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Abstract

Background: Children with ependymoma may experience a relapse in up to 50% of cases depending on the extent of
resection. Key biological events associated with recurrence are unknown.

Methodology/Principal Findings: To discover the biology behind the recurrence of ependymomas, we performed
CGHarray and a dual-color gene expression microarray analysis of 17 tumors at diagnosis co-hybridized with the
corresponding 27 first or subsequent relapses from the same patient. As treatment and location had only limited influence
on specific gene expression changes at relapse, we established a common signature for relapse. Eighty-seven genes showed
an absolute fold change $2 in at least 50% of relapses and were defined as the gene expression signature of ependymoma
recurrence. The most frequently upregulated genes are involved in the kinetochore (ASPM, KIF11) or in neural development
(CD133, Wnt and Notch pathways). Metallothionein (MT) genes were downregulated in up to 80% of the recurrences.
Quantitative PCR for ASPM, KIF11 and MT3 plus immunohistochemistry for ASPM and MT3 confirmed the microarray results.
Immunohistochemistry on an independent series of 24 tumor pairs at diagnosis and at relapse confirmed the decrease of
MT3 expression at recurrence in 17/24 tumor pairs (p = 0.002). Conversely, ASPM expression was more frequently positive at
relapse (87.5% vs 37.5%, p = 0.03). Loss or deletion of the MT genes cluster was never observed at relapse. Promoter
sequencing after bisulfite treatment of DNA from primary tumors and recurrences as well as treatment of short-term
ependymoma cells cultures with a demethylating agent showed that methylation was not involved in MT3 downregulation.
However, in vitro treatment with a histone deacetylase inhibitor or zinc restored MT3 expression.

Conclusions/Significance: The most frequent molecular events associated with ependymoma recurrence were over-
expression of kinetochore proteins and down-regulation of metallothioneins. Metallothionein-3 expression is epigenetically
controlled and can be restored in vitro by histone deacetylase inhibitors.
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enfants-sante.asso.fr/) and from the charity ‘‘l’Etoile de Martin’’ (http://www.letoiledemartin.org/) for FA and CDB. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: grill@igr.fr

. These authors contributed equally to this work.

Introduction

Ependymomas are tumours thought to derive from radial glial

cells [1] and display morphological characteristics of normal

ependyma [2]. They represent the third most common intracra-

nial tumour in children and intracranial location account for more

than 90% of cases [3]. The incidence is higher in young children

as more than fifty percent occur before the age of 5 [4]. The

overall prognosis of this tumour remains poor, especially in young

children [5] with a 10-year survival between 30 and 70% [6,7].

Extent of initial surgery remains the only consensual prognostic

factor across studies [6,8,9]. Recurrences are most of the time

local, at least at the beginning of the natural history; distant

metastases become more frequent with more effective local

treatment [7]. Treatment strategy is actually based on surgery at

diagnosis and at each relapse completed with local radiotherapy
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[4,6,10]. The role of chemotherapy is circumscribed to children

under 3 years of age to avoid or postpone radiotherapy due to its

potential neuropsychological side effects [10,11]. There is actually

no treatment strategy specific for tumour recurrences after

radiotherapy.

Advances have been made in our understanding of the

molecular mechanisms underlying the oncogenesis of ependymo-

ma with the discovery of specific cancer stem cells [1] and the

definition of gene expression profiles specific of each location [1].

In addition, specific molecular signatures associated with clinical

characteristics have been identified [12–16]. However, reports on

prognostic biological markers have shown little consistency or

reproducibility [9,12,17–29]. The Notch pathway, however, has

been implicated in three independant studies as a key regulator of

ependymoma oncogenesis [1,12,30]. Nonetheless, most of these

reports concerned only tumours at diagnosis. Progression of

ependymoma is possibly related to multiple factors and activated

pathways that cannot always be unraveled by tumour analysis at

diagnosis.

Aiming at learning more about tumor progression, we

hypothesized that relevant information could be obtained by

comparing with high throughput technologies tumours from the

same patient at diagnosis and at relapse. Dual-color microarray-

based gene expression analysis with the two samples labeled with

different dyes on the same array, that hybridize competitively to

probes on the same spot, allows to adjust for many factors that

introduce noise and errors in studies where the comparison of

expression differences is made with three different arrays (one for

the control and two for the samples at diagnosis and at relapse)

[31,32]. Conversely, this design does not allow to have absolute

expression data at diagnosis but only the changes between

diagnosis and relapse, but with a higher sensitivity through the

limitation of normalization problems [33].

This study revealed pathways specifically up- or down-regulated

at relapse that may be used as targets for drug development in

pediatric ependymomas. Downregulation of metallothionein-3,

also known as neural growth inhibitory factor, was observed at

relapse in more than 80% of the recurrences. Conversely, genes of

Wnt and Notch pathways were upregulated at recurrence together

with numerous genes of the kinetochore and mitotic spindle.

Materials and Methods

Tumour material and patient characteristics
Seventeen patients with at least two frozen samples from two

different surgeries (one diagnosis and one relapse) were included in

this study. Frozen samples of tumour at diagnosis and at least one

relapse were obtained for each patient. All samples were snap

frozen at the time of surgery. For ten patients, one relapse was

available and for seven patients two to three relapses were

available. The study encompassed a total of forty-four tumour

samples, seventeen at diagnosis and twenty-seven at relapse.

Paired tumour samples (diagnosis and relapse) from fourteen

patients were obtained from the Tumour Bank at the Necker

Enfants Malades Hopital, Paris, France. Two additional paired

tumour samples were obtained from the Tumour Bank of the

Pierre Wertheimer Hospital, Lyon, France and one from the

Neurosurgery Department of the Vrije Universiteit of Amsterdam.

The biological study was approved by the Internal Review Board

of the Biological Ressource Center of the Necker Sick Children

Hospital in Paris, by the Internal Review Board of the

Neurosurgery Department of the Vrije Universiteit in Amsterdam

and by the Scientific Advisory Board of the NeuroBioTec Tumor

Bank in Lyon. Parents/guardians gave their written informed

consent for the biological studies performed with the tumor

samples.

Patients’ characteristics are described in the supplementary data

(Table S1). Male to female ratio was 8:9. Median age at disease

onset was 3.4 years (range: 0,4–10,6 years). Tumour location was

infratentorial in 11 of 17 patients. Median follow-up of the patients

was 42 months (range: 19–96 months). Evaluation of the extent of

resection was based on the surgeon’s report and post-operative

contrast enhanced imaging. External beam irradiation protocol

consisted of a local irradiation with surimpression on the operating

site. Total radiation doses varied from 50 to 55 Gy and

conventional fractioning was used for all irradiated patients.

Almost all patients who received chemotherapy were treated

according to the BBSFOP protocol [10] except two patients who

received fotemustin alone and etoposide alone respectively. When

considering the treatment received before a given relapse, we

analysed the entire therapeutic sequence between diagnosis and

this relapse. Three groups of treatment were considered:

surveillance only, chemotherapy only, or irradiation with or

without chemotherapy.

Relapse was defined in fifteen patients as a local recurrence of

the tumour. In one case, the relapses were loco-regional metastases

in the same cerebral hemisphere (Patient 15). In one patient, the

relapses were spinal and supra-tentorial metastases of an initially

posterior fossa tumour (Patient 3). The median delay between

diagnosis and recurrence was 22 months (range: 2.2 – 62.4).

Histological diagnosis and tumour grading review were

performed by two independent neuropathologists (PV and FA).

Subependymomas and myxopapillary ependymomas were exclud-

ed from the study. Before nucleic acid extraction, sections from

frozen tumour samples were colored with hematoxylin to discard

those containing necrosis or calcifications.

Nucleic acid isolation
DNA and RNA were extracted from frozen samples with the

Microkit (Qiagen). On the forty-four samples studied, eighteen

were previously analysed by BAC array-CGH [30]. RNA quality

was assessed by 2100 BioanalyzerH (Agilent Technologies). Quality

criteria included 28S/18S ratio .1.2 and RIN (RNA Integrity

Number) .8.

Gene expression array
For each patient, relapses were co-hybridized against their

corresponding tumour at diagnosis which served as reference.

Probes from tumour tissue and from the reference tissue were

differentially labeled by the incorporation of cyanine 3 (Cy3) and

cyanine 5 (Cy5) (Dual Color 44K microarray, Agilent Technol-

ogies), respectively. Briefly, probes were synthesized from 500 ng

of total RNA in two steps according to the manufacturer’s

instructions. One microgram of purified cRNA from each relapse

was mixed with the same amount of diagnosis-tumour cRNA.

