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Abstract
Africa is the birthplace of modern humans, and is the source of the geographic expansion of ancestral
populations into other regions of the world. Indigenous Africans are characterized by high levels of
genetic diversity within and between populations. The pattern of genetic variation in these
populations has been shaped by demographic events occurring over the last 200,000 years. The
dramatic variation in climate, diet, and exposure to infectious disease across the continent has also
resulted in novel genetic and phenotypic adaptations in extant Africans. This review summarizes
some recent advances in our understanding of the demographic history and selective pressures that
have influenced levels and patterns of diversity in African populations.

Introduction
Modern humans evolved in Africa around 200 kya (thousand years ago), and have lived
continuously on the African continent longer than in any other geographic region. Africa not
only has the highest levels of human genetic variation in the world but also contains a
considerable amount of linguistic, environmental and cultural diversity. For example, more
than 2,000 distinct ethno-linguistic groups, representing nearly a third of the world’s languages,
currently exist in Africa (http://www.ethnologue.com/) (Figure 1). Africans live in a wide range
of environments, such as deserts, tropical rainforests, savannas, swamps, and mountain
highlands [1,2]. Furthermore, some of these environments have undergone dramatic changes
over the course of modern human evolution [1,3,4]. African populations also practice a wide
array of subsistence strategies, including various forms of hunting-gathering, agriculture and
pastoralism, across the continent perhaps in response to this environmental variability over
time and geographic space.

African demographic history has consisted of fluctuations in population size, short- and long-
range migration, admixture and extensive population structure which have resulted in complex
patterns of variation in modern populations [1,5]. The timing and duration of some of these
demographic events were often correlated with known major environmental changes and/or
cultural developments in Africa [6]. A number of novel genetic and phenotypic adaptations
have also evolved in Africans in response to dramatic variation in environment, diet, and
exposure to infectious disease across the continent. In some cases, these adaptations have
occurred in the last several thousand years, exemplifying the ongoing evolution of human
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populations. Thus, present-day patterns of variation in African genomes are a product of both
demographic and selective events.

The characterization of extant genetic diversity in Africa will be critical for reconstructing
modern human origins and African demographic history. In addition, this genetic information,
together with phenotype data on variable traits, will be informative for identifying population-
specific variants that play a role in gene function, phenotypic adaptation and complex disease
susceptibility in Africans and populations of African descent.

Evolutionary History of Modern Humans in Africa
Current paleontological data suggest that the transition to anatomically modern Homo
sapiens occurred in Africa, supporting the ‘Recent African Origin’ model of human evolution
(Figure 2). The earliest known suite of derived traits associated with anatomically modern
humans was identified in fossil remains from East Africa dating to around 195–150 kya [7–
9]. Thus, the basic morphology of modern humans was established in Africa about 200 kya
[10]. Other early anatomically modern humans, with a more full set of modern features, also
appear in Africa before 100 kya and in the Near East around 100 kya [11–13], followed by the
more recent expansion of anatomically modern humans into Eurasia within the past 40,000–
80,000 years [1,2](Figure 2). Although the mode of evolution is still unclear, it has been
suggested that the emergence of modern humans was not a sudden event, but rather a
continuous process of gradual morphological change from archaic to modern H. sapiens [11].
However, it has also been argued that modern human origins likely involved episodes of sudden
morphological change, leading to the appearance of anatomically modern H. sapiens as a
species distinct from archaic humans [14]. Regardless of the mode of evolution, current fossil
and chronological evidence indicate that modern humans existed in Africa for a relatively long
period of time before their migration across much of the globe.

Two main migratory routes out of Africa have been hypothesized for anatomically modern
humans. The traditionally favored model involves a northern route of migration via North
Africa and the Nile valley into the Levant with subsequent dispersal into both Europe and Asia
[15]. Alternatively, an earlier southern coastal route has also been proposed in which modern
humans first left Africa by crossing the Bab-el-Mandeb strait at the mouth of the Red Sea and
then rapidly migrated along the South Asia coastline to Australia/Melanesia where evidence
of human settlement dating to around 55 Kya can be found [15–17]. A recent genetic study
that correlated levels of microsatellite diversity and the geographic position of sampled
populations inferred a waypoint of dispersal of anatomically modern humans out of Africa
centered on the Red Sea, strongly supporting an East African origin of migration of modern
humans [18]. Although this study was not able to rule out the possibility of multiple migrations
out of Africa, prior analysis of autosomal haplotype variability suggests that migration events
originating from multiple genetically distinct source populations in Africa are unlikely [19].

