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Purpose: To investigate the feasibility of high temporal resolution breast DCE-MRI using com-
pressed sensing theory.
Methods: Two experiments were designed to investigate the feasibility of using reference image
based compressed sensing �RICS� technique in DCE-MRI of the breast. The first experiment ex-
amined the capability of RICS to faithfully reconstruct uptake curves using undersampled data sets
extracted from fully sampled clinical breast DCE-MRI data. An average approach and an approach
using motion estimation and motion compensation �ME/MC� were implemented to obtain reference
images and to evaluate their efficacy in reducing motion related effects. The second experiment, an
in vitro phantom study, tested the feasibility of RICS for improving temporal resolution without
degrading the spatial resolution.
Results: For the uptake-curve reconstruction experiment, there was a high correlation between
uptake curves reconstructed from fully sampled data by Fourier transform and from undersampled
data by RICS, indicating high similarity between them. The mean Pearson correlation coefficients
for RICS with the ME/MC approach and RICS with the average approach were 0.977�0.023 and
0.953�0.031, respectively. The comparisons of final reconstruction results between RICS with the
average approach and RICS with the ME/MC approach suggested that the latter was superior to the
former in reducing motion related effects. For the in vitro experiment, compared to the fully
sampled method, RICS improved the temporal resolution by an acceleration factor of 10 without
degrading the spatial resolution.
Conclusions: The preliminary study demonstrates the feasibility of RICS for faithfully reconstruct-
ing uptake curves and improving temporal resolution of breast DCE-MRI without degrading the
spatial resolution. © 2010 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3483094�
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I. INTRODUCTION

After attaining a size of a few mm3, virtually all solid tumors
need new vessels to continue growth.1–6 Unlike normal ves-

sels, tumor vessels are characteristically leaky, fragile, and
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incompletely formed. Dynamic contrast-enhanced �DCE�
MRI has been widely used to characterize tumor vasculature.
In DCE-MRI, a series of MR images is acquired at regular
intervals after intravenous administration of a contrast agent

�CA�. By analyzing the variation in the MR signal intensity
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over time, semiquantitative or quantitative parameters can be
estimated using an appropriate model.7–19 Accurate recon-
struction of uptake curves of DCE-MRI is crucially impor-
tant in either semiquantitative or quantitative analysis.

Because of the dynamic nature of DCE-MRI, higher tem-
poral resolution translates into more accurate data for kinetic
analysis. On the other hand, the heterogeneous nature of tu-
mors requires high spatial resolution for accurate character-
ization. In the setting of breast DCE-MRI, high spatial reso-
lution is crucial for diagnosis of breast cancer.20 Because of
their mutual importance, consistent efforts have been aimed
at accomplishing both high temporal and spatial resolution
DCE-MRI.21–27

A recently developed mathematical theory of signal pro-
cessing and data acquisition, compressed sensing �CS�
theory,28–31 provides a novel way to accomplish this goal.
The breakthrough in the CS theory is its ability to allow
images to be faithfully recovered from what appear to be
highly incomplete data sets, where one of the central tenets
of signal processing and data acquisition, the Nyquist sam-
pling theory, has been violated.32

Several applications of the CS theory to dynamic MRI
have been successfully demonstrated such as k-t SPARSE
and k-t FOCUS.32–40 But only a few studies focus on CS-
based DCE-MRI,41–43 and none on the breast. Despite the
progress that has been achieved, a number of practical issues
have to be investigated before implementing CS-based DCE-
MRI in a typical clinical setting, particularly for the breast.
These include the feasibility of CS-based 3D �rather than
2D� DCE-MRI, the reliability of uptake curves reconstructed
from the undersampled data with the CS theory, and the po-
tential impact of subject motion. In light of these technical
gaps, the purpose of this study is to investigate the feasibility
of applying compressed sensing theory to breast DCE-MRI
to improve the temporal resolution without degrading the
spatial resolution, while faithfully reconstructing uptake
curves and minimizing potential motion related artifacts.

