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Abstract

Background: Menopause is associated with both a loss of muscle mass and a worsening of insulin sensitivity
(IS). Although eccentric resistance exercise (ECC) can effectively improve muscle mass over time, a single bout
of ECC can worsen IS. This study assessed the effect of repeated ECC on IS, muscle mass, and function in post-
menopausal women with impaired glucose tolerance (IGT).
Methods: Sixteen PM women (aged 56 years � 6.4) with IGT were randomly assigned to a 12-week, knee ex-
tensor ECC program (n � 10) or a nonexercise control group (CON) (n � 6). Participants underwent hyperin-
sulinemic-euglycemic clamps, dual-energy x-ray (DEXA) absorptiometry, quadriceps strength assessment, 6-
minute walk (6MW) tests, and an assessment of steps taken per day before and after training.
Results: ECC participants experienced greater increases in leg lean soft tissue mass (ECC, 0.41 kg; CON, �0.53
kg; p � 0.03), quadriceps strength (ECC, 9.3 kg force; CON, �2.9 kg force; p � 0.02), and 6MW distance (ECC,
56.4 meters; CON, 3.3 meters; p � 0.03) than CON participants and demonstrated a trend toward more steps
taken per day posttraining (ECC, �1747 steps; CON, �339 steps; p � 0.10). IS was unchanged.
Conclusions: This novel exercise improves muscle mass and function without worsening IS in postmenopausal
women with IGT. Because it can be performed at low levels of exertion and improves muscle mass and func-
tion without impairing IS, ECC should be used to ameliorate muscle loss in physically inactive postmenopausal
women. The impact of longer-term ECC on IS should be investigated. Demonstrating that ECC does not worsen
IS in this population is significant because it has promise to combat the muscle-mediated impairments com-
mon in aging women.
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Introduction

AGING IS ASSOCIATED with a decline in skeletal muscle mass
and function, collectively termed sarcopenia,1,2 and ad-

versely impacts up to 50% of older individuals.3,4 Skeletal
muscle is the largest reservoir for glucose in the body,5 ac-
counting for up to 80% of the glucose disposal rate (GDR).
Sarcopenia is accelerated in postmenopausal women,6 exac-
erbates the problems of skeletal muscle glucose uptake, and
often is associated with subsequent insulin resistance and
type 2 diabetes.7 Moreover, sarcopenia also manifests in re-
duced strength and an increased risk of impaired mobility
and fall-related injuries in older people,8,9 although the re-

lationship between muscle mass and physical function is
variable.10,11 Nevertheless, resistance or strength training in
women has been shown to improve muscle mass, strength,
function, and mobility as well as insulin sensitivity (IS),12–14

although high muscle force production, a goal of resistance
exercise programs, has been shown to worsen IS.15,16

The magnitude of the muscle mass and strength im-
provements following a resistance training program is linked
to the magnitude of muscle forces produced.17,18 The great-
est force production, hence stimulus to increase muscle mass
and strength, is possible when an external force exceeds a
muscle’s maximum isometric force production, resulting in
muscle lengthening or eccentric muscle contraction. Func-
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tional activities, such as negotiating obstacles and descend-
ing stairs, rely almost exclusively on eccentric muscle con-
tractions.19 Eccentric muscle contractions can result in two
to three times greater force production than the more tradi-
tional isometric or concentric muscle contractions.18,20 It is
important to note that during eccentric resistance exercise
(ECC), the external force (e.g., weight) must progressively
increase to a magnitude whereby one cannot move the
weight with concentric muscle shortening but can control the
weight with eccentric muscle lengthening. Because this type
of ECC can produce high muscle forces at relatively low per-
ceived exertion levels,21,22 it makes for an ideal therapeutic
countermeasure for aging, overweight, physically inactive
women. In other words, ECC produces high force at low
metabolic costs.

