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Abstract
At the onset of a period of intense synaptic refinement initiated by synchronized eye-opening
(EO), rapid changes in post-synaptic NMDA receptor and AMPA receptor currents (NMDARcs,
AMPARcs) occur within the superficial visual layers of the rodent superior colliculus (sSC; Lu
and Constantine-Paton, 2004). Subsequently, evoked non-NMDARc amplitudes increase, but by 2
weeks after EO (AEO) they decrease significantly. Here, using whole-cell patch-clamp recording,
we demonstrate that small, slowly desensitizing excitatory kainate receptor currents (KARcs) are
responsible for the rise and subsequent fall in non-NMDARcs. The increase in KAR transmission
parallels inhibitory GABAA responses that plateau at 7 days AEO. By 2 weeks AEO, KARcs are
gone. AMPARcs remain unchanged during the appearance and disappearance of the KARcs,
despite increases in sSC neuropil activity and continued refinement of inputs to individual sSC
neurons. We suggest that in the interval of heightened activity, before SC inhibition matures,
many AMPARcs desensitize and are relatively ineffective at relieving the Mg2+ block on
NMDARs. This transient appearance of slowly desensitizing, long-duration KARcs may provide
increased membrane depolarization necessary for NMDAR function and continuation of synaptic
refinement.
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INTRODUCTION
It is well established that fast glutamatergic synaptic transmission and its many roles in brain
function are mediated by AMPARs and NMDARs. However, mounting evidence indicates
that KARs also play important roles in these processes. The modulation of transmitter
release by presynaptic KARs and their facilitation of presynaptic forms of short and long
term synaptic plasticity has been most extensively studied (Lauri et al., 2007; Lerma, 2006)
and, with the advent of ligands that differentiate AMPARs from KARs, postsynaptic KARs
have been found in many regions of the central nervous system including the hippocampus,
cortex, cerebellum, amygdala, spinal cord, and retina (Castillo et al., 1997; Cossart et al.,
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1998; Frerking et al., 1998; Kidd and Isaac, 1999, 2001; Bureau et al., 2000; Li and
Rogawski, 1998; Li et al., 1999; DeVries and Schwartz, 1999; DeVries, 2000). Many of
these receptors produce small, long-decaying and slowly desensitizing currents that are
thought to support novel functions at the postsynaptic glutamate synapse. For example,
recent data from hippocampal CA3 pyramidal neurons, the cells where these postsynaptic
KARs were first described (Castillo et al.,1997; Vignes and Collingridge, 1997), suggest
that KARs play an important role in modulating postsynaptic spike frequency by interacting
with metabotropic receptors to regulate fast and medium fast after-hyperpolarizing K+

potentials (Fisahn et al., 2005). Also, simulations of glutamate mediated EPSPs in CA1
interneurons suggest that slowly desensitizing KARs generate tonic depolarizations at
synapses where the fast AMPARs do not (Frerking and Ohliger-Frerking, 2002). Such
observations have led to the suggestion that the two non-NMDARs ionotropic glutamate
receptors encode different temporal information and that KARs may be more important than
AMPARs in coincidence detection (Frerking and Ohliger-Frerking, 2002).

Unfortunately, the physiological role of postsynaptic slowly desensitizing KARs in
developmental plasticity is still poorly understood largely because most studies pool
AMPARs and KARs together as AMPA/KARs or non-NMDARs. However, in the neonatal
thalamocortical projection to layer IV of the barrel cortex, postsynaptic KAR-containing
synapses predominate. These are later replaced by AMPAR containing synapses (Bannister
et al., 2005; Kidd and Isaac, 2001). In addition, Kidd and Isaac (2001) have shown that
application of potentiating stimulation applied to this thalamocortical projection results in
rapid removal of KAR responses. In this pathway miniature non-NMDARcs are mediated
either by KARs or AMPARs, but there is no evidence of both receptors at single active sites.

In the present study we used selective AMPAR and KAR ligands (Cossart et al., 2002) to
study the relative contribution of KARs to glutamatergic activity during visual system
development resulting from synchronized EO. Eye opening is an important event in visual
system development and has been implicated in the reorganization of visual synapses and
refinement of axon inputs (Chen and Regehr, 2000; Yoshii et al., 2003; Maffei et al., 2004;
Gandhi et al., 2005). Using electrophysiological recordings, we found evidence for
refinement of inputs to individual sSC neurons during a 7 day period AEO (Lu and
Constantine-Paton, 2004). Thus at 12 hrs, 1 day, 3 days and 7 days AEO there is a
progressive reduction in the number of inputs and an enhancement in the number of release
sites per input onto individual sSC neurons. There is also a significant increase in miniature
AMPAR current frequency and amplitude during the first 12 hours AEO (Lu and
Constantine-Paton, 2004). However, after 12 hours, despite the increase in non-NMDAR/
NMDAR ratio, the increase in spontaneous activity in the sSC neuropil (Shi et al., 1997),
and the increase in refinement of inputs to sSC neurons, the miniature AMPARcs remain
stable for at least 2 weeks (Lu and Constantine-Paton, 2004). These observations suggested
to us that another glutamate driven current might be involved to facilitate NMDAR
dependent ongoing refinement. Here, using a specific AMPAR antagonist to selectively
record KARcs and a specific KAR agonist to desensitize KARs and isolate AMPARcs, we
show that KAR-mediated transmission increases dramatically between 1 and 7 days AEO
and that the KARc increase is coincident with an increase in spontaneous GABAA receptor
currents (GABAARcs). We suggest that the transient, slowly-desensitizing, long decay-time
KARcs represent a previously unrecognized form of developmental synaptic homeostasis:
that they may be responsible for maintaining temporal summation and excitatory drive,
allowing NMDAR depolarization at visual sSC synapses during a period where AMPARcs
are relatively desensitized because pattern driven visual activity is high and inhibitory
transmission has not yet matured.
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METHODS
The following data, though not in the same format, have been published previously in Lu
and Constantine-Paton (2004), where the EO induced changes in AMPAR and NMDARcs
were reported: Number of inputs per neuron up to 7 days AEO (Figure 1C), measurements
of the evoked AMPAR component up to 3 days AEO (Figure 5B; black bars), measurements
of the miniature AMPARcs up to 3 days AEO (Suppl. Fig. 1). They are included here for
comparison with the KAR data that covers a longer AEO interval.