Hybridizations were performed, in dye-swap, on whole-human-

genome 44K oligonucleotide microarrays (product G4112A;

Agilent). Feature extraction software provided by Agilent (version

7.2) was used to quantify the intensity of fluorescent images and to

apply a Lowess Normalization to correct for artifacts caused by

non-linear rates of dye incorporation as well as inconsistencies of

the relative fluorescence intensity between some blue and red dyes.

All data were imported into Resolver software (Rosetta Biosoft-

ware, Kirkland, WA) for database management, quality control,

computational re-combination of dye-swaps, and statistical

analysis. Functional analysis was carried out through the Ingenuity

Pathway Analysis (IngenuityH System, http://www.ingenuity.

com). Microarray data have been posted on Array Express
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(IGR_EPENDYMOMA_STUDY_MP ArrayExpress accession

number: E-TABM-873, password for reviewer: 1260902888493).

Comparative Genomic Hybridization (CGH) array
DNA was hybridized to 4644K whole-genome Agilent arrays

(G4426A). For each sample, 500 ng of DNA were fragmented by a

double enzymatic digestion (AluI + RsaI) and checked with

LabOnChip (2100 Bioanalyzer System, Agilent Technologies)

before labeling and hybridization. Tumor DNA and control DNA

matched for sex (Promega) were labeled by random priming with

Cy5-dCTPs and Cy3-dCTPs, respectively and hybridized at 65uC
for 17 h. The chips were scanned on an Agilent G256BA DNA

Microarray Scanner and image analysis was done using the

Feature-Extraction V9.1.3 software (Agilent Technologies). Fea-

ture-Extraction was used for the fluorescence signal acquisition

from the scans. Normalization was done using the ranking-mode

method, with default value for any parameter. Raw copy number

ratio data were transferred to the CGH Analytics v3.4.40 software

for further analysis. Raw data have been submitted to the Array

Express database (IGR_EPENDYMOMA_CGH_STUDY_MP

ArrayExpress accession number: E-TABM-1023, password for

reviewer: 1277231149363). The ADM-2 algorithm of CGH

Analytics v3.4.40 software was used to identify DNA copy number

anomalies at the probe level. A low-level copy number gain was

defined as a log2 ratio .0.25 and a copy number loss was defined

as a log2 ratio ,20.25. A high-level gain or amplification was

defined as a log2 ratio .1.5. DNA copy number anomalies were

plotted by the aCGH software package v1.10.0 using the R

statistical language.

Statistical analysis
According to our Gene Expression experimental design, the

LogRatios represented the expression changes from diagnosis to

recurrence. An initial filtering was applied to retain sequences

which appeared as significantly differently expressed (p#0.01) in at

least 50% of recurrences studied. This threshold of 50% was more

stringent than the 20% cut-off usually used, but this choice was

motivated our decision to include in the statistical analysis only

probes which were highly relevant. On this probe set, a one-group

t-test was carried out to define a common signature. In this

context, the test considered mean (LogR) = 0 as the null

hypothesis. Group comparisons (localization and treatment) were

performed using a two-group t-test or an analysis of variance (in

case of groups.2) to define differential signatures. For these

analyses, the same initial filtering was first applied before carrying

out a one-group t-test on each group, independently. This

procedure allowed us to retain only probes which were

significantly modified in at least one of the compared groups.

Finally, the selected probe sets were pooled for the statistical

analysis.

For each signature, the networks/pathways search, and

functional analysis were generated trough the use of Ingenuity

Pathway AnalysisH. Briefly, each signature, containing probe

identifiers and LogRatio values, were uploaded into the applica-

tion. Agilent probe identifiers were mapped to their corresponding

gene objects in the Ingenuity Pathways Knowledge Base. These

genes were then overlaid onto a global molecular network

developed from information contained in the Ingenuity Pathways

Knowledge Base. Networks of these focus genes were then

algorithmically generated based on their connectivity. Identifica-

tion of biological functions was based on a Fischer’s exact test

which calculated a p-value determining the probability that each

biological function assigned to each signature is due to chance

alone.

CGH-array analysis were performed by using the aCGH R

package (v1.26.0), and the step down maxT multiple testing

procedure of Westfall and Young. Statistical analysis consisted in

comparing chromosomal regions imbalances at relapse vs

diagnosis, and identifying new abnormalities in recurrences, in

general and in association with location or treatment.

Quantitative Real-Time PCR (qPCR)
Approximately 1 mg of total RNA was used to synthesize cDNA

using random hexamers and the Mu-MLV reverse transcriptase

(Applied Biosystems). qRT-PCR for the genes MT2A, MT3,

KIF11 and ASPM was carried out using Taqman Gene

Expression Assays on Demand (Applied Biosystems) and ABI

Prism 7700 Sequence Detector (Applera). Expression profile in

each specimen was assessed by using the comparative threshold

cycle (2-ddCt) method. 18S Ribosomal RNA was used as and

endogenous control and normal whole brain cDNA (Ambion) as a

calibrator.

Methylation Assay
Investigation of methylation status of the MT3 promoter was

assessed by combined bisulfate treatment of genomic DNA and

sequencing after PCR amplification. One microgram of genomic

DNA was treated with bisulfite, which converts the nonmethylated

cytosines to thymines, using the CpGenomeTM Universal DNA

Modification Kit (Chemicon) according to the manufactor’s

instructions. PCR amplification was accomplished with primers

that do not discriminate between methylated and unmethylated

alleles that overlap 4 regions covering the promoter, exon 1 and

intron 1 of the MT3 gene, as described [34] and also with two

additional pairs of primers (sequences available under request).The

PCR products were sequenced using the ABI3730 DNA analyser

(Applied Biosystems). The methylation status of CpG islands was

determined by direct sequencing of both strands and by estimation

of the relative peak height of the PCR products. Normal human

DNA and methylated DNA were used as reference control.

Primary-culture cells
In the absence of an available ependymoma cell line, we used

short term cell cultures derived from 2 pediatric ependymomas

operated at Necker Sick Childrens Hospital in Paris. Parents/

guardians gave written informed consent for research according to

the policy of the Internal Review Board of the Biological

Ressource Center of Necker Sick Childrens Hospital. Right after

surgery, tissues were suspended in DMEM cell culture medium

and transferred to the laboratory. After mechanical dissociation,

tumour cells were seeded in a 25 cm2 flask and maintained in

AminioMAX C-100 supplemented medium (Invitrogen) in a tissue

culture incubator. Subcultures were processed when cells achieved

80–90% confluence. These primary culture cells were designated

as EP1 and EP2. The glial nature of the cultured cells were

assessed by morphology and expression of GFAP on immunocy-

tochemistry (Figure S1).

Epigenetic regulation of metallothioneins expression in
vitro

Primary cell cultures of ependymoma and DAOY medulloblas-

toma cell line (ATCC) were added to 60 mm dish at a density of

56105 cells and incubated overnight in a 5% CO2 incubator. The

following day they were treated with 5 mM of 5-Aza-desoxyCy-

tidine (5-Aza), a demethylating agent, for 3 to 7 days (accordingly

to the proliferation rate/doubling time of each cell type) or with

300 nM of TSA, a histone-deacétylase inhibitor, for 16 hours. For
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the combination 5-Aza-dC/TSA treatments, 5-Aza-dC treatment

in the same conditions were performed first, followed by identical

TSA treatment. Every day, new medium containing freshly

prepared 5-Aza was added. At the end of the incubation period,

after medium removal, cells were lysed in RTL buffer. RNA was

extracted using the RNeasy mini kit (Qiagen) for analysis by qPCR

of MT2A and MT3 gene expression levels.

In vitro regulation of MT3 gene by metal cations and
steroids in brain tumor cells Immunohistochemistry

Anti-ASPM affinity purified rabbit polyclonal antibodies were

purchased from Bethyl Laboratories Inc (Montgomery, Texas)

(reference IHC-00058). Anti-MT3 affinity purified rabbit poly-

clonal antibody was obtained from Dr Donald Sens (Professor of

Pathology, University of North Dakota, School of Medicine and

Health Sciences, Grand Forks, ND); their preparation and use on

formalin-fixed, paraffin embedded material have been described

previously (38, 39). Sections were cut at 4 mm, deparaffinized,

exposed to 30 minutes treatment in a steamer at 98uC in citrate

pH 7,3 buffer for ASPM and pH 6,0 buffer for MT3 and then

treated with a peroxidase blocking agent (reference S2001,

DAKO, Glostrup, Denmark). Antibody incubation was performed

overnight at 4uC for ASPM (1:100) and 60 minutes hour at room

temperature for MT3 (1:1000). Antibody binding was visualized

with the peroxidase-based anti-rabbit EnVision KitTM (reference

K4003, DAKO) for both antibodies. Diaminobenzidine tetra

hydrochloride (DAB, DAKO) was used as chromogen. Sections

were counterstained with Mayer’s hematoxylin.