II. THEORY

II.A. Compressed sensing based MRI

If an objective image exhibits transform sparsity, it can be
reconstructed from incoherent undersampled k-space data by
solving a constrained l1-norm minimization problem. CS
theory can be interpreted by the following mathematical
description:28,44 If the underlying image f �CN has a sparse
representation in a transform domain and obeys the follow-
ing equation:

�S� � CM · �log N�−1 · �U� , �1�

where CN denotes N dimension complex space, S is the set of
the nonzero representations in the sparse transform domain,
�S� denotes the number of nonzero representations, CM �0 is
a constant, M is a given accuracy parameter, U is the inco-
herent undersampled subset in the k-space, and �U� denotes
the number of available undersampled data, then the image f
can be faithfully reconstructed by solving an l1-norm mini-

mization problem subject to certain constraints, i.e.,
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minimize ��f�1,

subject to �Fuf − gu�2 � �, gu � U , �2�

where � is the sparse transform operator, Fu is under-
sampled inverse Fourier transformation operator, gu is the
available undersampled k-space data, � controls the fidelity
of the reconstruction, � �1 and � �2 denote the l1- and
l2-norms, respectively. That is to say, images with transform
sparsity can be faithfully reconstructed from incoherent un-
dersampled data in the k-space, falling short of Nyquist cri-
teria.

In practice, an applicable CS-based MRI has three
requirements:44 �1� The underlying image should have a
sparse transformation, �2� artifacts due to the reduced sam-
pling scheme in the k-space should be incoherent, and �3� a
nonlinear reconstruction algorithm should be implemented to
enforce the sparsity of the image representation and the con-
sistency of the reconstruction with the measured k-space
data.

II.B. Reference image based compressed sensing
„RICS… technique in DCE-MRI of the breast

Equation �1� indicates that if the number of nonzero rep-
resentations in sparse transform domain �S� can be reduced,
then the number of necessary k-space data for accurate re-
construction �U� can also be reduced. It is widely known that
reductions in acquisition time can be used to improve tem-
poral resolution. Studies have demonstrated that, in general,
MR images have spatial transform sparsity.44,45 Therefore,
temporal resolution can be further improved using CS theory
if the dynamic MR images also have sparsity in the time
domain.

Considering the sparsity feature of breast DCE-MRI in
which the administration of CA only induces rapid changes
of signal intensities in those areas where CA passes through
such as vessels or tumor lesions, we can make the following
assumption: Only a small percentage of pixels experience
rapid variation in signal intensities during the dynamic time
course, while the intensities of most pixels change slowly.
Therefore, at each time point �TP�, the whole image f can be
considered as the superposition of a “reference” image f ref

and “varying” image fvary, or f = f ref+ fvary, as given in the
previous literature33,42 and Fig. 1�a�.

Let �S� and �Svary� denote the number of nonzero represen-
tations of f and fvary in sparse transform domain, respec-
tively. �U� and �Uvary� denote the necessary number of under-
sampled k-space data for accurate reconstruction of f and
fvary, respectively. According to the assumption, fvary has
much less information than f . Thus, fvary is much sparser
than f after a certain sparse transformation such as spatial
finite difference �SFD� �Ref. 45� or discrete wavelet transfor-
mation �DWT�, as shown in Fig. 1�b�, or �Svary�� �S�. By Eq.
�1�, we have �Uvary�� �U�. In other words, if the objective
image f of the constrained l1-norm minimization problem
described in Eq. �2� is replaced by fvary, much less k-space
data are needed for a faithful reconstruction. The reduction in

the k-space can then be used to improve temporal resolution
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without degrading the spatial resolution. After fvary is recon-
structed, the whole image f can be simply obtained by the
superposition of fvary and f ref.

II.C. Sampling scheme of RICS

To implement RICS, a practical sampling scheme is
needed. The sampling scheme of RICS consists of two
phases: The fully sampled phase and the undersampled

FIG. 1. Sketch of the basic assumption and the derivation of RICS. �a� The
and varying image fvary, or f = f ref+ fvary at every time point. �b� The first row
and third rows display S and Svary in the sparse transform domain of the cor
are k-space data U and Uvary for reconstructions of f and fvary, respectively.