ECC is a promising solution for those suffering the mo-
bility-related consequences of sarcopenia; however, a wors-
ening of IS following a single exposure to eccentric muscle
contractions has been reported.15,23 Exercise-induced muscle
injury has been implicated as a potential cause of the detri-
mental effects of ECC on IS.15 The influence of nondamag-
ing ECC, possible with repeated and progressive exposures
over 10–12 weeks, on IS has not been studied in older indi-
viduals, specifically women with impaired glucose tolerance
(IGT). Because ECC can be performed easily by overweight,
physically inactive, aging individuals and it can effectively
combat the muscle-related mobility decline that accompanies
aging, investigating its impact on IS in older individuals,
many who have metabolic abnormalities, is necessary.

In this report, we summarize the effects of a repeated
(three times per week for 12 weeks), progressively increased
ECC program on IS, body composition, strength, and phys-
ical function in overweight postmenopausal women with
IGT. We hypothesized that repeated exposure to a progres-
sively increased ECC would improve body composition (in-
crease lean tissue, decrease fat tissue), muscle strength, and
physical function (mobility) while not adversely impacting
IS.

Materials and Methods

Subjects

Sixteen overweight or obese postmenopausal women
(aged 56.1 � 6.4 years, body mass index [BMI] 29.9 � 4.1),
with serum follicle-stimulating hormone (FSH) levels �30
IU/L and IGT defined by plasma glucose levels between 140
and 200 mg/dL 2 hours after ingesting a 75-g glucose load,
volunteered to participate in this study. Eligibility required
all participants not to be taking hormone replacement ther-
apy (HRT), using nicotine, or participating in a regular re-
sistance training program for the past 12 months. In addi-
tion, all were weight stable over the previous 12 months, and
none had unstable medical conditions (i.e., no medication
changes, newly diagnosed medical conditions in the previ-
ous 12 months; no cardiovascular, orthopedic, or neuro-
muscular conditions that would prevent them from partici-
pating in an exercise program.)

Measurements

Prior to participation, all women signed an Institutional
Review Board-approved informed consent document. The

initial screening examination included a medical history,
physical examination, blood sample draw (to determine FSH
levels), and oral glucose tolerance test (OGTT). Those meet-
ing the study eligibility requirements then participated in an
overnight pretraining testing session in the General Clinical
Research Center (GCRC). This testing consisted of measure-
ments of body composition, strength, and physical function
as well as a hyperinsulinemic-euglycemic (HE) clamp study.
An identical, posttraining testing session was completed at
the end of the 12-week training program. Participants kept
a diet record for the 3 days prior to their pretraining testing
and repeated this diet for 3 days prior to their posttraining
testing.

Procedures

After completion of the pretraining testing, the partici-
pants were randomly assigned to either the ECC group (n �
10) or a no exercise control group (CON, n � 6). Both the
ECC and CON groups were individually instructed and
were provided written handouts on diet and exercise ac-
cording to the clinical guidelines of the National Institute of
Diabetes and Digestive and Kidney Diseases (NIDDK). The
CON group did not participate in a supervised exercise pro-
gram. The ECC group participated in an exercise program
that involved high-force lower extremity extensor muscle
contractions for 3 nonconsecutive days per week for 12
weeks.24 Eccentric exercising of muscle occurs anytime the
magnitude of a force applied to a muscle exceeds that pro-
duced by the muscle and the muscle lengthens, that is, un-
dergoes an eccentric contraction. Conversely, when a mus-
cle’s force production is greater than that applied to the
muscle, the muscle shortens, that is, undergoes a concentric
contraction. The former eccentric contraction can thus pro-
duce greater muscle forces than the latter concentric con-
traction and, hence, causes greater gains in muscle size and
strength.