Immunohistochemical staining for MT3 was scored semiquan-

titatively, based on staining intensity and cell number, as follows:

0, no staining; 1, weak staining (independently of the number of

positive cells) or staining in less than 10% of cells (independently of

the staining intensity); 2, moderate to strong staining in more than

10% of cells. Scoring was performed as of observed in the most

positive areas. MT3 generally stained both nucleus and cytoplasm

(Figure S2). Staining for ASPM was analysed at high power view

(x1000), and scoring was performed as follows: 0, no staining; 1,

staining in scarce cells, 2, staining in numerous cells. Following

staining patterns were observed for ASPM: cytoplasmic, nuclear,

presence of paranuclear ‘‘dots’’ or marked cells in mitosis (Figure

S3).

Tissue micro array
Tissue microarray blocks from ependymoma patients treated

with the BBSFOP protocol were built [10]. For each patient, all

paraffin blocks and corresponding slides were obtained and

reviewed by two neuropathologists (PV, FA) for diagnostic

accuracy and tissue adequacy. Sonic aspirator extracts were

excluded from the study. Ependymomas were graded based on

WHO 2007 criteria. Histopathological findings (ependymal

differentiation, necrosis, endothelial proliferation, mitotic index,

anaplasia) were evaluated and recorded for each tumour.

Immunostainnings for EMA (1:1, clone E29, DAKO), GFAP

(1:200, clone 6F2, DAKO), OLIG2 (1:100, RnD systems,

Abingdon, UK) and Neurofilament Protein 70 (1:50, clone

2F11, DAKO) were performed for selected cases. Tumour

material was available at diagnosis and at recurrence for 24

patients. There was a total of 29 tumours at recurrence including

17 patients with one recurrence, 6 patients with two recurrences

(n = 12) and 1 patient with 3 recurrences (n = 3). Three to four

600 mM-cores were obtained from each tumour. Representative

areas were selected whenever present: classical ependymal

differentiation (ependymal rosettes, perivascular pseudo-rosettes,

and ependymal channels), anaplasia and high vascularisation

zones. Normal adult and fetal brain samples were included as

internal controls. Frequencies of positivity of MT3 and ASPM at

first recurrence were compared to frequencies at diagnosis by

McNemar test for paired data, taking into account the intra-

patient correlation.

Results

Copy number abnormalities with CGHarray
Considering the whole patient population, there was no

statistically significant increase in copy number abnormalities

from diagnosis to the relapse. The most frequent chromosomal

changes between the diagnosis and the relapse were losses of the

short arm of chromosome 3 and the long arm of chromosome 6;

only the locus 6q25.2 (RBM16, NM_014892) being statistically

significant (Figure S4). Copy number changes in 19 regions on

chromosome 9 discriminated supratentorial and posterior fossa

tumors (Figure S5, Table S2). There was no specific chromosomal

copy number variation according to the type of treatment

received, albeit loss on chromosomes 3p and 6q were more

frequent after radiotherapy (Figure S6).

Gene expression profiling
We first determined the number of gene expression probe sets

differentially expressed between recurrences and initial tumours.

These signature volumes were found to be highly variable, ranging

from 374 to 18814 probe sets (median: 6275 probes – mean: 9054

probes). The number of probes differentiating the recurrence from

its corresponding initial tumour could not be statistically correlated

with age at onset, location of the tumour or treatment received but

was only linked to the delay between the diagnosis and the relapse.

For recurrences occurring before 22 months (ie , to the median

delay of recurrence), mean signature included 4799 probes versus

9058 for recurrences that appeared after 22 months (p = 0.013,

Student t-test).

To study the molecular signature of the 27 relapses, we used a

hierarchical unsupervised clustering for 41000 probes present on

the arrays. Recurrences from the same patient were found to be

clustered together in 6 out of 7 patients who had experienced

several recurrences (Figure 1). Pearson’s correlation coefficient

between gene expression profiles of recurrences of the same

tumour ranged between 0.4191 and 0.8303 (median: 0.5492). As

illustrated in the upper lines on Figure 1, localization and adjuvant

therapy were not associated with the clustering of recurrences

based on their specific expression profile.

Differences in the recurrence signature according to
location

This analysis allowed the identification of 197 genes differen-

tially expressed between the two type of recurrence according to

localization (Table S3). A clear difference between frequencies in

gene expression according to location was observed. Figure 2A

shows the genes most frequently upregulated at recurrence

according to the location of the primary tumor. In PF relapses,

the ribosomal proteins were the most represented (12 genes). The

most abundantly upregulated genes in the relapses of ST

ependymomas were involved in cytoskeleton organization (gelso-

lin, SEMA5A, contactin-1, sarcoglycan, villin-like, scinderin) and

extracellular matrix/cellular interactions (gliomedin, EXTL1,

galectin-9, desmuslin, tetranectin, versican, COL21A1, CO-

L16A1, CXCL12). A functional analysis of each group signature

revealed that the main functional networks associated with

posterior fossa relapses were cell cycle, cellular assembly and

organization plus DNA Replication, Recombination and Repair

Ependymoma Recurrence Biology
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(Figure 2B). On the other hand, molecular transport and cell death

were evidentiated in the ST relapses.

Although tumor location was not statistically discriminant for

the recurrence signature as shown above, our results indicate that

progression pattern of supratentorial ependymomas may differ

from the one of posterior fossa ependymoma by the overexpres-

sion of genes involved in the mesenchymal transition. Conversely,

ependymoma recurrences in the posterior fossa progress more

often with the overexpression of genes associated with ribosomal

functions.

Differences in the recurrence signature according to
treatment

Specific gene expression profiles of each group (surveillance/

chemotherapy only/radiotherapy +/2 chemotherapy) (Table S4)

failed to identify differentially expressed genes between the

chemotherapy and the surveillance group; 58 genes appeared

significantly modified in relapses after RT compared to relapses

after chemotherapy or surveillance (Figure 3). Recurrences

occurring after RT were characterized by downregulation of

three potential tumor suppressor genes NKX2-2, YWHAE and

WWOX (Student t-test, p,0.01) by at least ten fold and

upregulation of HES-2, a known target of NOTCH pathway.

Treatment received before recurrence had thus only limited

influence on the differential gene expression signature.

Common signature of recurrences
Considering the limited gene expression signature differences

(number of probes and genes) we could identify as influenced by

the location of the tumor or by the type of treatment received

before the recurrences, we decided to analyse all recurrences

together in order to find common genes associated with

progression. Considering the poor correlation between the

different relapses of the same patient (median Pearson’s correlation

coefficient = 0.5492), we decided to include in the analysis all the

relapses of patients with multiple relapses.

Figure 1. Correlation matrix of the gene expression signatures of the recurrences. After a low-stringent initial filtering (p#0.01 in at least
20% of experiments), a subset of 29783 probes was used to measure the correlations between relapses (Pearson correlation). As expected, and
because each relapse was co-hybridized with its own reference, 6 of the 7 multi-recurrence patients clusterized together. There was however no
similar evolution of profiles according to relapse locations or to the treatments received before the recurrence. PF = posterior fossa, ST =
supratentorial, RT = radiotherapy, CT = chemotherapy, S = surveillance.
doi:10.1371/journal.pone.0012932.g001
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To identify the specific genes associated with tumour progres-

sion, we chose to consider probes with a significant LogRatio

(Relapse/diagnosis, p-value#0.01) in at least 50% of the samples.