Animal Treatment
Pregnant Sprague-Dawley female rats were purchased and allowed to give birth at MIT so
that the day of birth (P0) was accurately ascertained. P10 pups were anesthetized with brief
exposure to isoflurane, and both eyelids were sealed with Vetbond (3M) tissue glue. EO
(removing the glue and opening the eyelids) was accomplished at 2 times (P12 and P14) and
several pups were examined at P19 without eyelid opening. The latter animals showed no
KARcs and were not analyzed further. Pups remained with their mother until sacrifice.
Midbrain slices from the pups were examined at intervals of 6 hrs, 12 hrs, 1 day, 3 days, 7
days and 14 days AEO. For the preparation of brain slices, pups were anesthetized with
isoflurane and decapitated prior to dissection of the midbrain. All procedures followed MIT
IACUC-approved protocols.

Electrophysiology
Whole-cell recordings were from neurons of the stratum griseum superficiale (SGS) of the
superior colliculus in 350 µm parasaggital sections of the midbrain. Recorded neurons were
imaged with infrared differential interference contrast and ranged in soma size from 15 to 20
µm. This size range and location enriched for narrow field vertical neurons but probably
also included some piriform cells (Langer and Lund, 1974). Vibratome slices were
equilibrated in artificial cerebro-spinal fluid (ACSF) (117 mM NaCl, 4 mM MgCl2, 4 mM
KCl, 1.2 mM NaHPO4, 26 mM NaHCO3, 4 mM CaCl2, 20 mM glucose, and 2 µM glycine)
for at least 1 hr prior to recording. For all experiments, recording pipettes (5–10 mΩ) were
filled with 122.5 mM Cs-gluconate, 17.5 mM CsCl, 8 mM NaCl2, 10 mM HEPES (CsOH),
0.2 mM Na-EGTA, 2 mM Mg-ATP, and 0.3 mM Na-GTP at pH 7.2–7.4. All neurons
maintained seal resistances of above 1 GΩ. Series resistances were <40 MΩ, and input
resistances were 800–900 MΩ. For evoked recordings, electrical stimuli were delivered to
the stratum opticum of the SC through a bipolar stimulating electrode composed of a pair of
tungsten microelectrodes (WPI) with tip separation of ~50–100 µm. Recordings used an
Axopatch 200B amplifier, a Digidata 1322A interface, and a PC running Axoclamp
software. Currents were sampled at 10 kHz and filtered at 5 kHz. Evoked non-
NMDA:NMDAR current ratios and subsequent isolated NMDARcs, AMPARcs and KARcs
were recorded using single stimuli with intensities that produced amplitudes at
approximately 50% saturation for the particular neuron's response. Evoked non-NMDARcs
were recorded at −70 mV with GABAARs and NMDARs blocked with BMI (10 µM) and
D,L-AP5 (50 µM), respectively. Subsequently, APV was washed out and DNQX was added
to record isolated evoked NMDARcs at +40 mV. To washout APV, slices were perfused
with ~50 ml of ACSF. Given our perfusion rate at 2–2.5 ml/min this took between 20 and 25
minutes. To isolate the evoked KARcs, SYM2206 (40 µM) was also added to the bath.

To obtain the estimated number of inputs per neurons (Figure 1C), minimal stimulation was
achieved by gradually increasing the stimulating current from zero until the first evoked
currents were observed (2–6 µA). Repetition of this stimulus with either a failure or the
same evoked current was considered activation of a single axon. Estimations of the number
of inputs converging on a single sSC neuron were made by gradually increasing stimulating
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currents. Criteria for distinguishing increases in the evoked currents as a contribution of an
additional axon was a clear-cut shoulder on the evoked current rising phase, and the stability
of this response to multiple stimuli of the same intensity (Purves and Lichtman, 1985; Chen
and Regehr, 2000).

