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Abstract
Alzheimer’s disease (AD) is a common cause of dementia with a strong genetic component and
risk sharply increasing with age. We performed two parallel microarray experiments to
independently identify genes involved in normal aging and genes involved in AD using RNA
extracted from the temporal lobe of 22 late onset AD and 23 control brain donors. We found that
AD is accompanied by significant changes in the expression of many genes with up-regulation of
genes involved in inflammation and in transcription regulation and down-regulation of genes
involved in neuronal functions. The changes with healthy aging involved multiple genes but were
not as strong. Replicating and strengthening previous reports we find a highly significant overlap
between genes changing expression with age and those changing in AD and we observe that those
changes are most often in the same direction. This result supports an overlap between the
biological processes of normal aging and susceptibility to AD and suggests that age related genes
expression changes might increase the risk to develop AD.
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1. Introduction
Alzheimer’s disease is the most common cause of dementia in the U.S. affecting an
estimated 5.2 million (Alzheimer’s association report 2008). With few exceptions of familial
cases due to mutations in one of three known genes, APP (Goate, et al., 1991), PSEN1
(Sherrington, et al., 1995) and PSEN2 (Levy-Lahad, et al., 1995), AD has a late age of onset
most often after the age of 65. It presents with progressive loss of multiple cognitive abilities
leading within an average of 8 years to severe dementia and death. Although it is a complex
genetic disorder, late onset AD is in large extent due to genetic predisposition with a
heritability calculated between 0.6 and 0.74 (Bergem, et al., 1997,Gatz, et al., 1997). Despite
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this major genetic influence only one gene, APOE encoding for Apolipoprotein E, has been
consistently shown to be involved in the risk for late onset AD (Strittmatter, et al., 1993),
while a few more genes with variants contributing significantly less to the risk are now
emerging through recent large genome wide association studies (Harold, et al.,
2009,Lambert, et al., 2009).

Like most cell types, neurons respond to normal or abnormal stimuli – such as those
involved in a disease process – by setting in motion signaling cascades and modifying their
internal and external microenvironment. Among the responses are changes in the priorities
of the protein synthesis machinery, observed as changes in gene transcription and the levels
of the relevant mRNAs. Measuring these changes can provide information on the nature of
the genes that play a role in the disease process and allow comparisons with other
physiological or pathological states. In some cases an observed difference in the levels of a
particular mRNA between diseased and control tissue might reflect the primary defect that
contributes to the risk. A challenge in this type of analysis is to distinguish between the
primary and secondary alterations. Nevertheless, knowledge of gene expression changes
involved in a disease may prove useful in understanding the disease process and possibly
exploring preventions and treatments. Further, gene expression profiling can itself be a
means to test and develop new drugs (Gerhold, et al., 2002). Today there are multiple array-
based choices for surveying genome wide gene expression that differ in their content, the
probe preparation methods and the chemistry of the array surface. The most commonly used
include laboratory developed cDNA arrays and commercial gene chip products from
Affymetrix®, Illumina®, Amersham® Agilent® NimbleGen® and other biotechnology
companies. Such chips examine thousands of genes often covering much more than the well
characterized genes in the genome and in some cases interrogating individual exons.

There have been many studies investigating gene expression changes in AD (Blalock, et al.,
2004,Colangelo, et al., 2002,Dunckley, et al., 2006,Emilsson, et al., 2006,Ginsberg, et al.,
2000,Haroutunian, et al., 2009,Kong, et al., 2009,Liang, et al., 2007,Liang, et al.,
2008,Loring, et al., 2001,Parachikova, et al., 2007,Ray, et al., 2008,Ricciarelli, et al., 2004).
Among the multiple variables that can influence the results of such studies are the selection
of tissue type or brain region, the expression analysis platform and the analytical methods.
Differences in these variables between different studies together with small sample sizes,
stochastic and other variation, have often led to inconsistent observations. Most studies use
one of two main approaches to the interpretation of their results. Some focus on the
individual dysregulated genes and make hypotheses on the possible roles of the gene
products in the disease process. Others identify groups of genes either by setting a
significance threshold or through gene co-expression network analyses (Zhang and Horvath,
2005) and then examine the groups for excess representation of specific functional classes.
Although such groups likely contain false positives overall they are highly enriched for true
positives and their composition can provide significant and reliable results. Although
different platforms and analytical methods can lead to different results at the individual gene
level, gene class enrichment is robust across platforms (Maouche, et al., 2008) and while
this approach does not identify specific target genes it provides important insights into the
possible disease mechanisms and consequences of the disease at the molecular level.