This filter selected 7384 of the 41 000 initial probes. A one-group

t-test was then carried out on this subset of probes by considering

LogRatio = 0 as the null hypothesis. The 298 probes identified

Figure 2. Comparison of functions associated with location of relapses. A Gene most frequently upregulated at relapse for supratentorial
(upper yellow panel) are represented with the genes most frequently upregulated in infratentorial tumors (lower blue panel). Bars indicated the
percentage of tumors in each location with upregulation of the specific gene. B The -Log10(p-values) of the most discriminatory functions in each
group are represented. The p-value for a given function was calculated using the right-tailed Fisher Exact Test by considering 1) the number of
uploaded functional analysis molecules that participate in that function, and 2) the total number of molecules that are known to be associated with
that function in Ingenuity’s knowledge base.
doi:10.1371/journal.pone.0012932.g002

Ependymoma Recurrence Biology

PLoS ONE | www.plosone.org 6 September 2010 | Volume 5 | Issue 9 | e12932



Figure 3. Supervised hierarchical clustering of differentially expressed genes in ependymoma relapse compared to diagnosis.
Heatmap showing the 87 genes signature of the genes statistically up- or down-regulated in more than 50% of relapses with a fold change .2.
Notice the homogeneity of the underexpression of the metallothioneins.
doi:10.1371/journal.pone.0012932.g003
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were then analyzed in the IngenuityH database: 240 sequences

were mapped, ie related to known genes, 165 were network

eligible and 146 were pathway-eligible. This subset of 146 genes

was defined as the common signature of ependymoma recurrences

(Table S5). A reduced 87-genes signature of specific genes

associated with tumour progression is represented in Figure 4

and corresponds to the genes differentially expressed with a fold

change $2 in at least 50% of the recurrences. This signature is

characterized by the activation of the Wnt pathway with

overexpression of the following genes SFRP1, SFRP2, FZD2,

FZD8, WNT10B besides the upregulation of the stem cell marker

CD133 (PROM1) and the proliferation antigen identified by the

monoclonal antibody Ki-67 (MKI67). Two other groups of genes

were very homogenously differentially expressed in relapses. The

first one corresponds to proteins of the kinetochore (KIF14,

KIF11, KIF1C, KIF2C, PRC1, BUB1B, ZWINT, ASPM,

KNTC2, CENPF), all significantly upregulated. The second one

is the group of metallothioneins (MT1L, MT1G, MT1E, MT1X,

MT1B, MT2A, MT3) found to be downregulated in 65 to 85% of

relapses depending on the MT. MT3, also known as neural growth

inhibitory factor, was the most frequently downregulated gene

among metallothioneins. The expression of the proliferation

marker Ki67 was inversely correlated with MT3 at relapse

(Pearson’s correlation, r = 20.51, p,0.0001).

Several genes involved in the immune system were found to be

downregulated in the common signature of recurrence: CXCL5,

CX3CL1, TRAF3IP2, ITGBL1, SERPING1, IFT20, ENTPD3,

HP and HPR. Conversely, TIA1, a RNA-binding protein with

nucleolytic activity against cytotoxic lymphocytes, was significantly

overexpressed (adj. P value = 0.005).

Validation of microarray data by qPCR and
immunohistochemistry

Three genes expressed differentially in relapses compared to

diagnosis were chosen for further analysis. qPCR analysis were

performed for the genes KIF11, ASPM and MT3 in the tumours

previously analyzed by gene-expression microarray. The heat-map

on Figure 4A illustrates the correlation between microarray and

qPCR results. These analyses confirmed the progressive upregula-

tion of the genes KIF11 and ASPM at recurrence. For the MT3

gene, the results showed a low expression level at diagnosis that

tended to become even lower throughout relapse. Progressive

down-regulation of the MT3 gene expression during progression

was thus confirmed for 12 of the 17 (70.5%) patients. Among the 5

patients whose MT3 gene expression was stable or increased

during progression, 3 had expression levels below the one of

normal brain (Figure 4B). To verify the microarray data at the

protein level, immunohistochemistry for ASPM and MT3 was

performed on 7 patients among the 17 studied in microarray. The

same trend of decreasing MT3 and increasing ASPM staining was

confirmed (Figure 5).

Immunodetection of MT3 and ASPM expression in a
independant cohort of pediatric ependymomas

To confirm the changes in expression of MT3 and ASPM in

an independent cohort, we studied the expression of these two

genes on a TMA of childhood ependymomas composed of 24

tumours at diagnosis with at least one relapse. Among those 24

patients, 23 had a posterior fossa tumour and 1 a supratentorial

tumour. Seventeen patients (70.8%) displayed a weaker expres-

sion of MT3 at relapse compared to diagnosis (Table 1), 13 of

which becoming negative for MT3 during progression. Two

patients were negative at both diagnosis and relapse. Four had a

stable positive expression of MT3 over all samples, and only one

patient had a stronger expression of MT3 at recurrence

compared to diagnosis. ASPM staining was stronger at relapse

compared to diagnosis in 12 patients (50%), being even negative

at diagnosis in ten of then (Table 2). Among the other 12

patients, ASPM staining was identical at diagnosis and relapse,

either negative (3 patients) or positive (9 patients). Frequency of

positivity was significantly different at diagnosis comparing to

relapse for both markers (MT3: p = 0.002 and ASPM: p = 0.03,

McNemar test).

Figure 4. Confirmation analyses (internal validation of gene expression). A qPCR Heatmap showing expression of 3 candidate genes (MT3,
KIF11, ASPM) in gene expression array and RT-PCR side to side. Pearson correlation coefficients between the two analyses are indicated. B Evolution
of MT3 expression throughout progression. RT-PCR levels are given as Log scale compared to normal brain.
doi:10.1371/journal.pone.0012932.g004
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Mechanism of regulation of metallothionein in
ependymomas

Metallothioneins being the most homogeneously downregulated

genes at relapse, we decided to investigate the possible mecha-

nisms of their repression at the genetic and epigenetic levels.

Considering that all MT genes are clustered on chromosome

16q13, we first verified a possible deletion of this chromosome

region. CGH array analysis did not show a loss for this

chromosome region at relapse (Figure S5). To rule out the

possibility of a small genomic deletion missed by CGHarray

analysis we carried out quantitative PCR analysis for the MT2A

gene. Amplification products could be obtained in all 37 samples

tested with a CT corresponding to the one of normal DNA

reference (Figure S7).

The absence of DNA deletion prompted us to investigate the

regulation of gene expression at transcriptional level. We first

verified whether genes known to interact with the MT gene

promoters were differentially expressed at relapse. None of the

transcriptional activators (MTF1, USF1, NF1, STAT3, IL6) was

found to be down-regulated at relapse compared to diagnosis.

None of the transcriptional repressors (SIN3A, SIN3B, MTA1,

HDAC1) was found to be upregulated.

Since differential expression of regulatory factors could not

explain MT3 downregulation, we investigated whether epigenetic

factors and especially CpG islands methylation, were implicated in

MT3 down-regulation at relapse. If methylation would be the cause

of MT3 downregulation, more methylated CpG islands should be

observed at relapse. We observed limited to no methylation of the

74 CpG islands in regulatory regions and intron 1 of MT3 and no

increasing methylation at relapse (Figure 6A). None of the few

methylated sites was correlated with gene expression measured by

qPCR (Figure 6B). To confirm this data, ependymoma primary cells

(EP1 and EP2) were treated with the demethylating agent 5-Aza-

DeoxyCytidine (5-Aza) followed by MT3 and MT2Agene expres-

sion analysis by qPCR (Figure 6C). DAOY, a medulloblastoma cell

line was used for comparison. The 5-Aza treatment alone induced a

small increase in MT2A expression level in all cells tested (1.8, 2.2

and 5.7 fold for EP1, EP2 and DAOY respectively). The 5-Aza

treatment alone did not increase MT3 expression in the

ependymoma cells, while a 2 log increase in expression was found

for DAOY. This data confirms the CpG islands methylation results,

since the EP1 and EP2 exhibit very few methylated sites on the

contrary to DAOY cells which harbor a hypermethylated pattern

on MT3 promoter region (data not shown).

Figure 5. MT3 and ASPM immunostains differ at diagnosis and relapse. (A) Strong nuclear and cytoplasmic staining for MT3 at diagnosis. (B)
At relapse the same patient shown at A displayed only weak MT3 staining. Another example of paired tumours, for which ASPM immunostaining was
negative at diagnosis (C) and positive at relapse (D). Please also note paranuclear dots and a marked cell in mitosis (D, inserts), two patterns typically
observed in ASPM immunostains, together with weak cytoplasmic staining.
doi:10.1371/journal.pone.0012932.g005
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To test if epigenetic inactivation of MT genes could be due to

histone acetylation, cells were also treated with trichostatin A

(TSA), a deacethylating agent, alone or in combination with 5-Aza

(Figure 6D). On the other hand, TSA proved effective in

increasing dramatically MT3 expression in all tested cells: 135

fold for EP1, 198 fold for EP2, and 73 fold in the DAOY. MT2A

expression level did not change significantly in the ependymoma

primary and in DAOY cells after TSA treatment. Combination of

5-Aza and TSA was more effective than either agent alone in

increasing MT3 levels in EP2 and in DAOY cell lines. MT2A

levels in EP cells were significantly increased after a treatment

combining 5-Aza and TSA compared to either treatment alone.