FIG. 2. Illustration of the sampling scheme for RICS in this study. It consists
of two phases: The fully sampled phase and the undersampled phase. For the
fully sampled phase, two fully sampled 3D k-space data sets gfull 1 and gfull 2

are acquired immediately before the injection of CA and after the DCE-MRI
time course, respectively. The undersampled data sets in the undersampled
phase are acquired during the dynamic period of DCE-MRI time course.
Undersampled k-space data sets gu�t� are undersampled in both ky and kz

phase encoding directions using a 2D Gaussian random distribution, while

the read out direction kx is fully sampled.
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phase, as shown in Fig. 2. For the fully sampled phase, two
fully sampled 3D k-space data sets gfull 1 and gfull 2 are ac-
quired immediately before the injection of CA and after the
DCE-MRI time course, respectively. gfull 1 and gfull 2 are
later used to generate high spatial resolution reference im-
ages f ref�t� using the average approach or the motion estima-
tion and motion compensation �ME/MC� approach, which
will be described later. For the undersampled phase, 3D un-
dersampled k-space data set at time point t, gu�t�, is acquired
with undersampling in both ky and kz phase encoding direc-
tions using a 2D Gaussian random distribution, while the
read out direction kx is fully sampled during the dynamic
period of DCE-MRI immediately after the injection of CA,
as shown in Fig. 2.

II.D. Data processing procedure of RICS

The data processing procedure of RICS corresponding to
the aforementioned sampling scheme is shown in Fig. 3. It
consists of two portions: The generation of reference images
f ref�t� and the reconstruction of DCE images f�t�.

II.D.1. Generation of reference images

As shown in Fig. 3, the inputs of the reference image
portion �step 1 in Fig. 3� are the fully sampled data sets
acquired in the fully sampled phase, gfull 1 and gfull 2. The
outputs are the high resolution reference images f ref�t� and
the corresponding k-space data gref�t�. As stated previously,
two approaches, the average one and the ME/MC one, have
been implemented in RICS to generate reference images,
shown in Figs. 4�a� and 4�b�, respectively.

In the average approach, gref�t� are simply calculated as

image f can be considered as a superposition of the “reference” image f ref

lays a whole image f and the corresponding varying image fvary; the second
nding images f and fvary using SFD and DWT, respectively; the fourth row
pical clinical DCE-MR image was used here as the image f .
whole
disp

respo
the average of gfull 1 and gfull 2, and reference images f ref�t�
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are obtained by the Fourier transformation of gref�t�. Notice
that the reference images f ref�t� are all the same at different
time points t in the average approach.

In the ME/MC approach, we implement the ME/MC tech-
nique used in video coding46 and extended it to a 3D version.
First, fully sampled images f full 1 and f full 2 are achieved di-

FIG. 3. The data processing procedure of RICS consists of two portions: The
For the first portion �step 1�, the inputs are the fully sampled data sets acq
resolution reference images f ref�t� and the corresponding k-space data gref�t
undersampling scheme for acquiring gu�t� �step 2�. Next, for each time po
corresponding gu,ref�t� to produce the undersampled k-space data gu,vary�t� �ste
fvary�t� �step4�. Finally, fvary�t� are added to the reference images f ref�t� to re
Medical Physics, Vol. 37, No. 9, September 2010
rectly from gfull 1 and gfull 2 by Fourier transformation. Sec-

ond, rough estimation of true DCE images f̂�t� are obtained
using CS reconstruction algorithm.37 Then ME �motion esti-
mation� is performed to find the motion vectors from the
fully sampled data f full 1 and f full 2 to the rough estimation

f̂�t� using block matching algorithm.47 Next, reference im-

ration of reference images f ref�t� and the reconstruction of DCE images f�t�.
in the fully sampled phase, gfull 1 and gfull 2 and the outputs are the high
the second portion, first, gu,ref�t� are extracted from gref�t� using the same
e k-space data set gu�t� acquired in the undersampled phase subtracts the
Then the constrained l1-norm minimization problem is solved to reconstruct
truct DCE images f�t� �step 5�.

FIG. 4. The two approaches used to generate reference
images: �a� The average approach and �b� the ME/MC
approach.
gene
uired
�. For
int, th
p 3�.
cons
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ages f ref�t� are obtained using the interpolation MC �motion
compensation�, as detailed in the previous literature.37 Fi-
nally, k-space data gref�t� corresponding to f ref�t� are
achieved by inverse Fourier transformation.

