 0 by a total of f (0|θn)/[1 − f (0|θn)] pseudo-observations
of 0 at iteration n. With this amendment, the two MM algorithms for the beta-binomial
distribution implemented in (3.5), (3.6), and (3.7) remain valid except that the count variables
rk and sjk defining the updated parameters at iteration n become

where
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Here category 1 represents success and category 2 failure. If we start with θ0 = 0, then we
recover the updates for the zero-truncated binomial distribution.

Zero-inflated data are equally easy to handle. The density function is now

Inequality (2.3) entails the minorization

The MM update of the inflation-admixture parameter clearly is

As a typical example, consider estimation with the zero-inflated Poisson (Patil 2007). The mean
λ of the Poisson component is updated by

In other words, every 0 observation is discounted by the amount zn at iteration n. This makes
intuitive sense.

4. A NUMERICAL EXPERIMENT
As a numerical experiment, we fit the Dirichlet-multinomial (two parameterizations) and the
Neerchal–Morel distributions to the 3823 training digits in the handwritten digit data from the
UCI machine learning repository (Asuncion and Newman 2007). Each normalized 32 × 32
bitmap is divided into 64 blocks of size 4 × 4, and the black pixels are counted in each block.
This generates a 64-dimensional count vector for each bitmap. Bouguila (2008) successfully
fit mixtures of Connor–Mosimann to the training data and used the estimated models to cluster
the test data. For illustrative purposes we now fit the Dirichlet-multinomial (two
parameterizations) and Neerchal–Morel models. Based on the majorization (2.3), it is
straightforward to extend our MM algorithms to fit finite mixture models using any of the
previously encountered multivariate discrete distributions.
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Table 3 lists the final log-likelihoods, number of iterations, and running times of the different
algorithms tested. The MM and accelerated MM algorithms were coded in plain Matlab script
language. Newton’s method was implemented using the fmincon function in the Marla
Optimization Toolbox under the interior-point option with user-supplied analytical gradient

and Hessian. All iterations started from the initial points θ0 = 1 and . The
stopping criterion for Newton’s method was tuned to achieve precision comparable to the
stopping criterion (2.6) for the MM algorithms. Running times in seconds were recorded from
a laptop computer.

Inspection of Table 3 demonstrates that the MM algorithms outperform Newton’s method and
that acceleration is often very beneficial. The cost of evaluating and inverting the observed
information matrices of the Neerchal–Morel model significantly slows Newton’s method even
in these problems with only 64 parameters. The observed information matrix of the Dirichlet-
multinomial distribution possesses a special structure (diagonal plus rank-1 perturbation) that
makes matrix inversion far easier. Table 3 does not show the human effort in devising,
programming, and debugging the various algorithms. For Newton’s method, derivation and
programming took in excess of one day. Formulas for the score and observed information of
the Dirichlet-multinomial and Neerchal–Morel distributions are omitted for the sake of brevity.
Fisher’s scoring algorithm was not implemented because it is even more cumbersome than
Newton’s method (Neerchal and Morel 2005).

This numerical comparison is merely for illustrative purpose. Numerical analysts have
developed quasi-Newton algorithms to mend the defects of Newton’s method. The limited-
memory BFGS (LBFGS) algorithm (Nocedal and Wright 2006) is especially pertinent to high-
dimensional problems. A systematic comparison of the two methods is worth pursuing.

5. DISCUSSION
In designing algorithms for maximum likelihood estimation, Newton’s method and Fisher
scoring come immediately to mind. In the last generation, statisticians have added the EM
principle. These are good mental reflexes, but the broader MM principle also deserves serious
consideration. In many problems, the EM and MM perspectives lead to the same algorithm. In
other situations such as image reconstruction in transmission tomography, it is possible to
construct different EM and MM algorithms for the same purpose (Lange 2004). One of the
most appealing features of the EM perspective is that it provides a statistical interpretation of
algorithm intermediates. Although it is a matter of taste and experience whether inequalities
or missing data offer an easier path to algorithm development, the fact that there are two routes
adds to the possibilities for new algorithms.