Epigenetic modulation of EP cells in vitro confirmed that MT3

expression was not regulated by promoter methylation but more

likely by histone acetylation status. On the contrary, MT2A was

not regulated only by histone acetylation status but also by

methylation.

The MT3 promoter presents many regulatory elements, such us

MRE (Metal Responsive Element) that allows MT induction by

metal cations through MTF1 transcription factor and GRE

(Glucocorticoid Responsive Element) for glucocorticoids induc-

tion. To check chromatin accessibility, we treated ependymoma

primary cells EP1 and EP2 and DAOY cell line with ZnSO4 and

dexamethasone (Figure 6D). Both agents were able to induce

MT2A expression in all cells tested. Nevertheless MT3 was

induced by ZnSO4 in only one of the two EP cells and in DAOY.

Dexamethasone did not induce a significant upregulation of MT3

in any of the three cell lines tested. These results suggest that the

MRE in the promoter of MT3 is not always accessible in EP cells

in vitro.

Discussion

Despite several molecular studies, the oncogenesis of ependy-

moma remains elusive. Specific molecular events occurring during

progression have only been seldom reported [30,35]. This work

focused on recurrence-specific gene expression signature varia-

tions. We choose a dual color microarray system in order to

maximize the likelihood to discover significant changes in gene

expression. The tumour of the patient at diagnosis was used as the

reference and marked with Cy5 and the tumour of the same

patient was marked with Cy3 and co-hybridized competitively.

Consequently, only real changes in gene expression occurring at

relapse were detected. As ependymoma’s cell of origin remains

uncertain, we also thought that most of the gene expression studies

have suffered from the lack of specificity of the reference mRNA

used. When comparing the tumour with the normal brain, most of

the genes that are overexpressed correspond to cellular processes

linked to proliferation while most of the genes downregulated

correspond to neuronal proteins. Moreover, it has been recently

assumed that glial tumours display brain-region specific expression

profiles regardless of the tumour histology [1,12,14,36]. To

Table 1. Metallothionein 3 immunohistochemical expression
in ependymomas at diagnosis and relapse.

Evolution Pattern Patient D R1 R2 R3

Decreased ++/- A ++ -

++/- B ++ -

++/- C ++ -

++/- D ++ -

++/- E ++ - -

++/- F ++ ++ - -

++/- G ++ + + -

+/- H + -

+/- I + -

+/- J + -

+/- K + -

+/- L + -

+/- M + + -

++/+ N ++ +

++/+ O ++ +

++/+ P ++ +

++/+ Q ++ ++ +

Stable ++/++ R ++ ++

++/++ S ++ ++

++/++ T ++ ++ ++

+/+ U + +

-/- V - -

-/- W - - -

Increased +/++ X + + ++

D = tumor at diagnosis, R1 = first relapse, R2 = second relapse, R3 = third
relapse, ++ = medium to strong staining, + = weak staining, – = negative.
doi:10.1371/journal.pone.0012932.t001

Table 2. ASPM immunohistochemical expression in
ependymomas at diagnosis and relapse.

Evolution Pattern Patient D R1 R2 R3

Increased -/+ A - +

-/+ D - +

-/+ S - +

-/+ F - +

-/+ H - +

-/+ E - - +

-/+ M - - +

-/+ Q - - +

-/+ F - - + +

-/+ G - - - +

+/++ U + ++

+/++ V + ++

Stable -/- B - -

-/- C - -

-/- I - - -

+/+ L + +

+/+ N + +

+/+ O + +

+/+ P + +

+/+ K + +

+/+ R + +

+/+ S + +

+/+ W + + +

+/+ T + + +

D = tumor at diagnosis, R1 = first relapse, R2 = second relapse, R3 = third
relapse, ++ = medium to strong staining, + = weak staining, – = negative.
doi:10.1371/journal.pone.0012932.t002
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analyse properly gene expression changes compared to the control,

one should therefore use the normal brain control from the same

location as the tumor. The brain region-specific expression pattern

should remain stable over time between diagnosis and local

recurrence. It is thus not surprising that none of the genes

described as location–specific at diagnosis appeared in our

recurrence signature.

Microarray studies conducted to discover molecular pathways

linked with tumour progression and papers comparing metastases

to initial tumours have already been performed [37–41]. The use

of paired samples alleviate the bias associated with interindividual

variation; for example, comparison of expression profile of

tumours prior to and following systemic chemotherapy allowed

the identification of differentially expressed genes correlated with

chemoresistance in ovarian carcinomas. [37] In addition, paired

samples by reducing variability increase strikingly the statistical

power of the study [42].

Microarray analysis of recurrence-specific expression changes

demonstrates the existence of a common signature for recurrence

in ependymoma. This signature pinpoints pathways already

described in other ependymoma studies focusing on tumours at

diagnosis such as the Wnt and the Notch pathways [12,14,30].

The common signature at relapse also unveils several genes

already described in the death-from-cancer signature [43]

Figure 6. A: Methylation status of 74 CpG sites at MT3 promoter and intron 1. Each row of circles represents one EP sample sequenced
from PCR products generated from amplification of bisulfite-treated DNA. Empty circles = unmethylated cytosines; Dotted circles = hemimethylated
cytosines; Dark circles = methylated citosines. B: MT3 expression analysis by quantitative PCR in the corresponding ependymoma
tumors. Samples with results under 1.0 are downregulated and those over 1.0 are upregulated compared to normal brain. The black bars
correspond to sample at diagnosis, and the grey bar to relapse. Each histogram represent the corresponding sample studied for methylation. C:
Epigenetic modulation of MT2A and MT3 expression on short term ependymoma cultures EP1 and EP2 and medulloblastoma cell line DAOY
as control. Demethylation by 5-Aza-Deoxycytidine (left panel). Histone deacetylation inhibition by Trichostatin A (middle panel). Combined
treatments (right panel). D: Treatment with zinc sulfate restores the expression of MT3. MT2A and MT3 expression level after 24 hours of
200 mM of ZnSO4 (left panel) and 5 microM of dexamethasone (right panel) treatments in the ependymoma primary culture cells EP1 and EP2 and in
the medulloblastoma cell line DAOY.
doi:10.1371/journal.pone.0012932.g006
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including MKI67, KNTC2 (HEC1) and BUB1B. These last two

genes belong to a broader group of molecules overexpressed at

relapse in ependymoma and playing a role in spindle formation.

Several kinetochore molecules were found in our signature and

have already been described as prognostic markers in other

tumours: KNTC2 in lung cancer and kinesin KIF14 in breast and

lung cancer [44–46]. The spindle molecule ASPM has been shown

to be involved in the malignant progression of gliomas possibly

through expansion of a cancer stem cell compartment [47]. Beside

their prognostic value, these molecules may also represent new

therapeutic targets. Classic spindle poisons target tubulin and have

not demonstrated their efficacy in ependymoma. But new

chemotherapies, known as kinesin spindle inhibitors, are actually

under evaluation. Among them, monastrol, a kinesin Eg5 (KIF11)

inhibitor, has already demonstrated its efficiency in glioma in vitro

[48–50] and is currently under clinical development.

Apart from upregulation of genes associated with proliferation,

the key event associated with recurrence in our common signature

was down-regulation of metallothioneins, especially MT3. The

metallothioneins are small proteins that posses about 60 amino

acids, with a high level of cysteines that confers to then the ability

to bind divalent metals. Metallothioneins function as metals

reservoirs, maintaining metal homeostasis and contributing to

heavy metals detoxification, phenomenon that can lead to

chemoresistance in some cancers, [51–53] and scavenging free

radicals [54]. In mammals there are four groups of MT proteins:

MT1, MT2, MT3 and MT4, that are coded by a family of genes

clustered on chromosome 16q13. MT2 protein coded by MT2A

gene accounts for 80% of the MTs proteins. The MT1 and MT2

are ubiquitously expressed. MT3 was first detected in the brain of

patients with Alzheimer’s disease, identified as a factor inhibiting

neuronal growth in culture and called neural GIF (growth

inhibitory factor) [55]. MT3 is expressed predominantly within

the CNS and has been found both in neurons and in astrocytes

[56]. MT3 is expressed at a lower level in other tissues such as

kidney [57,58]. MT4 is specifically expressed in the stratified

squamous epithelium [59]. A number of studies have shown

enhanced synthesis of MTs in proliferating tissues suggesting its

crucial role in normal and neoplasic cell growth [60] but their

precise role in carcinogenesis is still unclear, once they can also act

as oncosupressor [61]. In several carcinomas indeed, metallothio-

neins are downregulated compared to the tissue of origin [34,62–

65]. In ependymoma, the expression of MT 1-2 has been studied

at diagnosis by immunohistochemistry; MT1-2 positivity was

statistically more frequent in low grade ependymomas and was

associated with a better survival [66]. To the best of our

knowledge, our study is the first one focusing on MT3 and

displaying immunostains for MT3 in brain tumors. Of note, in our

controls consisting of normal adult and fetal brain we observed

prominent immunostaining for MT3 in astrocytes but no staining

in neurons (Figure S2). Since no genomic loss was observed on the

chromosome 16q13 region in our ependymoma samples, this

downregulation was more likely to be linked to transcriptional

inactivation.