Spontaneous AMPAR miniature currents were recorded at −70 mV with BMI (10 µM),
D,L-AP5 (50 µM), SYM2081 (50 µM) and TTX (1 µM) in the bath. For KAR miniature
current recordings, BMI (10 µM), D,L-AP5 (50 µM), SYM2206 (10 µM) and TTX (1 µM)
were added to the ACSF. Evoked and miniature recordings were made at least 3 minutes
after the different antagonists were perfused (rate 2–2.5 ml/min) into the bath unless
otherwise stated. Spontaneous GABAAR currents were recorded at −70 mV with D,L-AP5
(50 µM) and DNQX (10 µM) in the bath.

Data Analysis
Using the Minianalysis 5.1 program, synaptic currents were characterized by the following
parameters: peak amplitude, rise-time, and decay-time. Baseline noise ranged from 2.5–5.0
pA peak to peak, and synaptic events with an amplitude 2 times 1/2 peak-to-peak noise were
analyzed. Spontaneous events were measured in a total of 75–180 sec of recording from
each neuron chosen randomly throughout the recording period. To measure the kinetics of
the currents, each synaptic event that was selected was then individually curve fitted (in
section “Group analysis and Curve fitting” of Mini Analysis): the rise time was measured
form 10%–90% of peak amplitude, while decay-time was fitted from 100%–0% peak
amplitude with a single exponential and is given in ms throughout the text as decay interval
measured at 0.37 peak amplitude. The same procedure was maintained regardless of the age
of the pup contributing the slice. Though this procedure for measuring decay times of small,
slow currents like those of native KARs is merely a rough estimate of the actual decay
times, it does allow comparisons between the miniature AMPAR and KAR currents, within
the same amplitude range, and is therefore used here. The small sizes of the miniature events
relative to peak-peak noise levels prohibited a more accurate curve fitting approach although
averaging sKARs, mKARs and eKARs (Fig. 5C) showed similar kinetics after scaling.

Drugs
D,L-AP5, BMI and TTX to block NMDARcs, GABAARcs and voltage dependent Na+

channels, respectively, were from Sigma. DNQX, SYM2206, and SYM2081 to block non-
NMDAR glutamate currents, AMPARcs, and desensitize KARcs, respectively, were from
Tocris.

Statistical Analyses
A two-tailed ANOVA followed by the Tukey post hoc test was used to detect intervals in
which significant changes occurred for all data sets where a parameter was measured across
ages within a treatment. Non-parametric Kolmogorov-Smirnov and Mann-Whitney tests
were used to test for significance of pooled current parameters when either AMPARcs or
KARcs were removed from non-NMDAR current recordings.

RESULTS
Evoked, spontaneous, and miniature whole-cell recordings were obtained from the
superficial visual layers of the sSC before eye opening (BEO), AEO, and in several animals
maintained with EO until P19. This eyelid-opening paradigm synchronizes vision-driven
changes in the visual pathway and greatly facilitates analyses of the effects of EO on
synaptic refinement and development of excitatory and inhibitory currents. Rat pup EO was
performed on P12 and P14 (normal EO is at P13) in this study.
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Non-NMDARcs increase during input elimination then show a significant drop from 7 to 14
days AEO

Earlier we demonstrated that isolated AMPARcs increase in frequency and amplitude within
the first day AEO (Lu and Constantine-Paton, 2004). Here we show that an increase in non-
NMDARcs continued until 7 days AEO regardless of whether eyes were opened on P12
(Fig. 1A) or P14 (Fig. 1B). sSC neurons from P12 EO pups were subsequently studied at 2
weeks AEO and the increase in non-NMDARcs dropped to the same number as observed at
3 days AEO (Fig. 1A). In the same interval (3 days and 2 weeks AEO); refinement in the
number of inputs on sSC neurons continued to decrease (Fig. 1C bottom) and AMPAR
mEPSC amplitude and frequency remained stable (Suppl. Fig. 1). Consequently, we asked if
changes in the small slow KARcs, first detected in our earlier study (Lu and Constantine-
Paton, 2004), were responsible for the rise and subsequent fall of the non-NMDAR current
and might therefore facilitate continuing depolarization needed to activate NMDARs during
the prolonged refinement of sSC circuitry.

Two kinetically different non-NMDAR excitatory miniature currents are prominent 3 to 7
days AEO

Small miniature non-NMDARcs with slow decay kinetics became frequent in sSC
recordings with TTX, APV, and BMI at 3 days AEO (see * in Figure 2A) in all neurons
from which low noise recordings were obtained. In addition to the small slow currents, we
also observed some large fast onset currents with slow decays (see #, Fig.2A) along with
large, fast, presumably pure AMPARcs (Fig. 2A; currents not indicated with a symbol).
However, by 14 days AEO (P26), only fast currents remained in these recordings. Scatter
plots of amplitude versus decay-time (Fig. 2B) and of decay-time versus rise-time (Fig. 2C)
from 3 typical sSC neurons at 1, 7 and 14 days AEO are plotted for all the quantal non-
NMDAR glutamate currents occurring within a randomly chosen 3 minutes of recording.
The kinetics of the non-NMDA mEPSCs recorded at 1 and 14 days AEO were similar: Peak
amplitudes ranged up to 25 pA with fast decay-times (0.1–7 ms) and rise-times (0.1–5 ms).
By contrast, non-NMDAR mEPSCs recorded at 7 days AEO (middle panels) showed an
additional population of events with decay-times ranging from 7 to 20 ms, rise-times from 5
to 15 ms, and peak amplitudes mostly in the range of 6–15 pA. In addition to the isolated
small currents, some larger, fast rise-time currents, initially assumed to be pure AMPAR
mediated quantal events, also showed increased decay-times. One of these events can be
seen in the current trace shown for 7 days after AEO (Fig. 2A,#) and similar currents can be
identified by their kinetics in the scatter plots of quantal events from a typical 7 days AEO
sSC neuron (middle panels Fig. 2B,C). Few, if any, small slow mEPSCs were detected
BEO, at 24 hours AEO and at 14 days AEO (Fig. 2A,B,C).