Our motivation for this study was two-fold. First, we wanted to provide new insights and
add support to conclusions from previous gene expression studies of AD. Second, we
wanted to test for an overlap between gene expression changes in AD and in normal aging
as suggested by a previous report (Miller, et al., 2008), a phenomenon that we think could of
great importance to our understanding of the genetics of AD. In two parallel studies we
examined the gene expression profile of Broadman area 22 (superior temporal lobe), an area
strongly affected by AD pathology, in 22 AD cases and 23 controls without brain pathology
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at death. The samples were split in two independent sets, one focusing in AD and using a
subset of 9 controls matched to the cases and another focusing on changes with age using
the remaining 14 controls with a relatively wide spectrum of ages and no AD cases. We used
the Illumina Sentrix HumanRef-8 Expression BeadChips that interogate 24,000 genes
recognized by the National Center for Biotechnology Information (NCBI). We report on
genes showing significant changes in AD, on functional enrichments among genes changing
expression and on a highly significant overlap between the two groups, an observation that
we replicated using a third, public dataset.

2. Materials and methods
2.1 Samples

We obtained 3mm punch biopsies from the superior temporal lobe (Brodman area 22) of 22
deceased patients with confirmed AD pathology and 23 controls with no brain pathology.
All cases and controls were of European descent and their ages, sex and the time between
death flash freezing of the brain slices (Post Mortem Delay; PMD) are shown on
supplementary Table 1 together with Braak staging and CERAD scores for cases.

Samples were split in two sets,(i) the AD sample-set of 22 cases and 9 controls with no
significant differences in age, sex, PMD, or positioning on the Illumina Beadchips and (ii)
the AGE sample-set with a wider age range (35–93) consisting of samples free of pathology
and with no significant correlations between age and PMD, sex or placement on Illumina
Beadchips. All the details pertaining to the sets are shown on supplementary table 1. All
samples were from brains collected by the Johns Hopkins Brain resource center (courtesy of
the director Dr. Juan Troncoso).