In this paper, we report on eccentric exercise to the knee
extensors, where the muscle is lengthened as the subject at-
tempts to slow down the external load being applied to the
muscle by the motorized ergometer movement. This is quite
different from a typical strengthening exercise whereby the
muscle must work in a concentric fashion (e.g., lifting a
weight) prior to being exercised eccentrically (e.g., lowering
a weight). This requisite preceding concentric action is elim-
inated in the eccentric exercise described here. By eliminat-
ing the preceding concentric action, the muscle can exercise
eccentrically against an external load that could never be
moved concentrically, and the muscle can produce high
forces that ultimately lead to beneficial muscle changes. For
ECC to achieve the beneficial gains noted, it is important to
be aware that the external load required must be greater than
what one could move concentrically.

A physical therapist and exercise physiologist supervised
the exercise sessions. Ratings of perceived exertion (RPE),
using the Borg scale,25 were obtained from the subject at the
end of each training session. This ECC program was titrated
to progressively increase in intensity while avoiding muscle
damage. The progression proceeded from a perceived exer-
tion level of very very light to somewhat hard and from a
duration of 5 minutes to 30 minutes per day and was per-
formed on a high-force eccentric ergometer, described pre-
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viously 26 (Fig. 1). As the ergometer pedals moved, subjects
attempted to slow the pedals by applying force, resulting in
high-force eccentric muscle contractions of the lower ex-
tremity extensor muscles. The progression of eccentric train-
ing is summarized in the Appendix. Total work on the er-
gometer was calculated by integrating the work in joules
determined directly from a 0–10-V output from the ergome-
ter motor and the distance the pedal arm moved, both cali-
brated to a known work value. The amount of work in kilo-
joules (kJ) was monitored and recorded throughout the
study.

Participants were assessed for body composition (lean and
fat tissue) by dual energy x-ray absorptiometry (DEXA) (Ho-
logic QDR-4500A; Waltham, MA). In addition, a specific re-
gion of interest from the upper edge of the second lumbar
vertebra to the lower edge of the fourth lumbar vertebra was
used to assess abdominal fat mass.27

The computer-based system, Quantitative Muscle Assess-
ment (Computer Source, Gainesville, GA), was used to quan-
tify muscle strength. Maximal isometric force measures of
the knee extensors, when the knee was fixed at 90° flexion,
were taken as the participant sat on a dynamometer. Three

measures were obtained for each leg to determine a mean
value. The 6-minute walk test (6MW), a standard measure
of the distance a subject walks in 6 minutes, was used to as-
sess, overall, both locomotor ability and fatigue.28 Pedome-
ter measurements29 (Yamax Digiwalker SW-701, San Anto-
nio, TX) of average steps taken per day over a 7-day period
before and after the 12-week training program were also col-
lected as an additional measure of physical function.30

Peripheral insulin resistance was quantified by a 2-step
HE clamp test that was performed the morning after an
overnight stay and 12-hour fast in the GCRC.31 To minimize
the immediate effects of the most recent bout of ECC on the
posttraining assessment of IS, the posttraining HE clamp was
performed 72 hours after the last exercise bout. Briefly, a
catheter was placed into the antecubital vein for adminis-
tration of glucose, insulin, potassium, and saline. Arterial-
ized venous blood samples were obtained from an in-
dwelling catheter placed in a vein of the opposite hand that
was wrapped in a warming device. Two blood samples were
taken from �20 minutes to time 0 to measure basal insulin
and glucose. At time 0, the HE clamp was started and con-
tinued for approximately 120 minutes. Blood samples were
taken at 5-minute intervals for plasma glucose determina-
tion using a YSI-2300 STAT Plus glucose analyzer (Yellow
Springs Instruments, Yellow Springs, OH). Insulin was in-
fused at a predetermined rate based on the subject’s body
surface area. Plasma glucose determinations were used to
titrate the infusion rate of 20% glucose as needed to main-
tain euglycemia. To obtain two different target insulin lev-
els, insulin was increased after both blood glucose levels and
glucose infusion rates had reached a steady state (� � 5% of
95 mg/dL for six consecutive readings, 5 minutes apart), ap-
proximately 75 minutes after initiating the clamp. The initial
infusion level was 40 mU/m2/min to achieve insulin levels
of approximately 90 uU/mL (one-half maximum glucose
disposal). The final infusion level was 200 mU/m2/min to
achieve insulin levels of approximately 300 uU/mL (maxi-
mum glucose disposal). The clamp was stopped by the same
criterion used to increase the insulin level, steady-state glu-
cose near 95 mg/dl for six consecutive readings. Insulin lev-
els were measured by radioimmunoassay using a double-an-
tibody technique (Coat-A-Count; Diagnostic Products Corp.,
Los Angeles, CA). Results of the HE clamp studies are ex-
pressed as the glucose infusion rate (GIR) during each of the
two clamp stages.