The age-dependent heterogeneity in the non-NMDAR currents was obvious in summary
graphs of their averaged miniature current amplitude (Fig. 2D, left) and frequency (Fig. 2D,
right) recorded in P11 to P26 sSC. The mixture of large and small quantal events seen in all
recorded neurons at 7 days AEO are consistent with the smaller average amplitude of the
miniature non-NMDARcs seen in Figure 2D (left) at the same time point. The peak in
average non-NMDAR miniature current frequency at 7 days AEO is also consistent with the
transient appearance of these small miniature currents (Fig. 2D, right). Taken together, the
current data indicates a peak in non-NMDAR:NMDAR excitatory current ratios at 7 days
(Fig. 1), while AMPARcs (Suppl. Fig 1) remain relatively constant, and suggests that the
slow mEPSCs reported here reflect the third ionotropic glutamate receptor. These transient
KAR's are responsible for the peak in evoked current ratios at 7 days AEO and for the
significant drop in the non-NMDAR currents at P26, 2weeks AEO (Fig. 5B). We next used
a KAR-specific ligand to determine whether the small slow currents were KARcs and the
extent they could contribute significantly to non-NMDAR excitatory events.
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Transiently appearing small slow currents are KARcs
To eliminate AMPAR mediated miniature currents from the non-NMDAR quantal events
we applied the specific AMPAR current antagonist SYM2206 (10 µM) at 7 days AEO to the
bath containing Mg2+, TTX, APV and BMI. Figure 3A illustrates typical traces from one
neuron with continuous SYM2206 exposure. During SYM2206 application the largest
currents with faster decay-time and rise-time disappeared into the noise level, leaving
smaller mEPSCs with slow kinetics. As can be seen in Figure 3B,C by comparing the
control and SYM2206 scatter plots of two separate neurons for amplitude versus decay-time
(left column), and decay-time versus rise-time (right column), SYM2206 reduced a
population of events with large amplitudes (>15 pA), fast decay-times (<3.5 ms) and fast
rise-times (<2 ms). Similar findings were obtained from all 5 neurons where the SYM2206
application was successfully completed as shown in the pooled data summary histograms
and cumulative probability plots of Figure 3D–F (thin line before, and broad line after,
SYM2206 application in insets). The remaining mEPSCs are similar to the slowly
desensitizing postsynaptic KARcs reported by previous investigators (Castillo et al., 1997;
Kidd and Isaac, 1999; Bannister et al., 2005) and most closely match the KARc decay times
recorded in the small CA1 inhibitory neurons by Cossart et al., (2002).

To specifically remove KARcs from non-NMDAR quantal events of 7 days AEO SC
neurons, we used desensitization with the specific KAR agonist SYM2081, as we were
unable to obtain GYK152466 (Cossart et al., 2002). SYM2081, after a long application,
selectively desensitizes and eliminates KARcs from recordings (Savidge et al. 1999; Cossart
et al., 2002). Our mEPSC recordings confirm that SYM2081 activates postsynaptic KARs
after a short perfusion (4–10 min; Fig. 4A,B). However, after 15 minutes of perfusion with
SYM2081 only fast currents remained. This can be seen in the pooled data, summary
histograms, and cumulative probability curves of Figure 4C–E obtained from the 4 neurons
analyzed. The fact that the cumulative probability curves of amplitude for control and
SYM2018 neurons do not show a significant difference suggests the presence of mixed
AMPARcs/KARcs in which their amplitude is mainly defined by the large AMPARc. These
data provide pharmacological evidence that the other component of the non-NMDARs
glutamate activity in the sSC is mediated by postsynaptic KARcs.

KARcs are responsible for the transient increase in evoked non-NMDARcs between 3 to 7
days AEO