2.2 Transcript measurements
To measure transcript abundance we used the Illumina Sentrix HumanRef-8 Expression
BeadChips (Illumina, San Diego, CA 92121-1975, cat. no. 11201828) containing 24,000
genes recognized by NCBI at the time of production. We extracted total RNA using Trizol
(Invitrogen, Carlsbad, California 92008, cat. no. 15596-026) with additional purification on
RNAeasy columns (Qiagen, Valencia, CA 913555, cat. no. 74104). We assessed the quality
of total RNA on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA) and 0.5
µg of total RNA from each sample was labeled by using the Illumina TotalPrep RNA
Amplification Kit (Ambion, Austin, TX 78744-1832, cat. no. IL1791) in a process of cDNA
synthesis and in vitro transcription. We generated and labeled single-stranded RNA (cRNA)
by incorporating biotin-16-UTP (Roche Diagnosics GmbH, Mannheim, Germany, cat. no.
11388908910) and hybridized (16 hours) a total of 0.85 µg of biotin-labeled cRNA to the
BeadChips. The hybridized biotinylated cRNA was detected with streptavidin-Cy3 and
quantitated using Illumina's BeadStation 500GX Genetic Analysis Systems scanner. The
primary Illumina data was returned from the scanner in the form of an “.idat” file which
contains single intensity data values/gene following the computation of a trimmed mean
average for each probe type represented on the array by a variable number of bead probes.
We performed preliminary analyses of the scanned data using Illumina BeadStudio software
which returns a detection call D based on a comparison between the intensity of a single
probe and the intensities of a large number of negative control beads built-in to the
BeadChip arrays (D = % above negative/100, 1 = perfect, i.e. the intensity value of a gene is
greater than all the intensities for every negative control tested). Any gene consistently
below D=0.98 was eliminated from further analysis, leaving data for 11,326 named genes
expressed in temporal lobe for analysis. Normalization of the expression values to account
for differences in input RNA, processing, labeling etc. was performed by Z-transformation
on each sample/array on a stand-alone basis (Cheadle, et al., 2003).
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Replications using SYBR-green real time detection with Applied Biosystems reagents
(Foster City, CA, cat#4312704) and an ABI 7900 sequence detection system (Applied
Biosystems) were performed on newly extracted RNA from the same tissue sample. After
the examination of melting curves excluding non specific PCR products, relative
quantification of each sample was performed using a standard curve from standardized
dilutions of a reference RNA. Measurements were normalized against the average of two
housekeeping genes (M-RIP and POLR2) selected from a study that identified AD –
appropriate reference genes using a neuroblastoma cell line that models aspects of
Alzheimer's disease in culture (Hoerndli, et al., 2004). Ratios to the reference were log
transformed resulting in normally distributed values.

2.3 Data analysis
We used Z-normalized expression values of each transcript as the dependent variable in a
generalized linear model that included disease status, age, sex and PMD for the AD sample-
set and age, sex and PMD for the AGE sample-set. The analyses were performed in R
(version 2.4.1, http://cran.r-project.org) using the “glm” function for generalized linear
models. Expression change was investigated in the AGE sample-set while changes with
disease were investigated separately in the independent AD sample-set. We also used a set
of public data, those from a study by Myers et al (Myers, et al., 2007), as a third independent
set for the effects of age. We analyzed the temporal lobe data of that dataset using the rank
invariant normalized data supplied by the authors as an outcome and including age, PMD,
sex and sample source in the generalized linear model.

The results were then parsed on excel spreadsheets, where quantile quantile (Q-Q) plots
were generated, false discovery rate (FDR) was calculated from the p-values following the
Benjamini and Hochberg procedure (Benjamini and Hochberg, 1995), results of the AGE
sample-set and AD sample-set were matched by gene and compared in parallel and gene
lists were generated for functional enrichment analyses.

We used the expression data analysis tools provided by the Panther classification system
website (http://www.pantherdb.org/tools/genexAnalysis.jsp) (Mi, et al., 2007,Thomas, et al.,
2003) for enrichment analyses for specific gene functions. We used lists of genes showing
changes in the generalized linear models described above at the chosen FRD thresholds
against the reference set of all genes whose transcript was positively detected by the array
(thus all genes that could possibly be included in the list of genes with expression changes).
The Panther website performs a modified Bonferroni correction which accounts for the
nesting of child gene ontology terms below parent terms. The p-values shown on Table 1 are
Bonferroni corrected through this method. The significance of overlaps between lists of
genes with expression changes was assessed using standard 2×2 tables of counts of genes
present or absent in each list and were tested for independence by chi-square tests.

