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Lactose Operon Transcription from Wild-Type and L8-UV5
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In cells treated with chloramphenicol and the inducer isopropyl-,B-D-thioga-
lacto-pyranoside, messenger ribonucleic acid transcription from the wild-type lac
promoter was not detected. Transcription occurred from the mutant UV5-L8
promoter. The transcripts were of variable length; some included the whole Z
gene. No major site of transcription arrest within the Z gene was apparent.

Chloramphenicol rapidly stops translation of
RNA in susceptible Escherichia coli; protein
synthesis ceases within a few minutes after its
addition (18). Transcription continues. Some
mRNA's and all rRNA's accumulate at normal
or even increased rates without translation; such
RNA synthesis is called "uncoupled." Not all
transcription, however, is uncoupled. In certain
operons, e.g., the lactose (lac) and the trypto-
phan (trp) operons, transcription is tightly cou-
pled to translation, and these mRNA's are usu-
ally undetectable in cells treated with chloram-
phenicol (10) or other inhibitors of translation
(5, 7, 9, 20). Most of the recent research on
coupling (and on the analogous phenomenon of
"polarity" [11, 22, 25]) has concentrated on the
trp operon, with its five relatively short genes
(19). Using the lac operon instead, with its very
long initial Z gene, and measuring the size of
mRNA produced in the presence of chloram-
phenicol, we hoped to determine whether tran-
scription arrest occurred at discrete intragenic
sites. In cells treated with chlorampenicol, we
detected no transcription at all from the wild-
type lac promoter. Transcription occurred only
when the mutant lac L8-UV5 promoter was
used. Even then we did not find discrete tran-
scription termination sites within Z, although
transcripts long enough to include the entire Z
gene message were observed. Thus, the L8-UV5
promoter mutation effectively alleviated cou-
pling.

Strains C3 and ColEl-lac (for a description of
the strains, see Table 1) have a wild-type lac
promoter. As expected, chloramphenicol se-
verely inhibited lac Z transcription in all these
strains. The amount of mRNA made after ad-
diton of chloramphenicol and isopropyl-,8-D-
thiogalactopyranoside did not exceed the
amount made by an uninduced culture with or
without chloramphenicol (Table 1). In contrast,

the strains 5'-plasmid and F'UV5 contain the
L8-UV5 promoter. This mutant promoter has
three base pair changes: GC to AT at position
-66, GC to AT at -9, and TA to AT at -8
(reference 21). In the presence of chloramphen-
icol and inducer, their lac mRNA production
clearly exceeded that of the uninduced control,
attaining 30 to 55% of the amount produced in
the absence of chloramphenicol. This was true
even in the 5'-plasmid strain, which is partially
constitutive for lac (probably because there is
only one copy of the repressor gene, but multiple
copies of the operator on the plasmid). Lambda
p8, which has another "superpromoter," TA to
AT at -8, behaves like L8-UV5 (see Table 1).

Figure 1 shows the result of gel electrophoresis
of (3H)-labeled lac ZmRNA isolated from strain
F'UV5 lac. In the absence of chloramphenicol,
nascent RNA species were observed at 30S, the
position expected for lacZYA mRNA; at 23S,
corresponding to lacZmRNA (1); and at a range
of smaller sizes. In the presence of chloramphen-
icol, a wide range of transcript sizes again was
seen. No major transcription termination site (6)
was apparent early in the lacZ gene.
These results suggest a role for the promoter

in the determination of coupling because a pro-
moter mutation allevates it. Imamoto et al. (8,
11, 22) have proposed that the RNA polymerase
starting from a lambda phage promoter can be
"programmed" to resist transcriptional arrest by
chloramphenicol. Similar observations were
made by Dutting and Hubner (7).
Some possible mechanisms are suggested by

the observations that the lac UV5-L8 promoter
is cyclic AMP (23) and guanosine-5'-diphos-
phate-3'-diphosphate (ppGpp) independent (20).
'Could a reduced cyclic AMP, caused by adding
chloramphenicol, explain the difference in tran-
scription between the two promoters? This is
unlikely, because adding cyclic AMP with chlor-
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TABLE 1. lac mRNA produced in strains containing wild-type or mutant lac promotor in the presence and
absence of chloramphenicol"

Normalized
RNA from Pro Chloram- Total input %A plac 5 to +IPTG

strain motor IPTG phenicol (106 cpm) hybrid % A hybrid % lac hybrid -chloram-phenicol in
each strain