To accurately determine the contribution of KARs to evoked non-NMDAR:NMDAR
current ratios at successive times AEO, we examined evoked non-NMDAR EPSCs at −70
mV as in Figure 1A–B, except that recordings were made before (green line) and after (red
line) blockade of AMPARs with SYM2206 (Fig. 5A). Evoked non-NMDAR:NMDAR
current amplitude ratios were taken from at least 6 neurons in several slices at 1 day BEO
(P12), and at 6, 12, 24 hrs and 3, 7, and 14 days AEO (Fig. 5B). As can be seen in the
histogram of Figure 5B by the black bars, between 12 hours and 24 hrs AEO evoked
AMPARcs showed the potentiation described previously (Lu and Constantine-Paton, 2004)
and then remained unchanged till 14 days AEO. In contrast, the red bars show that the
contribution of the evoked KAR current increased most rapidly between 3 and 7 days AEO.
Remarkably, at 7 days AEO this evoked KAR current contribution constituted 45% of the
total non-NMDAR response. At 14 days AEO (P26), the KAR current contribution was
gone and the evoked AMPAR current amplitude that remained was not significantly
different from the evoked AMPAR current at 24 hrs AEO. Taken together, the miniature
current data and the evoked current data indicate that the increases in non-
NMDAR:NMDAR current ratios, are due to the addition of KARs and not AMPARs to the
sSC synapses between 1 day and 7 days AEO.
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Evoked and miniature KARcs have the same kinetics
Our recordings of the spontaneous, miniature and evoked non-NMDA currents all suggest
that KARs, in addition to or rather than AMPARs, are involved in the refinement of axonal
projections targeting sSC neurons between 1 day and 7 days AEO. We scaled sKAR, mKAR
and eKARcs to determine if all showed the same kinetics. In sSC neurons studied at 7 days
AEO, KAR were isolated with BMI, APV and SYM2206 and the evoked events were
averaged in the absence and then in the presence of TTX. After scaling it can be observed
that the spontaneous (black line), miniature (green line) and evoked (red line) KARcs have
similar rise-times and decay-times (Fig. 5C).

Transient increase in evoked KAR current at 3–7 days AEO parallels increases of
GABAergic transmission

Earlier whole cell patch-clamp recordings in the sSC documented that GABA mediated
inhibition is already established in the rodent sSC at the time of birth (Jüttner et al., 2001)
and our own previous studies suggested that inhibitory GABAAR currents begin to exert a
suppressing effect on spontaneous EPSCs around P18-19 (Shi et al., 1997; Aamodt et al.,
2000). This was temporally associated with an up-regulation of the GABA transporters (Shi
et al., 1997). Thus a possible association between GABAAR differentiation and the KAR
current peak prompted us to examine changes in GABAAR currents using the P12 controlled
EO paradigm. Spontaneous GABAAR currents were isolated in ACSF containing APV and
DNQX and recorded at −70 mV. Figure 6A shows traces of GABAergic activity at 7 days
AEO. Both the averaged GABAAR current amplitude and averaged frequency exhibited
their greatest increase in the AEO interval between 3 and 7 days AEO (Fig. 6B–C).
GABAAR currents appeared to plateau around 7 days AEO because, at 14 days AEO,
GABAAR current amplitude and frequency were identical to those observed a week earlier.
Therefore, the development of the GABAergic transmission correlates with the maturation
of the KAR-mediated currents (Fig. 5B) suggesting that KARcs are potentially involved in
this final stage of inhibitory circuitry development in the sSC.

DISCUSSION
The goal of this study was to identify further changes in the function of ionotropic glutamate
receptors during development using controlled eyelid opening to initiate a period where
synaptic refinement is ongoing, where significant changes in NMDARs and AMPARs are
no longer occurring, but where non-NMDAR glutamate currents are changing rapidly (Lu
and Constantine-Paton, 2004). Recordings from large (~ 15–20 µm) neurons in the SGS of
the sSC the small postsynaptic excitatory currents we focus on here were found in every
neuron where stable whole cell recordings allowed sufficient examination of small synaptic
events. We show that post-synaptic KARs are responsible for these transient currents and
that they disappear from recordings by 2 weeks AOE.

In the visual layers of the rodent sSC AEO, all cells have already established a robust,
topographically refined innervation from the retina (Simon and O'Leary, 1992). The dense
visual cortical projection is arborizing and refining in the sSC at this time (Phillips et al., in
preparation) and excitatory activity within the sSC is increasing (Shi et al., 1997). KAR
mediated responses beginning between 1 and 3 days AEO, regardless of EO day, were
highly predictable and transient across all slices examined, and they therefore reflect a
novel, and potentially important aspect of glutamate synaptogenesis. KARcs peak in
frequency and in contribution to the non-NMDAR current evoked response at 7 days AEO.
At this time they are responsible for nearly 50% of the evoked non-NMDAR:NMDAR
current ratio (Fig. 5B): an increase which was originally attributed to an increase in AMPAR
responses because we were using the non-selective antagonist NBQX. Throughout, the small
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non-NMDAR currents display low peak amplitudes, long decay-times, and low levels of
desensitization: properties first described for postsynaptic KARcs in CA3 pyramidal neurons
after mossy fiber stimulation (Castillo et al., 1997; Vignes and Collingridge, 1997) and,
most significantly, these small, slow currents remained in the presence of the specific
AMPAR antagonist SYM2206 but were desensitized after long exposure to the specific
KAR agonist SYM2081. During the entire AEO period when KARcs are present, the
amplitude of the evoked and miniature AMPARcs does not change (Fig. 5B, Suppl. Fig. 1).
Therefore, the significant drop in the non-NMDAR:NMDAR evoked current ratio between 7
and 14 days AEO appears to be due entirely to the loss of KARcs. We postulate that their
earlier appearance may represent a heretofore unrecognized homeostatic mechanism to
maintain NMDAR function when AMPAR function is likely to be depressed. This idea is
motivated by our additional finding that the increase in KARcs is paralleled by an AEO
increase in GABAA inhibitory currents that plateau at 7 days AEO and disappear in the next
week. We elaborate on this hypothesis below after reviewing relevant earlier work on
postsynaptic KARs.