II.D.2. Reconstruction of DCE images

The DCE image reconstruction portion of RICS corre-
sponding to the aforementioned sampling scheme is shown
in Fig. 3. After the generation of reference image using either
the average approach or the ME/MC approach �step 1 in Fig.
3�, gu,ref�t� are extracted from gref�t� using the same under-
sampling scheme for acquiring gu�t� �step 2 in Fig. 3�. Next,
for each time point, the k-space data set gu�t� acquired in the
undersampled phase subtracts the corresponding gu,ref�t� to
produce the undersampled k-space data gu,vary�t�, which only
contains the information of varying images fvary�t� �step 3 in
Fig. 3�. Then the constrained l1-norm minimization problem
�see Eq. �2�� is solved to reconstruct fvary�t� �step 4 in Fig. 3�.
Finally, fvary�t� are added to reference images f ref�t� to recon-
struct DCE images f�t� �step 5 in Fig. 3�.

III. METHODS AND MATERIAL

Two experiments were designed to investigate the feasi-
bility of applying RICS to breast DCE-MRI. The goal of the
first experiment, the breast DCE-MRI uptake-curve study,
was to examine the feasibility of RICS to faithfully recover
uptake curves using undersampled data sets extracted from
fully sampled clinical breast DCE-MRI data. Written in-
formed consents were obtained from all subjects �N=3� and
approved by the Human Investigation Committee at the par-
ticipating institution. The goal of the second experiment, the
in vitro phantom study, was to test the feasibility of RICS to
improve temporal resolution without degrading the spatial
resolution.

III.A. Uptake curve reconstruction

This study was conducted in four steps. First, 3D breast
DCE-MRI data of three individual subjects were acquired at
a typical clinical setting. Second, 15% undersampled 3D data
were extracted from the fully sampled 3D breast DCE-MRI
data to simulate the RICS sampling scheme �a 2D Gaussian
random undersampling in the ky and kz directions with full
sampling in the kx direction�. Third, the reconstructions of
DCE images using RICS with the average approach and the
ME/MC approach were performed as described previously.
Finally, statistical analysis was performed to evaluate the
similarity between the “true” uptake curves and the corre-
sponding ones reconstructed by RICS. In this study, uptake
curves or images reconstructed from fully sampled data sets
are considered to be true uptake curves or true images.

3D breast DCE-MRI data were acquired using T1-
weighted 3D SPGR with fat suppression on a whole-body
1.5 T scanner �Signa Excite, GE Medical Systems, USA�.

The experimental parameters were TR /TE=6.931 /2.72 ms,
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flip angle=15°, slice thickness=5 mm, and matrix size
=512�512�21. One precontrast and seven postcontrast
frames were obtained. Gd-DTPA �0.2 mmol/kg; Magnevist,
Bayer Schering Pharma AG, Berlin, Germany� contrast agent
was injected into the antecubital vein with a flow rate of 2
ml/s. Administration of contrast agent was followed by a 20
ml saline flush at a flow rate of 2 ml/s.

Image reconstruction was performed, as outlined in Fig.
3. Final DCE images f�t� were reconstructed using RICS
with the average and ME/MC approaches, respectively. For
RICS with the ME/MC approach, the block size for block
matching was 8�8�1 and the search range was 24�24
�3. SFD was used as the spatial sparse transformation in
l1-norm minimization.

A number of methods were used to evaluate the feasibility
of applying RICS to breast DCE-MRI. First, reference im-
ages generated by the average and ME/MC approaches were
compared to evaluate the capability of the two approaches in
predicting the true DCE images. Second, reconstruction re-
sults by RICS with the average and ME/MC approaches at
each time point were compared in terms of the mean square
error �MSE� to examine the feasibility of faithfully recon-
structing DCE images. MSE was calculated using the follow-
ing equation:

1

N
�
i=1

N

�f�i,t� − f true�i,t��2, �3�

where N denotes the total number of voxels of the DCE
image, i denotes the index of the voxel of the image, t de-
notes the time point, and f�i , t� and f true�i , t� denote the value
of ith voxel of the DCE image reconstructed by RICS and
the corresponding true image, respectively. Third, Pearson
correlation coefficients between the true uptake curves and
the ones reconstructed by RICS were calculated to evaluate
the similarity of the overall features as described in