Former descriptions of MT3 inhibition by promoter methyla-

tion [34] prompted us to perform a methylation assay on the MT3

gene in ependymomas. No significant hypermethylation was

observed, even if we consider exclusively the intron 1, reported

to be the region abnormally hypermethylated associated with low

MT3 expression in gastric carcinoma cells [44]. The inability of 5-

Aza to restore MT3 expression in EP cells confirmed these data.

Since all metallothioneins were homogeneously downregulated

at recurrence compared to diagnosis, we hypothesized that

chromatin changes in the 16q13 region of the MT genes cluster

could explain their repression. Histone deacetylases can regulate

expression of tumor suppressor genes and activities of transcrip-

tional factors involved in both cancer initiation and progression

through alteration of either DNA or the structural components of

chromatin. We therefore used the prototypic histone deacetylase

inhibitor TSA to modulate MT expression. While MT3 expression

was restored by TSA treatment, this was not the case for MT2A,

shown above to be also dependant on methylation. The TSA effect

could be explained either by inhibition of HDAC1, a known

repressor of MT genes or by opening of the chromatin structure

and upregulation of MTF1[67]. Although the main regulatory

event for MT3 seems to be associated with histone acetylation, the

synergistic effect observed in EP2 by combining TSA and 5-Aza

suggest that other methylated genes or histones maybe indirectly

involved in the regulation of MT3. Histone deacetylase inhibitors

may therefore be interesting drugs in ependymomas.

While the expression of MT3 and MT4 are constitutive and

tissue-specific, MT1 and MT2 expressions are more ubiquitous

and highly inducible by a variety of developmental and

environmental signals, such as metals, oxidative stress, cytokines,

glucocorticoids hormones and irradiation [68]. In this work, we

show the possibility to induce MT3 expression with zinc in brain

tumor (EP and medulloblastoma) cells. However, metal-responsive

element in the promoter of MT3 are not accessible in all EP cells.

Indeed, MT3 has been considered for a long time as a non metal-

inducible gene in normal astrocytes and neurons cultures [69,70],

but recently Wei and co-workers showed MT3 induction after zinc

treatment in prostate cancer cells [71]. Due to poor penetration of

zinc into the brain, modulating MT3 expression in ependymomas

with this cation would need proper formulations.

Several genes involved in the immune system were found to be

downregulated in the common signature of recurrence (Figure 2B,

Table S5); some of them being already reported by Donson et al,

as associated with the absence of recurrence [72]. Our data are

thus consistant with the hypothesis of these authors suggesting a

role for the immune system to prevent recurrence in ependymo-

ma.

Analysis of gene expression profiles specific of each location

pointed out overexpression of genes related to the epithelial-

mesenchymal transition in supratentorial locations [72]. The

overexpression of genes involved in cytoskeleton organization as

well as those involved in cel/cell and cell/matrix interactions could

explain the higher invasive capacities of these tumors at the time of

relapse. Contactin 1 (CNTN1), for example, has already been

proposed as a key factor in glioma dissemination and its expression

tends to be increased in several brain tumours [73]. In addition,

contactin 1 has recognized interactions with developmental

control genes belonging to the Notch pathway [74]. With respect

to the recurrences of posterior fossa ependymomas, the upregula-

tion of ribosomal proteins is consistent with increased proliferation

usually seen in these tumors at recurrence, depicted for example

by increased Ki67 labeling; in medulloblastomas as well, the

overexpression of ribosomal proteins has been shown to be the

hallmark of aggressive tumors[75].

The analysis of genes specifically downregulated at relapse after

radiotherapy identified NKX2-2, a transcription factor involved in

glioma histogenesis [76]. Its repression is associated with the

blockade of oligodendrocyte differentiation [77] and the oncogenic

phenotype of cancer [76].

Conclusion
Our data suggests that the gene expression profile of ependymo-

ma shows limited but significant changes upon relapses. This gene

expression profile is only minimally influenced by the treatments
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used. However, the changes in expression profile at recurrence were

linked to some extent with the location of the initial tumor. Despite

interindividual variations, ependymoma relapses display a common

gene expression signature that is marked by the upregulation of

kinetochore proteins and downregulation of metallothioneins. The

therapeutic strategies targeting kinesin proteins or those aiming at

restoring metallothionein expression, such as histone deacetylase

inhibitors, deserve further study in these tumours.

Supporting Information

Table S1 Clinical characteristics of the patients. D = diagnosis.

R = recurrence. Delay of relapse in days. BBSFOP =

polychemotherapy protocol, see ref 7. RT = radiotherapy. PF

= posterior fossa, ST = supratentorial, SPI = spinal. DOD =

dead of disease, ADF = alive disease-free, AWD = alive with

disease. Time of follow-up in months.

Found at: doi:10.1371/journal.pone.0012932.s001 (0.03 MB

XLS)

Table S2 Chromosome 9 imbalances differentiating posterior

fossa and supratentorial ependymomas. Corresponding genes are

indicated in the second column.

Found at: doi:10.1371/journal.pone.0012932.s002 (0.18 MB

XLS)

Table S3 List of genes differentially regulated according to

location of the initial tumor. The site of the relapse was not

identical to the initial site in only one case (Pt3).

Found at: doi:10.1371/journal.pone.0012932.s003 (0.16 MB

XLS)

Table S4 List of genes differentially regulated according to the

treatment(s) received. All treatments received between diagnosis

and relapse are considered. Patients having received chemother-

apy and radiotherapy between diagnosis and the relapse

considered are included in the radiotherapy group for the analysis.

Found at: doi:10.1371/journal.pone.0012932.s004 (0.21 MB

XLS)

Table S5 List of genes differentially expressed at recurrence.

Found at: doi:10.1371/journal.pone.0012932.s005 (0.07 MB

XLS)

Figure S1 Ependymoma short-term cultures. Cells were cul-

tured after mechanical dissociation of fresh tumor material kept in

DMEM. Low passages (5th to 15th) were used for the experiments.

Found at: doi:10.1371/journal.pone.0012932.s006 (1.32 MB

DOC)

Figure S2 Metallothionein 3 (MT3) staining of normal brain.

MT3 is detected in the astrocytes but not in the neurons (panel A)

nor in the oligodendrocytes (panel B).

Found at: doi:10.1371/journal.pone.0012932.s007 (3.97 MB TIF)

Figure S3 ASPM staining of ependymomas. ASPM is detected

in the mitotic spindle in every phase of the mitosis, as well as in the

cytoplasm of cells not in mitosis.

Found at: doi:10.1371/journal.pone.0012932.s008 (10.17 MB

TIF)

Figure S4 Comparison of CGHarray profiles at diagnosis and at

relapse. D = diagnosis; R = relapse.

Found at: doi:10.1371/journal.pone.0012932.s009 (0.22 MB TIF)

Figure S5 Chromosomal imbalances that are distinct in

supratentorial and posterior fossa tumors. ST = supratentorial;

PF = posterior fossa.

Found at: doi:10.1371/journal.pone.0012932.s010 (0.20 MB TIF)

Figure S6 Chromosomal changes at relapse according to

treatment received. CT = chemotherapy; RT = radiotherapy;

Surv = surveillance.

Found at: doi:10.1371/journal.pone.0012932.s011 (0.16 MB TIF)

Figure S7 Quantitative PCR of MT2A gene in ependymoma

samples.

Found at: doi:10.1371/journal.pone.0012932.s012 (0.03 MB

DOC)

Acknowledgments

The authors thank:

Clemens Dirven from the Erasmus Universiteit Medisch Zentrum in

Rotterdam for providing some of the samples for the study.

Dr Donald Sens and Dr Scott Garrett from the School of Medicine and

Health Sciences, University of North Dakota, Grand Forks, ND for

providing us the anti-metallothionein 3 antibody.

The ‘‘Centre de Ressources Biologiques’’ of Necker Hospital in Paris,

‘‘NeuroBioTec tumor bank in Lyon and the pathologists of the French

Society of Pediatric Cancer (SFCE) who participated in the constitution of

the tissue-microarray blocks.