An important initial question is whether the increases in the small, slowly desensitizing
KARcs are directly causing the AEO increase in inhibition. This is possible because KARs
have previously been documented in hippocampal CA1 inhibitory neurons (Cossart, et al.,
1998) and there are many inhibitory interneurons in the sSC. However, this possibility does
not explain the present observations because a KAR activity-induced increase would not
account for the disappearance of KARcs with age and the idea would require that all the
relatively large neurons we recorded from in our experiments were inhibitory. The latter is
unlikely because most of these larger sSC neurons express CAMKII (Phillips, M personnel
communication), a kinase believed to be restricted to excitatory cells (Jones et al., 1994).

In contrast, several lines of evidence suggest our opposite interpretation: that KARs appear
because of the late development of inhibition in the sSC AEO. Electrophysiological
experiments and computer simulations indicate that the KAR contribution to synaptic
transmission relative to the AMPAR component is underestimated in EPSC recordings: the
technique that we and others generally use to study small synaptic events. However, it is
EPSPs that drive neurons in vivo and the KAR component of the EPSP is predicted to show
pronounced tonic, temporal summation at input frequencies between 50–100 Hz (Frerking
and Ohliger-Frerking, 2002). The frequencies of postsynaptic excitatory events are much
lower in acute slices then they are in the intact brain, but in vivo microelecrode recording
from the sSC in rats with fully developed inhibitory circuits show responses to moving or
changing visual stimuli occurring at well over 50 Hz (Girman and Lund, 2007). This
supports an assumption critical to our hypothesis: namely, that the slowly desensitizing
KARcs could produce sufficient depolarization to compensate for AMPAR desensitization
and failure to remove the magnesium block on NMDAR current. This AMPAR
desensitization is likely to be most pronounced AEO when collicular activity is high (Shi et
al., 1997), because pattern vision starts driving and maturing the visual pathway, but before
inhibitory circuitry is able to downregulate ongoing excitation. This is the same period when
the very slowly desensitizing KARc contributions to synaptic depolarizations are high and
potentially capable of enabling continued NMDAR activation for the ongoing synaptic
refinement, potentiation, and stabilization, that we know is occurring (Lu and Constantine-
Paton, 2004; Zhao et al., 2006).

Transient postsynaptic KARc involvement in neural development was first described in the
neonate thalamic projection to the barrel cortex of rats (Kidd and Isaac, 1999). In this
pathway the KAR contribution to spontaneous events decreased during the first postnatal
week, the period of maximum plasticity in barrel cortex, while the AMPARcs increased. In
addition, pairing-induced LTP in this pathway caused a rapid reduction in the KAR
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component as AMPARcs increase even though the KARcs and AMPARcs never arose from
the same active sites in the barrel cortex patch clamp recording (Bannister et al., 2005). The
transient KARs we describe in the present study differ in several respects from those in the
neonate barrel cortex. First, they appear in the sSC at a later stage of development, the 2nd
to 3rd postnatal weeks as compared to the 2nd to 4th postnatal days in the barrel cortex.
Second, in the sSC AMPAR addition to synapses has already occurred within 24 hrs hours
AEO (Lu and Constantine-Paton, 2004; Zhao et al., 2006; Suppl. Fig.1), before KARcs
appear. Third, combined AMPA/KARs are occasionally observed in the sSC suggesting that
KAR responses don't reflect the simple switch of KAR synapses for AMPAR synapses as
suggested by the barrel cortex work. Fourth, unlike this sSC study (Fig. 6), there is no
reported increase in the barrel cortex spontaneous inhibitory GABAA currents when early
KARcs are present (Daw et al., 2007). Hyperpolarizing GABAA currents are present in the
rat sSC as early as P1 (Jüttner et al., 2001), but the AEO increase in GABA currents is
correlated with a large increase in the expression of glutamic acid dehydrogenase (GAD),
the synthetic enzyme for GABA, and with an upregulation GABA transporters GAT-1 and
GAT-2 (Shi et al., 1997), indicating that the maturation of sSC inhibitory transmission
occurs at this much later stage and probably operates to control and decrease AEO increases
in activity (Shi et al., 1997). In the barrel cortex no pronounced changes in inhibition are
occurring when KARs predominate at neonate thalamocortical synapses. Nevertheless there
are also few AMPARs at these synapses since they only appear and replace KARs when
NMDAR dependent-LTP is experimentally induced by pairing. In the young barrel cortex
input refinement is occurring when KARcs are first observed. NMDAR function is required
during this period as been established by barrel neuron dendritic disorganization in a
conditional KO of layer 4 NR1 (Iwasato et al., 2000). Thus, the presence of KARcs in the
target neurons of the neonate barrel cortex and sSC at the onset of pattern vision may be
fulfilling the same function: that of driving the NMDAR current.