Data were analyzed with the Statistical Package for the So-
cial Sciences version 13.0 (SPSS Inc, Chicago, IL). Descriptive
statistics were calculated for baseline demographic charac-
teristics. In the analyses, we evaluated the training effect on
IS, body composition, strength, and physical function. To as-
sess between-group differences at baseline, the groups were
compared on all outcome variables using nonparametric
tests for two independent groups. We hypothesized that
ECC would produce greater changes in strength, physical
function, and muscle mass. Because previous research has
suggested that muscle damage has worsened IS, we hy-
pothesized that our nondamaging repetitive eccentric inter-
vention would result in our acceptance of the null hypothe-
sis; that is, there would be no between-group differences in
IS. To examine these outcomes, the change scores (post-
training values � pretraining values) were calculated for
each dependent variable. Between-group comparisons of
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FIG. 1. Eccentric ergometer. (Top) High muscle forces are
generated on an eccentric ergometer powered by a 3-hp mo-
tor that drives the pedals in a backward rotation. (Bottom)
As the pedals move toward the participant (at right), she re-
sists by applying force to the pedals. Because the magnitude
of force produced by the motor exceeds that produced by
the participant, the leg extensors lengthen, creating eccentric
muscle contractions. (Adapted from LaStayo et al., 2003.)35



these change scores were analyzed using separate nonpara-
metric tests for two independent groups. The level of sig-
nificance was set at p � 0.05. To gain a clearer picture of the
differential response of the groups, the within-group and be-
tween-group magnitudes of effect were estimated using cal-
culations of effect size and percent change for all dependent
variables.

Results

All 16 participants completed the trial (10 ECC, 6 CON);
there was no study attrition. Both groups were similar in age,
pretraining BMI, waist circumference, IGT status, fasting
plasma glucose, and fasting plasma insulin. In only one out-
come measure, average steps per day, were there significant
between-group differences at baseline (Table 1).

All ECC participants completed 36 training sessions over
12 weeks; that is, there was 100% adherence. Work increased
from 20.3 kJ to 229.7 kJ, and perceived exertion was incre-
mentally increased from very light (8.5) to somewhat hard
(13.0) over the first 3 weeks of training. Subjects maintained
their perceived exertion levels at somewhat hard through-
out the rest of the 12-week program.

The mean change in leg soft tissue lean mass (STLM) was
significantly different between groups [p � 0.03, between-
group effect size (ES) � 1.32]. The leg STLM improvements
by the participants in the ECC group exceeded those in the
CON group (ECC �5.6%, ES� 0.85; CON �3.2%, ES �
0.28)(Fig. 2). Although there was no significant between-group
difference in change in abdominal fat, the participants in the
ECC group lost 3.7% (ES � 0.11), whereas the CON group
mean increased by 2.5% (ES � 0.13) (p � 0.15) (Table 2).