One can argue that applications of minorizations (2.3) and (2.5) are just disguised EM
algorithms. This objection misses the point in three ways. First, it does not suggest missing
data structures explaining the minorization (2.4) and other less well-know minorizations.
Second, it fails to weigh the difficulties of invoking simple inequalities versus calculating
conditional expectations. When the creation of an appropriate surrogate function requires
several minorizations, the corresponding conditional expectations become harder to execute.
For example, although the EM principle dictates adding pseudo-observations for zero-
truncated data, it is easy to lose sight of this simple interpretation in complicated examples
such as the beta-binomial distribution. The genetic segregation analysis example appearing in
chapter 2 of the book by Lange (2002) falls into the same category. Third, it fails to
acknowledge the conceptual clarity of the MM principle, which shifts focus away from the
probability spaces connected with missing data to the simple act of minorization. For instance,
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when one undertakes maximum a posteriori estimation, should the E step of the EM algorithm
take into account the prior?

Some EM and MM algorithms are notoriously slow to converge. As we noted earlier, slow
convergence is partially offset by the simplicity of each iteration. There is a growing body of
techniques for accelerating MM algorithms (Jamshidian and Jennrich 1995; Lange 1995a;
Jamshidian and Jennrich 1997; Varadhan and Rolland 2008). These techniques often lead to a
ten-fold or even a hundred-fold reduction in the number of iterations. The various examples
appearing in this article are typical in this regard. On problems with boundaries or
nondifferentiable objective functions, acceleration may be less helpful.

Our negative-multinomial example highlights two useful tactics for overcoming complications
in solving the maximization step of the EM and MM algorithms. It is a mistake to think of the
various optimization algorithms in isolation. Often block relaxation (de Leeuw 1994) and
Newton’s method can be combined creatively with the MM principle. Systematic application
of Newton’s method in solving the maximization step of the MM algorithm is formalized in
the MM gradient algorithm (Lange 1995b).

Parameter asymptotic standard errors are a natural byproduct of Newton’s method and scoring.
With a modicum of additional effort, the EM and MM algorithms also deliver asymptotic
standard errors (Meng and Rubin 1991; Hunter and Lange 2004). Virtually all optimization
algorithms are prone to converge to inferior modes. For this reason, we have emphasized
finding reasonable initial values. The overlooked article of Ueda and Nakano (1998) suggested
an annealing approach to maximization with mixture models. Here the idea is to flatten the
likelihood surface and eliminate all but the dominant mode. As the iterations proceed, the flat
surface gradually warps into the true bumpy surface. Our recent work (Zhou and Lange
2010) extends this idea to many other EM and MM algorithms. A similar idea, called graduated
non-convexity (GNC), appears in computer vision and signal processing literature (Blake and
Zisserman 1987). In the absence of a good annealing procedure, one can fall back on starting
an optimization algorithm from multiple random points, but this inevitably increases the
computational load. The reassurance that a log-likelihood is concave is always welcome.

Readers may want to try their hands at devising their own MM algorithms. For instance, the
Dirichlet-negative-multinomial distribution, the bivariate Poisson (Johnson, Kotz, and
Balakrishnan 1997), and truncated multivariate discrete distributions yield readily to the
techniques described. The performance of the MM algorithm on these problems is similar to
that in our fully developed examples. Of course, many objective functions are very
complicated, and devising a good MM algorithm is a challenge. The greatest payoffs are apt
to be on high-dimensional problems. For simplicity of exposition, we have not tackled any
extremely high-dimensional problems, but these certainly exist (Sabatti and Lange 2002; Ayers
and Lange 2008; Lange and Wu 2008). In any event, most mathematicians and statisticians
keep a few tricks up their sleeves. The MM principle belongs there, waiting for the right
problems to come along.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
MM Ascent of the Dirichlet-multinomial log-likelihood surface. A color version of this figure
is available in the electronic version of this article.
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Table 2

Performance of the Neerchal–Morel MM algorithms.

Algorithm L # iters Time

MM −783.29 128 0.2289

SqMPE1 MM −783.29 10 0.0207

SqRRE1 MM −783.29 11 0.0221
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