To test the hypothesis that the KARcs represent a homeostatic response to low levels of
ionotropic glutamate current at a time when depolarization is needed to produce required
NMDAR function would be facilitated if the KAR subunits involved were identified. KARs
are tetramers and can contain any of 5 different subunits. Of these 5 subunits, GluR6 and
KA2 have been shown to bind the glutamate receptor scaffold, the membrane associated
guanylate kinase (MAGUK) PSD-95 (Garcia et al., 1998; Mehta et al., 2001). GluR6 binds
to a PDZ domain of PSD-95 and KA2 binds to the SH3 and GK domains of PSD-95. This is
potentially significant to the visual pathway studied here because PSD-95 is the dominant
postsynaptic density MAGUK at sSC neuron synapses during the 7 day AEO period (Yoshii
et al., 2003) when postsynaptic KARcs are obvious in our recordings. Indeed Garcia et al.,
(1998) report that it is this binding to PSD-95 that endows KARs with the incomplete
desensitization seen in neuronal postsynaptic KARs by us and others. This incomplete
desensitization has not been reported upon heterologous expression of KARs (Herb et al.,
1992). We have not investigated KAR subunits in the sSC. However, Mulle et al., (1998)
show that the postsynaptic KARcs in hippocampal CA3 pyramids are virtually undetectable
in the GluR6 −/− mouse, but are not perturbed in the GluR5−/− mouse. Also, in CA3
KA2−/− mice postsynaptic KARs appear normal (Contractor et al., 2003). Such results
suggest that the GluR6 subunit may be a prominent component of the postsynaptic sSC
KARs reported here.