Relative to physical function, there were significant dif-
ferences in the change scores for both quadriceps muscle
strength and 6MW distance (quadriceps muscle strength, p �
0.01, between-group ES � 1.66; 6MW distance, p � 0.02, be-
tween-group ES � 1.29). There was a trend toward signifi-
cance in steps per day (p � 0.08, between-group ES � 0.97)
(Table 2). The ECC group showed greater improvements in
quadriceps muscle strength, 6MW distance, and steps per
day than did the CON group (ECC quadriceps muscle

strength �29.1%, ES � 1.26; 6MW distance �8.2%, ES �
1.13; steps/day �29.4%, ES � 0.79; CON quadriceps muscle
strength �7.4%, ES � 0.2; 6MW distance �0.01%, ES � 0.05;
steps/day �4.3%, ES � 0.29) (Fig. 2).

No significant differences in the change scores between
groups were noted for either fasting plasma glucose (p �
0.47) or fasting plasma insulin levels (p � 0.44).

Progressively increased ECC had no impact on IS. No sig-
nificant differences in change scores between groups were
found for maximum GIR (p � 0.91) or for the GIR at the
lower insulin infusion level (p � 0.65). The fact that the 95%
confidence intervals of the mean change scores for GIR val-
ues for both groups overlap and that they encompass 0 sup-
ports that there was no change in IS in either group.32 Cal-
culation of the within-group effect size for the ECC group
was 0.06. The unanimous agreement of all these statistical
results led us to conclude that no meaningful or clinically
significant change in IS occurred posttraining, that is, no
worsening of IS following repeated exposure to eccentric
muscle activity.

Discussion

ECC is an easily tolerated yet potent intervention that can
potentially mitigate worsening physical function and mobil-
ity-related consequences of sarcopenia in aging women.
However, the association of a single exposure to eccentric
exercise with a worsening of IS, thought to occur in parallel
with damage to muscle,15,16 has been a barrier to its clinical
use in this population. Because progressive and repeated ex-
posure to ECC protects skeletal muscle from damage,26,33,34

we hypothesized that repeated exposure to a progressively
increased ECC program over 12 weeks would improve body
composition, strength, and function without adversely im-
pacting IS. Our data demonstrate significant improvements
in leg STLM, strength, and mobility without adversely im-
pacting IS following 12 weeks of ECC in aging, overweight,
physically inactive women with IGT.

Our results are in contrast to the previously reported wors-
ening of IS after a single exposure to eccentric exercise,
thought to occur in concert with damage to muscle.15,23 The
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TABLE 1. PRETRAINING CHARACTERISTICS

Eccentric (n � 10) Control (n � 6)

Age (years) 56.3 � 6.4 53.2 � 6.5
(51.7–60.9)a (46.4–60.0)

BMI (kg/m2) 28.5 � 3.7 32.2 � 4.0
(25.8–31.2) (28.0–36.4)

Waist circumference (cm) 93.0 � 8.0 97.2 � 6.8
(87.3–98.8) (90.0–104.4)

2-hour postchallenge glucose 171.0 � 22.8 153.0 � 10.6
(mg/dL) (153.6–188.6) (140.4–170.3)

Fasting plasma glucose 98.6 � 5.0 99.2 � 6.4
(mg/dL) (94.8–102.5) (92.5–105.9)

Fasting plasma insulin 10.9 � 9.7 8.5 � 4.2
(�U/mL) (3.4–18.3) (4.1–12.9)

Steps per day 5949 � 2170 7873 � 778*
(4396–7501) (6906–8839)

aMeans � SD (95% CI).
*p � 0.05.



goal of our study was to explore a 12-week protocol of re-
peated exposures to high-muscle forces via ECC that has
been described previously as safe, feasible, and nondamag-
ing to muscle in older, impaired, physically inactive popu-
lations.26,35 Because our aim was to determine if IS worsens
(as it does after a single exposure) after an established, non-
damaging, repeated exposure to eccentric muscle activity,
we did not specifically monitor markers of muscle damage,
hence cannot comment on any potential influence of dam-
age. All indications are that the ECC did not adversely im-
pact muscle or IS.