3. Results
All 45 cases and controls provided good quality RNA without significant degradation, as
shown by gel electrophoresis and analysis on the Agilent 2100 Bioanalyzer, and were
successfully processed and analyzed by the Illumina BeadStudio software. Expression of a
total of 11,326 named genes was positively detected by Beadstudio and their data were
processed as described in the materials and methods. Figure 1 shows Q-Q plots of the
distribution of p-values for expression changes with AD and with age and supplementary
Figure 1 shows volcano plots for the two datasets. There is clear inflation of low p-values in
the AD sample-set and 1,031 genes were found dysregulated at an FDR <0.05. In the AGE
sample-set there is also an inflation of signals at p-values between 0.05 and 0.001 which
however does not continue at lower p-values, suggesting multiple true signals yet small
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effects that cannot reach strong statistical significance. In agreement with this, the FDR is
0.4 at p< 0.0415 but does not improve much thereafter (lowest FDR is 0.345 at p<0.0086).
For this reason we chose this relatively relaxed FDR (0.4) to define genes regulated with
aging. Although this is expected to include a significant number of false positives it also has
the highest enrichment for true positives we can achieve for such a large group, consisting of
1,174 genes more than half of which are expected to be true positives. Of these genes 604
(51.4%) showed decreased expression with age. Sex and PMD did not show strong effects
with the exception of four genes, all located on the Y chromosome that showed a strong sex
effect on both sample-sets, reaching an FDR of less than 0.05 in the larger AD sample-set.
One of them also reached FDR<0.05 for sex regulation in the smaller AGE sample-set
analyses. Among the genes that were downregulated with age there was significant
enrichment for those whose products are involved in pre-mRNA processing (p=0.0025),
splicing (p=0.004) and for ribosomal protein genes (p=0.00001). No significant enrichment
for functional classes was observed among genes up-regulated with age.

The analysis of the AD sample set revealed many highly significant differences with 1,031
genes showing change in expression at FDR <0.05, 51% of these showing reduced
expression in AD cases (see supplementary Table 2 for the complete list). The up-regulated
genes were enriched for transcription factors (p=2.3×10−3) and genes involved in nucleic
acid metabolism(p=0.023). Down-regulated genes were enriched for genes involved in
neuronal activities (p=7.5×10−3), specifically for voltage-gated ion channels (p=0.022).
Using a more relaxed FDR threshold of 0.2 which identified 1,804 down-regulated and
1,602 up-regulated genes we were able to achieve much stronger statistical evidence of
enrichment shown on Table 1.

We then examined the hypothesis that the set of genes changing with age might be enriched
for genes involved in AD. Using the same FDR levels above (0.2 for AD and 0.4 for age)
3,406 of the 11,326 genes change expression levels in AD and 1,174 change with age. The
two groups shared 451 genes, significantly more than expected overlap by chance
(p=4.5×10−11). The significance remained strong if we used the stringent FDR of 0.05 for
AD with 166 overlapping genes (p=2.1×10−10). Strikingly, in all but one of the 166 (and in
95% of the 451) overlapping genes the change with increasing age was in the same direction
with the change in AD. This is illustrated on the scatter plot in Figure 2. In order to exclude
any systematic error in our two parallel experiments we further examined a public dataset
that was informative for gene regulation with age, that of Myers at al (Myers, et al., 2007).
We downloaded the data and analyzed them as described in our materials and methods for
the effect of age. There were in total 9,743 transcripts with present calls in at least two thirds
of individuals. This dataset provided somewhat more significant results than ours,
presumably because of the larger sample size (131 samples from the temporal lobe) with 10
transcripts reaching an FDR<0.1, yet none an FDR <0.05. The Myers et al study was
performed on an Affymetrix array and among the transcripts called present we could match
6,368 to those with present calls in our sample-sets. Of the 86 transcripts overlapping at
FDR<0.4 between our AGE sample set and the Myers et al set 76 (88%) showed change in
the same direction for both sample sets, supporting the validity of the results. The Myers et
all dataset included 690 genes at FDR <0.4, 415 decreasing with age and enriched in peptide
hormone genes (p=0.033) and 275 increasing with age with no significant enrichments. We
compared the genes changing in AD from our AD sample set (FDR<0.2) to the genes
changing with age from the Myers dataset (FDR <0.4) and again we found a significantly
high overlap between the two sets. Of the 6,368 genes in common 1304 (our AD sample set)
changed in AD, 503 with age (Myers dataset) and 150 were in common (p=6×10−8). Once
again the vast majority (133, 89%) were changing in the same direction with age and AD.
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We compared our results with the list of genes reported by Miller et al to be overlapping in
AD and aging with at least one significant probe set (Miller, et al., 2008) (found on their
suppl. Table 6). In their results, strong excess of genes with same the directionality of
change was also evident, yet not as striking as we observe. The overlap of their list of 558
genes changing both with age and AD with our list of 451 (FDR <0.2 and 0.4 for AD and
age respectively) was 31 genes. For 23 of those (74%) the results of both studies were in the
same direction both for aging and AD. Only one of the remaining genes showed completely
discordant results between studies (see suppl. Table 3). Finally we compared our list of age
regulated genes with those reported by Lu et al (Lu, et al., 2004) in their Supplementary
Table 2. All 19 genes that we could match by RefSeq name from their table and were
present in our list of age regulated genes at FDR <0.4 showed the same direction of effect,
further validating our results.