Part of this work has been presented at the 2008 Annual Meeting of the

American Society of Clinical Oncology in Chicago, abstract no 10048.

Author Contributions

Conceived and designed the experiments: MP FC CDB PD VL GV JG.

Performed the experiments: MP FC CDB FA LL FD VS PV. Analyzed the

data: MP FC CDB FA LL PV AM PD JG. Contributed reagents/

materials/analysis tools: FC FA SP PV PD VL GV. Wrote the paper: MP

FC CDB FA JG.

References

1. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, et al. (2005) Radial glia cells

are candidate stem cells of ependymoma. Cancer Cell 8: 323–335.

2. McLendon RE, Wiestler OD, Kros JM (2007) Ependymoma. In: Louis DN, ed.

WHO Classification of Tumours of the Central Nervous System. Lyon: IARC.

pp 74–78.

3. Peris-Bonet R, Martinez-Garcia C, Lacour B, Petrovich S, Giner-Ripoll B, et al.

(2006) Childhood central nervous system tumours–incidence and survival in
Europe (1978-1997): report from Automated Childhood Cancer Information

System project. Eur J Cancer 42: 2064–2080.

4. Bouffet E, Perilongo G, Canete A, Massimino M (1998) Intracranial

ependymomas in children: a critical review of prognostic factors and a plea

for cooperation. Med Pediatr Oncol 30: 319–329; discussion 329–331.

5. Wetjen N, Raffel C (2006) Ependymomas. In: Tonn JC WM, Rutka JT,

Grossman SA, eds. Neuro-Oncology of CNS tumors. Berlin Heidelberg:
Springer. pp 453–460.

6. Perilongo G, Massimino M, Sotti G, Belfontali T, Masiero L, et al. (1997)
Analyses of prognostic factors in a retrospective review of 92 children with

ependymoma: Italian Pediatric Neuro-oncology Group. Med Pediatr Oncol 29:

79–85.

7. Merchant TE, Li C, Xiong X, Kun LE, Boop FA, et al. (2009) Conformal

radiotherapy after surgery for paediatric ependymoma: a prospective study.
Lancet Oncol 10: 258–266.

8. van Veelen-Vincent ML, Pierre-Kahn A, Kalifa C, Sainte-Rose C, Zerah M,

et al. (2002) Ependymoma in childhood: prognostic factors, extent of surgery,
and adjuvant therapy. J Neurosurg 97: 827–835.

9. Figarella-Branger D, Civatte M, Bouvier-Labit C, Gouvernet J, Gambarelli D,
et al. (2000) Prognostic factors in intracranial ependymomas in children.

J Neurosurg 93: 605–613.

10. Grill J, Le Deley MC, Gambarelli D, Raquin MA, Couanet D, et al. (2001)

Postoperative chemotherapy without irradiation for ependymoma in children

under 5 years of age: a multicenter trial of the French Society of Pediatric
Oncology. J Clin Oncol 19: 1288–1296.

11. Grundy RG, Wilne SA, Weston CL, Robinson K, Lashford LS, et al. (2007)
Primary postoperative chemotherapy without radiotherapy for intracranial

ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol
8: 696–705.

12. Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, et al. (2006)

Identification of tumor-specific molecular signatures in intracranial ependymo-

Ependymoma Recurrence Biology

PLoS ONE | www.plosone.org 13 September 2010 | Volume 5 | Issue 9 | e12932



ma and association with clinical characteristics. J Clin Oncol 24: 5223–

5233.

13. Kilday JP, Rahman R, Dyer S, Ridley L, Lowe J, et al. (2009) Pediatric

ependymoma: biological perspectives. Mol Cancer Res 7: 765–786.

14. Palm T, Figarella-Branger D, Chapon F, Lacroix C, Gray F, et al. (2009)

Expression profiling of ependymomas unravels localization and tumor grade-

specific tumorigenesis. Cancer 115: 3955–3968.

15. Donson AM, Birks DK, Barton VN, Wei Q, Kleinschmidt-Demasters BK, et al.

(2009) Immune gene and cell enrichment is associated with a good prognosis in

ependymoma. J Immunol 183: 7428–7440.

16. Korshunov A, Witt H, Hielscher T, Benner A, Remke M, et al. (2010) Molecular

Staging of Intracranial Ependymoma in Children and Adults. J Clin Oncol 28:

3182–3190.

17. Hamilton RL, Pollack IF (1997) The molecular biology of ependymomas. Brain

Pathol 7: 807–822.

18. Hayama S, Daigo Y, Kato T, Ishikawa N, Yamabuki T, et al. (2006) Activation

of CDCA1-KNTC2, members of centromere protein complex, involved in

pulmonary carcinogenesis. Cancer Res 66: 10339–10348.

19. Hirose Y, Aldape K, Bollen A, James CD, Brat D, et al. (2001) Chromosomal

abnormalities subdivide ependymal tumors into clinically relevant groups.

Am J Pathol 158: 1137–1143.

20. Mendrzyk F, Korshunov A, Benner A, Toedt G, Pfister S, et al. (2006)

Identification of gains on 1q and epidermal growth factor receptor overexpres-

sion as independent prognostic markers in intracranial ependymoma. Clin

Cancer Res 12: 2070–2079.

21. Sowar K, Straessle J, Donson AM, Handler M, Foreman NK (2006) Predicting

which children are at risk for ependymoma relapse. J Neurooncol 78: 41–46.

22. Suarez-Merino B, Hubank M, Revesz T, Harkness W, Hayward R, et al. (2005)

Microarray analysis of pediatric ependymoma identifies a cluster of 112

candidate genes including four transcripts at 22q12.1-q13.3. Neuro Oncol 7:

20–31.

23. Tabori U, Ma J, Carter M, Zielenska M, Rutka J, et al. (2006) Human telomere

reverse transcriptase expression predicts progression and survival in pediatric

intracranial ependymoma. J Clin Oncol 24: 1522–1528.

24. Bortolotto S, Chiado-Piat L, Cavalla P, Bosone I, Mauro A, et al. (2001)

CDKN2A/p16 in ependymomas. J Neurooncol 54: 9–13.

25. Alonso ME, Bello MJ, Arjona D, Gonzalez-Gomez P, Lomas J, et al. (2002)

Analysis of the NF2 gene in oligodendrogliomas and ependymomas. Cancer

Genet Cytogenet 134: 1–5.

26. Schneider D, Monoranu CM, Huang B, Rutkowski S, Gerber NU, et al. (2009)

Pediatric supratentorial ependymomas show more frequent deletions on

chromosome 9 than infratentorial ependymomas: a microsatellite analysis.

Cancer Genet Cytogenet 191: 90–96.

27. Ridley L, Rahman R, Brundler MA, Ellison D, Lowe J, et al. (2008)

Multifactorial analysis of predictors of outcome in pediatric intracranial

ependymoma. Neuro Oncol 10: 675–689.

28. Snuderl M, Chi SN, De Santis SM, Stemmer-Rachamimov AO, Betensky RA,

et al. (2008) Prognostic value of tumor microinvasion and metalloproteinases

expression in intracranial pediatric ependymomas. J Neuropathol Exp Neurol

67: 911–920.

29. Lukashova-v Zangen I, Kneitz S, Monoranu CM, Rutkowski S, Hinkes B, et al.

(2007) Ependymoma gene expression profiles associated with histological

subtype, proliferation, and patient survival. Acta Neuropathol 113: 325–337.

30. Puget S, Grill J, Valent A, Bieche I, Dantas-Barbosa C, et al. (2009) Candidate

Genes on Chromosome 9q33-34 Involved in the Progression of Childhood

Ependymomas. J Clin Oncol 27: 1884–1892.

31. Lu R, Lee GC, Shultz M, Dardick C, Jung K, et al. (2008) Assessing probe-

specific dye and slide biases in two-color microarray data. BMC Bioinformatics

9: 314.

32. Martin-Magniette ML, Aubert J, Cabannes E, Daudin JJ (2005) Evaluation of

the gene-specific dye bias in cDNA microarray experiments. Bioinformatics 21:

1995–2000.

33. t Hoen PA, Turk R, Boer JM, Sterrenburg E, de Menezes RX, et al. (2004)

Intensity-based analysis of two-colour microarrays enables efficient and flexible

hybridization designs. Nucleic Acids Res 32: e41.

34. Smith E, Drew PA, Tian ZQ, De Young NJ, Liu JF, et al. (2005)

Metallothionien 3 expression is frequently down-regulated in oesophageal

squamous cell carcinoma by DNA methylation. Mol Cancer 4: 42.