Although IS in our study did not worsen as a result of ex-
posure to ECC, neither did it improve. These results are in
contrast to previously published positive effects of tradi-
tional resistance training programs on IS in postmenopausal
women.13,14,36,37 These improvements have been attributed
to both increases in muscle mass and decreases in abdomi-
nal adiposity. The specific types of resistance-training pro-
grams and the posttraining measurements of IS vary across
studies, however, making it difficult to determine the degree
and mechanism of effects on IS. Of the studies that report
improved IS or glycemic control in postmenopausal women
following resistance training, only two report improve-

ments � 24 hours after the final exercise bout, and both were
of 16-weeks duration.14,36 Conversely, Goulet et al.38 re-
ported no sustained effect on IS 96 hours after the final ex-
ercise bout of a 6-month ECC program.38

Several aspects of the training regimen used in our study
may account for the lack of change in IS. First, the stabil-
ity of IS may have been related to the length of training
time. Previous studies14,39 have employed training regi-
mens for up to 6 months.12,38 Second, the amount of mus-
cle recruited and the amount of muscle mass increase from
the exercise may have been insufficient to induce systemic
IS changes; that is, the women in this study exercised only
the lower extremities, whereas studies reporting IS
changes exercised several major muscle groups.13,14

Whether significant changes in total body composition as
a result of resistance training are needed to positively im-
pact IS is still unclear,14,36 but this remains an alluring and
testable hypothesis. This is especially true considering that
the resistance-trained participants reported by Cauza et
al.,36 who demonstrated a 6.5% improvement in fat free
mass (FFM) and a 9.7% decrease in fat mass (FM), also
demonstrated significant improvements in long-term gly-
cemic control.
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FIG. 2. Percent change in leg soft tissue lean mass (STLM), leg strength, 6-minute walk distance (6MW), and steps taken
per day between ECC and CON groups. *p � 0.05; error bars represent SD.
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It is important to note that the timing of the posttesting (72
hours after the final exercise bout) in our study was deliberate
in order to determine if repeated ECC and not simply a single
exposure would worsen IS; any long-lasting IS effects of the
last exercise session may have been masked. Finally, the cur-
rent study was not designed to make a comparison of resis-
tance exercise modes; rather, we intended to determine if re-
peated exposure to eccentric muscle activity would improve
body composition, strength, and function while not adversely
impacting IS in postmenopausal women with IGT. Future re-
search should compare an ECC program with both a tradi-
tional resistance training program and aerobic training, an-
other exercise mode previously shown to positively impact IS.

Some limitations notable in the present study include the
small sample size, the potential impact of differing initial lev-
els of spontaneous physical activity (i.e., steps per day) be-
tween groups, and the between-group differences in the pre-
training maximum GIR. Because the CON group had higher
initial levels of spontaneous physical activity, we cannot rule
out that they did not change posttraining because of this 
initial difference. Because we observed no within-group
changes in maximum GIR in either group, however, we are
confident that the differences that were observed pretrain-
ing in this measure of IS did not impact our results.

Aging women are subject to loss of muscle mass, strength,
and physical function. These deficits are often accompanied
by insulin resistance. Our report illustrates that ECC is fea-
sible and improves muscle mass and strength in older
women. Moreover, these changes are clinically meaningful
in that they were accompanied by improvements in physi-
cal function that may enable these women to be more active.
Demonstrating that ECC does not worsen IS in this popula-
tion is significant because it has promise to combat the mus-
cle-mediated impairments common in aging women.
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APPENDIX: ECCENTRIC GROUP RESISTANCE

TRAINING PROGRESSION

Week Times/week Training duration RPEa

1 3 5 minutes 7 (very, very light)
2 3 5–10 minutes 9–11 (very light to 

fairly light)
3 3 10–15 minutes 11–13 (fairly light to 

somewhat hard)
4 3 15–20 minutes 13 (somewhat hard)
5–12 3 20–30 minutes 13 (somewhat hard)

aRPE, rating of perceived exertion for the lower extremities.
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