The geographic expansion of a small number of anatomically modern humans out of Africa
resulted in a population bottleneck. The size of the ancestral population(s) that left Africa is
estimated to be around 1000 effective founding males and females based on autosomal
microsatellite loci [20] or around 1500 effective founding males and females based on
combined mtDNA, Y-chromosome, and X-chromosome resequencing data [21]. Recent
studies comparing X-chromosome and autosomal diversity also suggest that the effective
population sizes of founding males and females were not equal due to sex-biased migration.
However, whether the sex-ratio of migrating individuals was male-biased or female-biased is
currently under debate [22–24].
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Patterns of Genetic Variation in Africa
Genome-wide data have indicated higher levels of genetic diversity in Africans compared to
non-Africans, confirming the results of previous mtDNA, X-chromosome, and Y-chromosome
studies [1,25–33]. For example, a survey of 1327 nuclear microsatellite, insertion/deletion
(INDEL) and single nucleotide polymorphism (SNP) markers showed that African
populations, as well as African Americans, have the highest levels of within population genetic
diversity relative to non-Africans [18]. In addition, more private alleles are present in Africa
than in other geographic regions. The high level of genetic diversity in Africa is consistent with
a larger long-term effective population size (Ne) which is estimated to be ~15,000 for Africans
(and ~7,500 for non-Africans) based on resequencing data from a 10-kb autosomal non-coding
region of the genome[34]. However, a recent study of 98-kb of sequence data from 20 loci on
the X-chromosome indicated that effective population sizes of individual populations may be
smaller (ranging from 2,300 to 9,000 for African populations and from 300 to 3,300 in non-
African populations) [35]. Non-African populations also appear to have fewer private alleles
and a subset of the genetic diversity present in sub-Saharan Africa, as expected under the
‘Recent African Origin’ model [1] (Figure 2).

A number of recent studies have also identified a considerable amount of structural variation
in the human genome. ‘Structural variation’ commonly refers to genomic alterations that may
be as small as a single nucleotide (excluding SNPs) or as large as millions of nucleotides in
size, such as INDELs, copy number variation, translocations and inversions [36,37]. Although
the population genetics of structural variation are still in their infancy, information regarding
the distribution of such variation within and between populations is emerging [1,29,38–40].
For example, a recent phylogenetic analysis based on 396 non-singleton copy number variants
demonstrated that globally diverse populations clustered roughly by geographic region [29],
and a study of 67 common copy number variants in the HapMap populations also noted that
average FST, a classical measure of population divergence, of these loci was 0.11, comparable
to previous estimates based on nucleotide and haplotype data [1,38,40]. Overall, results from
these different studies suggest that levels and patterns of copy number variation in global
populations are influenced by demographic history. However, technical limitations associated
with a number of methods commonly used for structural variation detection [36,37], including
bias in structural variation ascertainment, can possibly distort estimates of demographic
parameters. Advances in next-generation sequencing and other technologies, as well as the
identification of structural variation in ethnically diverse Africans, will be needed to better
determine patterns of structural variation in Africa and their possible role in phenotypic
variability.

Population Structure
Several studies have indicated that ancestral populations were geographically structured before
modern humans migrated out of Africa [1]. For example, it has been suggested that the deep
coalescence times of mtDNA [41,42] and X-chromosome [43,44] lineages are consistent with
a demographic scenario of ancient population structure in Africa. A recent analysis of cranial
shape variability in anatomically modern human fossils (dating to 200–60 kya) from Africa
and the Middle East also reported a high level of morphological divergence among these fossil
hominids which was interpreted as evidence for ancestral population structure in Pleistocene
Africa [45]. Thus, arguably, a considerable amount of genetic and phenotypic diversity may
have been present at an early stage of modern human evolution.

Studies of global population structure in samples from the Human Genome Diversity Panel
(HGDP-CEPH) also identified substructure in Africa, particularly between hunter-gatherers
and other Africans [29,46]. However, because the HGDP-CEPH contains a small number of
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African populations, some of which likely share recent common ancestry, these results do not
reflect the full extent of population structure in Africa [1]. A recent genome-wide study of a
much larger set of diverse Africans detected more extensive population structure within Africa
than had been previously observed. Specifically, an analysis of 848 short tandem repeat
polymorphisms (STRPs), 476 INDELs and 3 SNPs genotyped in ~2,400 individuals from 121
geographically diverse populations revealed the presence of 14 genetically distinct ancestral
population clusters in Africa [18]. Each cluster consisted of populations that shared genetic
similarity, as well as cultural and/or linguistic properties (for example, Pygmies, Khoesan-
speaking hunter-gatherers, Bantu-speakers, Cushitic-speakers). Thus, there is a general
correlation between genetic relatedness and linguistic/cultural similarity in Africa, although
some exceptions exist. This study [18] also observed fine-scale genetic structure among
populations speaking languages that belong to the same linguistic family, such as between
western African and East African Bantu Niger-Kordofanian-speakers, among other examples
[18]. East Africa was characterized by high levels of population differentiation, likely resulting
from the historical migration of linguistically distinct populations into this geographic region
and the long-term presence of indigenous East African Khoesan-speakers, namely the Hadza
and Sandawe [18]. A pattern of strong genetic differentiation was also observed in East Africa
based on mtDNA data [47]. Additionally, the above genome-wide analysis [18]in
geographically diverse Africans showed that Central African Pygmies share common ancestry
with several southern and eastern African Khoesan-speaking populations, who speak a
language with click consonants, suggesting that these contemporary hunter-gatherers may have
descended from a proto-Khoesan-Pygmy population of hunter-gatherers that diverged more
than 35 kya [18]. This finding also raises the intriguing possibility that the original language
spoken by African Pygmies, who are known to have lost their indigenous language, may have
contained click consonants [18].