We experimentally validated our microarray results by extracting new RNA from the AD
sample-set and measuring expression by real time PCR. We tested eight genes, three with
FDR <0.05 (VGF, RBP4, ADCYAP1) and five with FDR 0.2 (SOX10, NPTXR, VMD2, SP1,
BDNF). In all eight cases the new measurement showed an effect in the same direction as
the microarray. In five cases including all three at FDR <0.05 the result replicated with at
least nominal significance (see suppl. Table 4) . The remaining three showing the same
direction but without nominal significance are likely due to the platform differences, noise
introduced by harvesting new tissue and extracting new RNA and likely also include false
positives.

4. Discussion
We have performed a large microarray based gene expression study exploring the effects of
age on gene expression and comparing it to gene expression changes in AD. We found that
the effects of aging on gene expression is relatively subtle yet it involves multiple genes.
Our separate study of transcript abundance differences between AD affected brains and
unaffected controls showed multiple significant differences with high statistical confidence.
Most importantly, when comparing the results of the expression study on AD with that on
aging we found that more genes than expected were affected by both and almost always in
the same direction, i.e. genes whose expression goes down with age are often found to be
lower in AD affected brains and vice versa. This result had highly significant statistical
support and was observed almost as strong when we analyzed data on the effect of aging
from a completely independent publicly available data set using a different platform. In fact
the overlap was stronger when age effects were calculated using the Myers et al data (~50%
higher than expected by chance) than when using our own (~30% higher), reflecting perhaps
the higher number of control brains sampled.

We are providing a list of 1030 genes in our supplementary material (suppl. Table 2) that
show differences in expression in AD at FDR<0.05. This is a high confidence list likely to
include mostly true positives and it includes multiple genes that have been previously
reported. Some of these genes could reflect primary changes, i.e. they could be responsible
for the development of the disease, but most are likely secondary changes, in response to the
disease process. Our functional enrichment results are consistent with previous literature and
provide additional support for specific functions while expanding the observations to
Brodmann area 22. We found an enrichment for genes in the Interleukin signaling pathway,
immunity and defense and specifically macrophage mediated immunity among the genes
with higher expression in AD (Table 1) which supports links between inflammation and AD
(DeLegge and Smoke, 2008,McGeer and McGeer, 1998,Wyss-Coray, 2006). We also found
an enrichment in transcription factors and other genes involved in transcription, likely
reflecting the induction of cellular responses by the disease process. Among the genes with
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lower expression in the AD brain we found enrichments in genes involved in synaptic
transmission, ion channels and generally genes involved in neuronal activities. Our results
replicate strengthen and expand previously published similar findings (Katsel, et al.,
2005,Papassotiropoulos, et al., 2006) elaborating on important aspects of the AD process.