35. Grill J, Avet-Loiseau H, Lellouch-Tubiana A, Sevenet N, Terrier-Lacombe MJ,

et al. (2002) Comparative genomic hybridization detects specific cytogenetic

abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer

Genet Cytogenet 136: 121–125.

36. Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, et al. (2007)

Distinct genetic signatures among pilocytic astrocytomas relate to their brain

region origin. Cancer Res 67: 890–900.

37. L’Esperance S, Popa I, Bachvarova M, Plante M, Patten N, et al. (2006) Gene

expression profiling of paired ovarian tumors obtained prior to and following

adjuvant chemotherapy: molecular signatures of chemoresistant tumors.

Int J Oncol 29: 5–24.

38. Liu CJ, Liu TY, Kuo LT, Cheng HW, Chu TH, et al. (2008) Differential gene

expression signature between primary and metastatic head and neck squamous

cell carcinoma. J Pathol 214: 489–497.

39. Ki DH, Jeung HC, Park CH, Kang SH, Lee GY, et al. (2007) Whole genome
analysis for liver metastasis gene signatures in colorectal cancer. Int J Cancer

121: 2005–2012.

40. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature

of metastasis in primary solid tumors. Nat Genet 33: 49–54.

41. Sousa JF, Espreafico EM (2008) Suppression subtractive hybridization profiles of

radial growth phase and metastatic melanoma cell lines reveal novel potential

targets. BMC Cancer 8: 19.

42. Michiels S, Koscielny S, Hill C (2007) Interpretation of microarray data in

cancer. Br J Cancer 96: 1155–1158.

43. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a

death-from-cancer signature predicting therapy failure in patients with multiple
types of cancer. J Clin Invest 115: 1503–1521.

44. Corson TW, Gallie BL (2006) KIF14 mRNA expression is a predictor of grade
and outcome in breast cancer. Int J Cancer 119: 1088–1094.

45. Corson TW, Huang A, Tsao MS, Gallie BL (2005) KIF14 is a candidate
oncogene in the 1q minimal region of genomic gain in multiple cancers.

Oncogene 24: 4741–4753.

46. Corson TW, Zhu CQ, Lau SK, Shepherd FA, Tsao MS, et al. (2007) KIF14

messenger RNA expression is independently prognostic for outcome in lung
cancer. Clin Cancer Res 13: 3229–3234.

47. Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, et al. (2002) ASPM is

a major determinant of cerebral cortical size. Nat Genet 32: 316–320.

48. Muller C, Gross D, Sarli V, Gartner M, Giannis A, et al. (2007) Inhibitors of

kinesin Eg5: antiproliferative activity of monastrol analogues against human
glioblastoma cells. Cancer Chemother Pharmacol 59: 157–164.

49. Chin GM, Herbst R (2006) Induction of apoptosis by monastrol, an inhibitor of
the mitotic kinesin Eg5, is independent of the spindle checkpoint. Mol Cancer

Ther 5: 2580–2591.

50. Valensin S, Ghiron C, Lamanna C, Kremer A, Rossi M, et al. (2009) KIF11

inhibition for glioblastoma treatment: reason to hope or a struggle with the
brain? BMC Cancer 9: 196.

51. Cherian MG, Jayasurya A, Bay BH (2003) Metallothioneins in human tumors
and potential roles in carcinogenesis. Mutat Res 533: 201–209.

52. Yap X, Tan HY, Huang J, Lai Y, Yip GW, et al. (2008) Over-expression of
metallothionein predicts chemoresistance in breast cancer. J Pathol 217:

563–570.

53. Satoh M, Cherian MG, Imura N, Shimizu H (1994) Modulation of resistance to
anticancer drugs by inhibition of metallothionein synthesis. Cancer Res 54:

5255–5257.

54. Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic

Biol Med 14: 325–337.

55. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) The growth

inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino
acid metallothionein-like protein. Neuron 7: 337–347.

56. Hidalgo J, Aschner M, Zatta P, Vasak M (2001) Roles of the metallothionein
family of proteins in the central nervous system. Brain Res Bull 55: 133–145.

57. Garrett SH, Sens MA, Todd JH, Somji S, Sens DA (1999) Expression of MT-3
protein in the human kidney. Toxicol Lett 105: 207–214.

58. Ebadi M, Iversen PL, Hao R, Cerutis DR, Rojas P, et al. (1995) Expression and
regulation of brain metallothionein. Neurochem Int 27: 1–22.

59. Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, et al. (1994)

Induction of a new metallothionein isoform (MT-IV) occurs during differenti-
ation of stratified squamous epithelia. Biochemistry 33: 7250–7259.

60. Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A, Panayappan L,
Chatterjee M (2007) Metallothionein: an overview. World J Gastroenterol 13:

993–996.

61. Ferrario C, Lavagni P, Gariboldi M, Miranda C, Losa M, et al. (2008)

Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma.
Lab Invest 88: 474–481.

62. Deng D, El-Rifai W, Ji J, Zhu B, Trampont P, et al. (2003) Hypermethylation of
metallothionein-3 CpG island in gastric carcinoma. Carcinogenesis 24: 25–29.

63. Dalgin GS, Drever M, Williams T, King T, DeLisi C, et al. (2008) Identification
of novel epigenetic markers for clear cell renal cell carcinoma. J Urol 180:

1126–1130.

64. Zhong S, Fields CR, Su N, Pan YX, Robertson KD (2007) Pharmacologic

inhibition of epigenetic modifications, coupled with gene expression profiling,

reveals novel targets of aberrant DNA methylation and histone deacetylation in
lung cancer. Oncogene 26: 2621–2634.

65. Henrique R, Jeronimo C, Hoque MO, Nomoto S, Carvalho AL, et al. (2005)
MT1G hypermethylation is associated with higher tumor stage in prostate

cancer. Cancer Epidemiol Biomarkers Prev 14: 1274–1278.

66. Korshunov A, Sycheva R, Timirgaz V, Golanov A (1999) Prognostic value of

immunoexpression of the chemoresistance-related proteins in ependymomas: an
analysis of 76 cases. J Neurooncol 45: 219–227.

67. Ghoshal K, Datta J, Majumder S, Bai S, Dong X, et al. (2002) Inhibitors of

histone deacetylase and DNA methyltransferase synergistically activate the
methylated metallothionein I promoter by activating the transcription factor

MTF-1 and forming an open chromatin structure. Mol Cell Biol 22: 8302–8319.

68. Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein

induction. Mutat Res 533: 211–226.

69. Kramer KK, Liu J, Choudhuri S, Klaassen CD (1996) Induction of

metallothionein mRNA and protein in murine astrocyte cultures. Toxicol Appl
Pharmacol 136: 94–100.

Ependymoma Recurrence Biology

PLoS ONE | www.plosone.org 14 September 2010 | Volume 5 | Issue 9 | e12932



70. Kramer KK, Zoelle JT, Klaassen CD (1996) Induction of metallothionein

mRNA and protein in primary murine neuron cultures. Toxicol Appl

Pharmacol 141: 1–7.

71. Wei H, Desouki MM, Lin S, Xiao D, Franklin RB, et al. (2008) Differential

expression of metallothioneins (MTs) 1, 2, and 3 in response to zinc treatment in

human prostate normal and malignant cells and tissues. Mol Cancer 7: 7.

72. Voulgari A, Pintzas A (2009) Epithelial-mesenchymal transition in cancer

metastasis: mechanisms, markers and strategies to overcome drug resistance in

the clinic. Biochim Biophys Acta 1796: 75–90.

73. Rome C, Loiseau H, Arsaut J, Roullot V, Couillaud F (2006) Diversity of

contactin mRNA in human brain tumors. Mol Carcinog 45: 774–785.

74. Bizzoca A, Corsi P, Gennarini G (2009) The mouse F3/contactin glycoprotein:

Structural features, functional properties and developmental significance of its
regulated expression. Cell Adh Migr 3: 53–63.

75. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, et al. (2002)

Prediction of central nervous system embryonal tumour outcome based on gene
expression. Nature 415: 436–442.

76. Colin C, Virard I, Baeza N, Tchoghandjian A, Fernandez C, et al. (2007)
Relevance of combinatorial profiles of intermediate filaments and transcription

factors for glioma histogenesis. Neuropathol Appl Neurobiol 33: 431–439.

77. Qi Y, Cai J, Wu Y, Wu R, Lee J, et al. (2001) Control of oligodendrocyte
differentiation by the Nkx2.2 homeodomain transcription factor. Development

128: 2723–2733.

Ependymoma Recurrence Biology

PLoS ONE | www.plosone.org 15 September 2010 | Volume 5 | Issue 9 | e12932



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