The KAR subunits responsible for the transient post-synaptic appearance of KARcs in
maturing sSC neurons need to be identified before hypotheses concerning the function of
these currents can be tested. However, their transient appearance in the narrow window after
EO when inputs to visual collicular neurons are still refining, but when NMDAR function
might otherwise be low due to AMPAR desensitization, together with the earlier appearance
of KARs in the neonate barrel cortex before AMPARs are upregulated, suggests that this
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third type of ionotropic glutamate receptor may have previously unrecognized functions
during brain development. In this respect it is intriguing that reduced NMDAR function is
associated with the symptoms of schizophrenia both in people and in rodents (Javitt and
Zukin, 1991; Lahti et al., 1995); some post mortem studies in human schizophrenics have
reported decreases in KAR receptor binding, and abnormal polymorphisms in SNPS for
KAR genes GRIK3 and GRIK4 have been associated with schizophrenics in several human
studies (Pikard et al., 2008; Kahler et al., 2009). Moreover, a recent report (Duncan et al.,
2010) implicates greatly increased sensitivity to KAR agonists in transgenic mice with
reduced NMDAR function. Evidence for defects in post- versus pre-synaptic localization of
KARs is absent in such studies. However, such reports suggest further exploration of
possible stimulation of postsynaptic KAR function in situations of low NMDAR activity and
may prove critically informative for understanding brain circuit function both in normal
development and in crippling psychiatric disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Non-NMDAR:NMDAR current ratios increase until 7 days AEO, and are associated with
major refinement of inputs to sSC neurons. A–B: Quantitative changes in non-
NMDAR:NMDAR current ratio relative to the time AEO at P12 (A) and at P14 (B). With
EO at either age, non-NMDAR:NMDAR current ratios increased until 7 days AEO. C:
Traces illustrate multiple steps of evoked non-NMDARs (eAMPA/KAR) currents (inward)
and NMDAR currents (outward) AEO. The method of shoulders was used to estimate the
number of inputs per postsynaptic neuron, and indicated a major input elimination between
P3 and P7 days AEO. This was followed by a slower decline the subsequent week until only
~1–2 inputs per neuron remained at 14 days AEO (P26). Data for all graphs represent the
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mean ± S.E.M. obtained from 7–12 neurons. For clarity, significance for the statistical data
is shown only for the two closest and most important time points. For more details see
Suppl. Table 1 (Fig. 1A) and Suppl. Table 2 (Fig. 1B).
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Figure 2.
Emergence of small, slow, non-NMDAR mEPSCs AEO. A: Representative traces show
miniature non-NMDAR excitatory currents recorded BEO and AEO with neurons held at
−70 mV. From 3 days AEO (P15) to 7 days AEO a population of slowly decaying and small
amplitude mEPSCs (*) were detected in addition to the bigger currents that were observed
throughout the period of study. Some slow currents with larger amplitudes were also present
(#). Slow currents were no longer detectable at 14 days AEO (P26). B–C: Scatter plots of
amplitude versus decay-time (B) and of decay-time versus rise-time (C) from all miniature
non-NMDAR current events (n=150–200) in 3 minute sequences chosen at random from
recording individual cells at 1 (P13, left), 7 (P19, middle) and 14 (P26, right) days AEO.
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Note that in contrast to 1 and 14 days AEO, neurons at 7 days AEO also display a
population of mEPSCs with small amplitudes, slow decay-times, and slow rise-times. D:
Summary of quantitative changes in average non-NMDAR mEPSC amplitude (left) and
frequency (right) relative to the time AEO. Note that at 7 days AEO the average amplitude
of the miniature non-NMDAR-EPSCs decreased, whereas their average frequency peaked at
this time of development. These changes at P19 are most likely due to the transient
appearance of the small slow currents observed at 7 days AEO (see Fig. 2B middle panel).
Each symbol represents mean ± S.E.M. obtained from 6–8 neurons. For clarity, significance
for the statistical data is shown only for the two closest and most important time points. For
more details see Suppl. Table 3 (Fig. 2D, left) and Suppl. Table 4 (Fig. 2D, right).
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Figure 3.
The smaller and slower non-NMDAR mEPSCs are isolated by the specific AMPAR
antagonist SYM2206. A: Representative traces show miniature non-NMDARcs recorded at
7 days AEO. Neurons were held at −70 mV. In addition, neurons were perfused with
SYM2206 (10 µm). During SYM2206 application, larger currents with faster decay- and
rise-times disappeared into the noise level, leaving, after 16 min of SYM2206 application,
smaller mEPSCs with slow kinetics. B–C: Scatter plots of currents from two different
neurons showing amplitude versus decay-time (left) and decay-time versus rise-time (right)
of all miniature non-NMDARcs recorded in these neurons for 3 minutes under control
conditions (upper panels) and after 15 min exposure of SYM2206 (lower panels). Summary
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frequency histograms from the pooled data of all 5 neurons studied showing the parameters
amplitude (D), decay-time (E) and rise-time (F) for control (white bars) versus >15 min
SYM2206 (black bars). Inserts are cumulative probability plots comparing the pooled
control (thin lines) and SYM2206 data (bold lines) for the respective frequency histograms.
Cumulative distributions of amplitude, decay-time and rise-time between control and
SYM2206 treatment are significantly different (p<0.001 by Kolmogorov-Smirnov and
Mann-Whitney tests).
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Figure 4.
The slower non-NMDARs mEPSCs can be abolished by long application of SYM2081 to
desensitize KARs. A: Representative traces show miniature non-NMDARcs recorded at 7
days AEO. Neurons were held at −70 mV and were perfused with SYM2081 (50 µm). After
4–5 min exposure to SYM2081, the frequency of slow, small miniature currents increased
consistent with SYM2081�s agonist properties on KARs. After longer exposure of
SYM2081, currents with slower decay- and rise -times disappeared, leaving currents with
faster kinetics. B: Scatter plots of a representative neuron showing amplitude versus decay-
time (upper row) and decay-time versus rise-time (lower row) of all miniature non-
NMDARcs recorded for 3 minutes under control conditions (left panels), after 8 min
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(middle panels), and after 15 min (right panels) of SYM2081 exposure. C–E: Summary
frequency histograms from the pooled data of all 4 neurons studied showing the parameters
amplitude (D), decay-time (E) and rise-time (F) for control (white bars) versus >15 min
SYM2081 (black bars) when most KARcs are desensitized. Inserts are cumulative
probability plots comparing the pooled control (thin lines) and SYM2081 data (bold lines)
for the respective frequency histograms. Cumulative distributions of decay-time and rise-
time between control and SYM2081 treatment are significantly different (p<0.001 by
Kolmogorov-Smirnov and Mann-Whitney tests). Amplitude distribution is not significantly
different (p=0.085), probably because the slower and smaller KARcs add relatively little
amplitude to the AMPAR peak currents when both contribute to the same miniature event
and the total number of events recorded is significantly smaller than the number of events
recorded in Fig. 3D.
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Figure 5.
The contribution of the KARcs relative to non-NMDARcs from 1 to 7 days AEO. A: Traces
showing average currents evoked by electrical stimulation of the stratum opticum at +40 mV
in Mg2+-containing ACSF with DNQX and BMI to isolate the NMDAR-mediated
component (grey line). Non-NMDAR excitatory currents were recorded at −70 mV with
APV and BMI (green line). The evoked KARc (red line) was isolated by adding, the
AMPAR antagonist SYM2206 (40 µm) to the non-NMDARc bath. B: A histogram showing
developmental changes in the contribution of the evoked KARc (red bars) to the total non-
NMDAR current (black + red bars) BEO and AEO (n=5–8 neurons per age). Note that the
contribution of KARcs relative to non-NMDAR/NMDAR current ratio is evident at 3 to 7
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days AEO, but then completely disappears. The black regions of each bar represent the
AMPAR contribution which does not change between 1 day and 14 days AEO C: Samples
of average spontaneous (black line), miniature (green line) and evoked (red line) KARcs.
After rescaling KARcs show similar kinetics for all observed recordings.
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Figure 6.
Increased GABAergic transmission occur between 3 to 7 days AEO. A: Representative
traces of spontaneous GABAARcs recorded from a sSC neuron at 7 days AEO. The bath
solution contained DNQX, MgCl2, and D-APV. Neurons were held at −70 mV below the
chloride equilibrium potential. B–C: Summary of quantitative changes in spontaneous
GABAARc amplitude (B) and frequency (C) relative to the time AEO at P12. The
GABAARcs increase between 3 and 7 days AEO and remain stable for at least another
week. Each symbol represents mean ± S.E.M. obtained from 11–13 neurons. For clarity,
significance for the statistical data is shown only for the two closest and most important time
points. For more details see Suppl. Table 5 (Fig. 6B) and Suppl. Table 6 (Fig. 6C).
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