C3 WTb + - 0.21 0.48 0.01 0.47 100
- - 0.13 0.07 0.03 0.04 8
- + 0.19 0.05 0.02 0.03 6
+ + 0.25 0.04 0.01 0.03 6

S232 WT + - 0.80 0.11 0.02 0.09 100
- - 0.68 0.03 0.02 0.01 10
- + 0.64 0.02 0.02 0.00 0
+ + 0.56 0.02 0.02 0.00 0

5'-plasmid UV5 + - 0.50 1.01 0.02 0.99 100"
- - 0.52 0.14 0.01 0.13 13
- + 0.60 0.15 0.04 0.11 11
+ + 0.62 0.57 0.02 0.55 55

F'-UV5 UV + - 1.3 0.28 0.05 0.23 100
- - 1.2 0.02 0.04 (0.02)c 0
- + 1.2 0.02 0.04 (0.02) 0
+ + 0.9 0.15 0.03 0.12 52

Lambda p' p' + - 1.04 0.183e 100
- + 1.2 0.023 12
+ + 1.2 0.074 40

aC3 is described in Achord (1). Strain S232, containing a ColE1 lac plasmid, comes from J. Carbon. The 5'-
plasmid is PMB9 with a 789-base-pair fragment containing the lac L8-UV5 promoter and the beginning of the
z gene (12). F'-UV5: F' placz(L8-UV5) lacz+y+A+ proA+B+/A(lac-proAB) B1 SuII+ was from Reznikoff (21).
A p8 (A h80 dlac p' c1857 t68) was from Kung (12). A plac5 [A cI857 S7 plac(IZZYA-) in strain M7173] was
from Miller (16). Fresh overnight cultures were diluted 1:50 into 10 ml of Casamnino Acids (0.8%) with minimal
salts and glycerol (0.4%), grown for three generations at 30°C to a density of 5 x 108 bacteria per ml, and
prelabeled with 0.01 yCi of ["4C]guanosine per ml to provide labeled internal markers for gel analyses. Whenever
cells were incubated in chloramphenicol, the antibiotic was added 5 min before induction to a final concentration
of 100 ug/ml. Induction was by addition of 1 mM isopropyl-f?-D-thiogalactopyranoside (IPTG). Five minutes
later, [ H]uridine, 30 Ci/mmol, was added to a final level of 50 ,uCi/ml. Labeling was stopped 1 min later by
pouring the cultures over frozen 100 mM Tris-hydrochloride (pH 8.0) containing 200 jig of chloramphenicol per
ml and 20 mM sodium azide. After centrifugation, the cells were resuspended in 0.5 ml of Tris-hydrochloride
(pH 8.0), 20% sucrose, and 10 mM EDTA. Lysozyme (50 Lg/ml) was added, and 5 min later 2 ml of MgCl2 (25
mM), 1.25% sodium dodecyl sulfate, and 0.1 ml of diethylpyrocarbonate were added. The suspension was
incubated for 5 min at 37°C to inactivate nucleases. A 2.5-ml amount of cold (-20°C) 5 M NaCl was added.
After 45 min at 10,000 rpm the supernatant was carefully aspirated. Water (2.5 ml) and ethanol (15 ml) were
added. The RNA was precipitated after immersion in an acetone-dry ice bath for 15 min and was collected by
centrifugation; dissolved in water (1 ml), 1 M sodium acetate (pH 5.2, 0.1 ml), and 1 M NaCl (0.4 ml); and
reprecipitated by 3 ml of ethanol. The RNA pellet after the second ethanol precipitation was dissolved in a
small volume of water for hybridization or gel electrophoresis. For DNA-RNA hybridization, filters with DNA
probes were prepared from A plac 5 carrying the Z gene and from A S7 (no lac sequences), as described
previously (14, 16, 24). Hybridization was done in 50% formamide, 0.1% sodium dodecyl sulfate, 2x SSC (lx
SSC = 0.15 M NaCl-0.15 M sodium citrate) at a temperature of 53°C, for 40 to 48 h. When investigating RNA
from A p', we first absorbed A mRNA from the solution by preincubation with a A 87 filter for 2 days; only then
did we add the probe for lac sequences. lac-specific counts were those remaining after subtraction of A
background (obtained by hybridization to filters containing only A DNA). The counts given are the average of
triplicate samples.

b WT, Wild type.
'Figures in parentheses indicate negative values.
d 5'-plasmid strain is partially constitutive for lac.
'After prehybridication to S7 A DNA.
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