FIG. 5. A comparison of reference images generated by the average and
ME/MC approaches. The image on the left side is a representative slice of
the true DCE image: �a� The reference image generated by the average
approach and its absolute difference image to the true DCE image. �b� The
reference image generated by the ME/MC approach and its absolute differ-

ence image to the true DCE image.
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literature.48 Theoretically, the correlation coefficient can
range from �1 to 1. The closer the correlation coefficient to
1, the higher the similarity between the two curves. Absolute
differences between the true uptake curves and the ones re-
constructed by RICS were also calculated and displayed. Fi-
nally, the computational complexity of RICS was examined
to evaluate its efficiency. The average computation time for
reconstructing a single frame was compared between RICS
with the average and ME/MC approaches. All reconstruc-
tions were performed on a personal computer with an Intel
Core2 2.13 GHz central processing unit and 3 GB memory
on Windows XP platform. The data were processed by a
software developed in-house with MATLAB 7.6 �MathWorks,
Natick, MA�.

III.B. In vitro study

A DCE-MRI phantom, which consists of an internal struc-
ture �a series of holes with different diameters� and a plastic
pipe winding around the phantom, was used to test the fea-
sibility of RICS for improving temporal resolution without
degrading the spatial resolution. MnCl2 solution �178 mg/l�,
which was used as contrast agent, and pure H2O were alter-
nately injected into the pipe during the experiment. When the
injection of one of the two liquids was turned on, the other
one was turned off simultaneously. The cycle rate was de-

FIG. 6. �a� A comparison of the reconstruction results of RICS with the aver
�a� display images at three successive TPs. The first row shows the true DCE
the average approach and their corresponding absolute difference images to
struction results of RICS with the ME/MC approach and their correspon

comparison of MSE of the reconstruction results of RICS with the average �solid
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fined as the frequency at which MnCl2 and pure H2O were
alternately injected. For example, if the MnCl2 solution in-
jection is turned on for 16 s and then switched to pure water
injection for the next 16 s, the cycle rate was defined as
1 /16 s−1. To compare temporal resolution performance with
and without RICS, three different cycle rates �1/16, 1/8, and
1 /3 s−1� were implemented for three experiments, respec-
tively.

All undersampled 3D k-space data were acquired on a 1.5
T MRI scanner �MAGNETOM ESSANZA Siemens, Erlan-
gen, Germany� with a 3D FLASH sequence using the sam-
pling scheme of RICS, as discussed previously. The other
experimental parameters were TR /TE=3.2 ms /1.7 ms, flip
angle=15°, slice thickness=5 mm, matrix size=128�128
�32, and the time course was 131 s. Corresponding fully
sampled 3D data were also acquired with the same 3D
FLASH sequence but using the conventional fully sampled
scheme for comparison purposes.

For each cycle rate, three sets of data were acquired: One
set of fully sampled data and two sets of undersampled data
with acceleration factors of 3.3 and 10 �30% and 10% of
fully sampled data�, respectively. For the fully sampled data
set, direct 3D Fourier transformation was implemented to
reconstruct images. For the undersampled data sets �30% and
10% of fully sampled data�, RICS using SFD as the sparse

pproach and the ME/MC approach. The first, second, and third columns of
es. The second and third rows show the reconstruction results of RICS with
true DCE images, respectively. The fourth and fifth rows show the recon-
absolute difference images to the true DCE images, respectively. �b� A
age a
imag
the

ding

line� and ME/MC �dashed line� approaches at each time point.
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transformation in 3D spatial domain was used. Note that
only RICS with the average approach was performed since
there is no motion effect in the in vitro study.

IV. RESULTS

IV.A. Uptake curve reconstruction

Figure 5 shows the reference images generated by the
average and ME/MC approaches as well as the respective
absolute difference images to the true DCE image. As illus-
trated in Fig. 5, ME/MC approach outperforms the average
approach in terms of predicting the true DCE image, espe-
cially for the areas with a relatively severe subject motion.
For example, the residual in the absolute difference image
between the true DCE image and ME/MC reference image is
smaller than that in the absolute difference image between
the true DCE image and the average reference image, espe-
cially for the chest area �pointed by the arrows in Figs. 5�a�
and 5�b��.