The result that we found most striking and also carried the strongest statistical support was
the overlap between genes dysregulated with AD and genes that change expression with age.
Such an overlap was first described by Miller et al (Miller, et al., 2008) who performed a
systems level analysis of transcriptional changes in Alzheimer's disease and normal aging.
Here we provide strong replication using multiple independent datasets and we show a
strong directionality of this phenomenon. This significantly increased overlap could result
from many different underlying links between aging and AD related genes, and is of
particular interest because advanced age is the most significant AD risk factor. It is possible
that changes in some genes’ expression with age, although part of the normal aging process,
can also lead to increased vulnerability to AD. It is possible that for a subset of such genes
changes might happen faster for some individuals – perhaps due in part to genetic variation
– leading to increased vulnerability. As these individuals would end up in our case group
they could produce the observed results. The overlap might also reflect a globally
accelerated aging process in the people that are vulnerable to AD, which could be due to
genes, environment or both. It must be noted that the small effects on gene expression
observed with age forced us to adapt an FDR of 0.4, meaning that a significant number of
false positives are included in the results. This might reduce the confidence in the validity of
individual gene results however it does not reduce the importance of the highly significant
overlap which would be expected even stronger if we could clear false positives off our lists.

The genetic overlap of aging and AD has important implications for aging research. It would
be useful to perform more and larger studies covering more brain regions and more patients
and controls to confidently identify this set of overlapping genes. These genes are likely to
be important to healthy aging and possibly primary culprits for vulnerability to AD, either of
which would make them important targets for pharmacological intervention. The observed
low effect of normal aging on gene expression which currently translates to low statistical
confidence for individual genes underscores the importance of further research on expanded
datasets, as defining the exact overlap between normal aging and AD could lead to
significant breakthroughs in our understanding and our therapeutic approach to the disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Figure 1A: Quantile Quantile plot for the observed p-value distribution for the effect of age
on gene expression compared with the expected null distribution
Figure 1B: As in figure 1A for the effect of AD on gene expression.
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Figure 2.
Scatter plot of effects on gene expression (linear model parameter estimates) of genes that
change significantly in AD at FDR <0.05. Black and grey dots correspond to genes that
change significantly with age at FDR <0.4 or not. A strong directional correlation is
observed, stronger for genes with a significant age effect.
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Table 1
Enrichments in genes expressed higher in AD

Functional enrichment for genes expressed at higher or lower levels in AD cases. The category column refers
to the ontology categories used for the analysis.

Higher expression in AD category number
of genes

fold
enrichment

corrected
significance

FDR < 0.05 – 504 genes

Interleukin signaling pathway Pathway 36 2.3 **

mRNA transcription Biol. Proc. 222 1.4 ***

Oncogenesis Biol. Proc. 68 1.8 ***

Nucleoside, nucleotide and nucleic acid metabolism Biol. Proc. 353 1.2 **

Hematopoiesis Biol. Proc. 18 3.3 **

mRNA transcription regulation Biol. Proc. 167 1.4 **

Cell structure and motility Biol. Proc. 132 1.4 **

Immunity and defense Biol. Proc. 137 1.4 **

Macrophage-mediated immunity Biol. Proc. 21 2.5 *

Cell proliferation and differentiation Biol. Proc. 119 1.3 *

Developmental processes Biol. Proc. 211 1.2 *

Transcription factor Mol. Funct. 221 1.3 ***

Nucleic acid binding Mol. Funct. 282 1.3 ***

Lower expression in AD category number
of genes

fold
enrichment

corrected
significance

FDR<0.05 – 526 genes

Neuronal activities Biol. Proc. 117 1.9 ***

Synaptic transmission Biol. Proc. 63 1.9 ***

Nerve-nerve synaptic transmission Biol. Proc. 23 2.7 **

Ion channel Mol. Funct. 57 1.7 **

Voltage-gated ion channel Mol. Funct. 31 2.1 *

Neuropeptide Mol. Funct. 11 3.6 +

+
p<0.1,

*
p<0.05,

**
p<0.01,

***
p<0.001. All p values are Bonferroni corrected.
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