Figure 6�a� shows the comparison of reconstruction re-

FIG. 7. Uptake curves reconstructed by RICS with the average and ME/M
�indicated by the black squares� from which uptake curves were calculated. E
�solid line�, uptake curves reconstructed by RICS with the average approach
the tumor and control area, respectively. ��d� and �e�� The true uptake curv
�dashed line�, and absolute difference between them �dotted-dashed line� fro
sults by RICS with the average and ME/MC approaches. The
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first, second, and third columns of Fig. 6�a� display images at
three successive TPs. As demonstrated by comparing differ-
ence images in Fig. 6�a�, both methods did a good job, al-
though images reconstructed by RICS with the ME/MC ap-
proach were closer to the true corresponding DCE images,
especially in areas of severe subject motion such as the chest
part, as pointed out by the arrows.

Figure 6�b� compares the MSE for images reconstructed
by RICS with the average and ME/MC approaches at each
time point. The average MSE of all time points for RICS
with the average and ME/MC approaches were 0.0037 and
0.0017, respectively. The result again indicates that RICS
with the ME/MC approach offers a more reliable reconstruc-
tion result than that by RICS with the average approach.

Figures 7�b� and 7�c� show typical true uptake curves
�solid line�, uptake curves reconstructed by RICS with the
average approach �dashed line�, and the absolute difference
between them �dotted-dashed line� from a tumor area and a
control area �indicated by the black squares in Fig. 7�a��,

proaches. �a� A representative image showing the tumor and control area
of these two areas contained 900 pixels. ��b� and �c�� The true uptake curves
ed line�, and the absolute difference between them �dotted-dashed line� from
lid line�, uptake curves reconstructed by RICS with the ME/MC approach
e tumor and control area, respectively.
C ap
ach

�dash
es �so
m th
respectively. Figures 7�d� and 7�e� show typical true uptake
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curves �solid line�, uptake curves reconstructed by RICS
with the ME/MC approach �dashed line�, and absolute dif-
ference between them �dotted-dashed line� from the same
tumor area and control area, respectively. Clearly, the results
indicate that uptake curves reconstructed by RICS with the
ME/MC approach are closer to the true uptake curves com-
pared to uptake curves reconstructed by RICS with the aver-
age approach.

Table I lists the mean Pearson correlation coefficients be-
tween the true uptake curves and the ones reconstructed by
RICS with the two reference image approaches. The mean
Pearson correlation coefficients for RICS with the ME/MC
approach and RICS with the average approach were
0.977�0.023 and 0.953�0.031, respectively. The statistical
results demonstrated high correlation between the true up-
take curves and the ones reconstructed by RICS with either
of the two reference approaches, indicating high similarity
between the RICS uptake curves and the true uptake curves.

Finally, to evaluate computational complexity, the compu-
tation time for reconstructing DCE images was recorded at
each time point. It took an average of 5 min for RICS with
the average approach and 32 min for RICS with the ME/MC
approach, respectively.

IV.B. In vitro study

Figure 8�a� is an axial image of our in vitro phantom.
Figures 8�b�–8�d� show the comparison of uptake curves
from the ROI �indicated by the white arrow in Fig. 8�a��
reconstructed from fully sampled �line with circle�, 30%
sampled RICS �line with square�, and 10% sampled RICS
�line with star� data at three different cycle rates of 1/16, 1/8,
and 1 /3 s−1, respectively. There were 33 and 100 frames for
the 30% and 10% sampled RICS series, respectively, while
there were only 10 frames for the fully sampled data for the
given period. As expected, the lower the percentage of un-
dersampled data, the higher the temporal resolution, and the
better the uptake curve for fast dynamic characterization. For
example, at a cycle rate of 1 /16 s−1, although all of the three
strategies could identify the trend of variation, in general, the
fully sampled curve missed some of the turning points �Fig.
8�b��. At a cycle rate of 1 /8 s−1, the fully sampled data
failed to temporally resolve the signal alternation due to the
alternating flow of contrast agent �Fig. 8�c��. At a cycle rate
of 1 /3 s−1, only the 10% sampled RICS was able to resolve
the signal variation �Fig. 8�d��.

Figure 9 shows the comparison of image profiles crossing

TABLE I. Comparison of the mean Pearson correlation
curves reconstructed by RICS. �A tumor area and a co
selected for statistic analysis. Each of these two area

Method Tumor area �R

RICS with the average approach 0.976�0.0
RICS with the ME/MC approach 0.991�0.0

aR denotes the mean Pearson correlation coefficient.
bSD denotes the standard deviation.
the five tiny holes in the phantom. All three profiles were
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virtually the same, indicating no visible degradation in the
spatial resolution using RICS compared to the conventional
method with fully sampled data. The results illustrated in
Figs. 8 and 9 demonstrate that RICS can improve temporal
resolution without degrading the spatial resolution.

V. DISCUSSION AND CONCLUSION

The preliminary results demonstrate the feasibility of ap-
plying CS theory to improve the temporal resolution of
breast DCE-MRI. The uptake-curve reconstruction study has
shown that uptake curves for a typical breast DCE-MRI can
be faithfully reconstructed with as little as 15% of the fully
sampled data using the RICS technique. The similarity be-
tween the true uptake curves and the ones reconstructed by
RICS was high. This high level of similarity suggests that
RICS can estimate semiquantitative or quantitative DCE-
MRI parameters with the same accuracy as the fully sampled
approach. Although both reference image approaches can of-
fer reliable reconstruction of uptake curves, RICS with the
ME/MC approach outperforms RICS with the average ap-
proach in every category except computation time. This is
particularly true for areas with severe motion. The in vitro
phantom study further demonstrates that CS-based technique
can improve temporal resolution by a factor of 10 without
degrading the spatial resolution compared to the fully
sampled scheme.

The idea of reference image based compressed sensing
MRI has been proposed previously for cardiac dynamic
MRI33 and DCE-MRI.42 The main differences between our
study and previous CS-based DCE-MRI studies include �1�
3D imaging, which is common for breast DCE-MRI, rather
than 2D imaging; �2� a 2D Gaussian random undersampling
scheme, which induces less coherent artifacts, instead of a
1D random sampling scheme; �3� the development of an ac-
tual undersampling pulse sequence in the in vitro study rather
than only using the undersampled data extracted from fully
sampled data sets; �4� the examination of faithful reconstruc-
tion of uptake curves rather than images at one time point;
and �5� the implementation of 3D ME/MC approach to re-
duce the potential impact of subject motion. Although breast
DCE-MRI is emphasized in this study, RICS could be ex-
tended to other applications with moderate modification,
such as fMRI where induced changes in MRI signal intensity
only occurs in a small percentage of the brain.

CS-based MRI is still a relatively new area with many
unexplored avenues and great potential. Despite our promis-

ficient between the true uptake curves and the uptake
area indicated by the black squares in Fig. 7�a� were
tained 900 pixels.�

b� Control area �R�SD� Total area �R�SD�

0.931�0.029 0.954�0.031
0.963�0.026 0.977�0.023
coef
ntrol
s con

a �SD

08
07
ing results, RICS is far from perfect. There are many aspects
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of RICS that need further investigation. For example, alter-
native spatial and/or temporal sparse transformation could be
implemented to further increase the sparsity of the objective
image. SFD was implemented as sparse transformation in the

FIG. 8. Illustration of improvement in temporal resolution by RICS. �a� Imag
of the ROI �indicated by the arrow in �a�� reconstructed from fully sampled
�line with star� data at cycle rates of 1/16, 1/8, and 1 /3 s−1, respectively.

FIG. 9. Comparison of image profiles crossing the five tiny holes in the
phantom from the fully sampled data �solid line�, 30% sampled RICS data

�dashed line�, and 10% sampled RICS data �dotted-dashed line�.

Medical Physics, Vol. 37, No. 9, September 2010
study for its computation efficiency. However, other spatial
sparse transformations may work as well or even better in-
cluding discrete cosine transform and DWT.44,45 In the time
domain, additional sparse transformation could also be per-
formed to further exploit its temporal sparsity, such as
Karhunen–Loeve transformation for nonperiodic motion.37

Another potential way to further improve temporal resolution
is to combine RICS with multichannel parallel imaging tech-
niques such as SENSE.38,49–51 In conclusion, our preliminary
results demonstrate the feasibility of RICS for faithfully re-
constructing uptake curves for breast DCE-MRI and improv-
ing temporal resolution without degrading the spatial reso-
lution.
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