Several studies have also identified genetic structure within Central Africa, particularly
between Pygmy and non-pygmy populations [18,31,48–51], as well as subtle substructure
among Pygmies [18,48,50,51]. Specifically, data have shown that the inferred ancestors of
modern Pygmy hunter-gatherers and Bantu-speaking agriculturalists could have diverged as
long as 70 kya [49], and that ancestral western and eastern Pygmy populations separated more
than 18 kya [48] with subsequent genetic differentiation among the western Pygmies within
the past 2,800 years [50]. The subtle structure among western Pygmies may be due to recent
geographic isolation, genetic drift, and differential levels of admixture between Pygmies and
neighboring Bantu-speaking populations [18,49,50,52–54]. Overall, these patterns of genetic
and phenotypic variation suggest that African populations have maintained a large and
subdivided population structure throughout much of their evolutionary history. This population
subdivision may have been facilitated by a number of factors, including ethnicity, culture,
language, geography, as well as past fluctuations in geology and climate which may have
affected population growth, contraction, fragmentation, and gene-flow in Africa [18,55].

Migration and Admixture
Both short- and long- range migration events, and subsequent admixture between migrating
and indigenous populations have also influenced the current genetic landscape of sub-Saharan
Africa. One of the most significant migration events in recent African history was the
geographic expansion of the Bantu Niger-Kordofanian-speakers from Nigeria and Cameroon
first into the rainforests of equatorial Africa, and then into eastern and southern Africa within
the past 5,000 years [18,56] (Figure 1). Indeed, the presence of Bantu Niger-Kordofanian
ancestry in many African populations and the widespread distribution of Bantu-related
languages are signatures of the historical migration of Bantu-speakers across Africa and their
subsequent admixture with other indigenous populations [18,57]. Genetic evidence also
indicates that independent waves of migration of western African and East African Bantu-
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speakers into southern Africa occurred, in agreement with previous linguistic and
archaeological studies [18,58]. Although the reasons for the radiation of Bantu-speakers across
sub-Saharan Africa are not entirely known, it has been suggested that a shift from a humid to
a drier climate around 5,000 years ago and the adoption of new crops suited to this drier
environment may have contributed to the widespread movement of Bantu farmers throughout
Africa [58,59].

Genetic signatures of both historic and prehistoric migration events are also observed in other
regions of Africa [18,42,57,60–62]. For example, an analysis of microsatellite, INDEL and
SNP polymorphisms in the nuclear genome showed that populations from central/southern
Sudan, such as the Nuer and Dinka, have the highest proportion of Nilo-Saharan ancestry, with
decreasing frequency observed in populations from northern Kenya to northern Tanzania in
East Africa. These data suggest a Sudanese origin of Nilo-Saharan-speaking populations, with
subsequent migration(s) southeastward to East Africa [18]. In addition, Nilo-Saharan-speakers
from Sudan, Tanzania, Kenya and Chad also clustered closely with Afroasiatic Chadic-
speaking populations from the southern Lake Chad Basin in genetic structure analyses,
suggesting that these Chadic-speakers of Nilo-Saharan ancestry likely migrated westward from
a Sudanese homeland to Lake Chad and adopted an Afroasiatic language at some point in their
history without significant genetic exchange [18]. This shift in language may have occurred
through interactions with proto-Chadic Afroasiatic-speakers who migrated from the central
Sahara to the Lake Chad Basin around 8 kya [6,56,58,63]. These genetic data are in general
agreement with archaeological and linguistic studies that advocate a common origin of Nilo-
Saharan populations in eastern Sudan, with subsequent migration events northward to the
eastern Sahara, westward to the Chad Basin, and southeastward into Kenya and Tanzania [6,
64].

The migration of Nilo-Saharan-speakers may have been associated with past changes in
environmental conditions. For example, archeological data suggest that following a climatic
shift from dry to more humid conditions in the early Holocene around 10.5 kya, several Nilo-
Saharan-speaking populations expanded westward from the Middle Nile Basin to Lake Chad
and southeastward to northern Kenya to exploit newly created aquatic food resources [6,65].
However, a small number of Nilo-Saharan-speakers, collectively referred to as Northern
Sudanians, migrated northward to the eastern Sahara where they engaged in cattle
domestication [6,65] (Figure 3). During the Mid-Holocene arid phase around 8,500-7,500 years
ago, aquatic food collecting Nilo-Saharans continued their mode of subsistence mainly along
permanent rivers, such as the middle Niger and the Nile, and remaining lakes such as Lake
Chad. However, during the return of more humid conditions after 7,500 years ago, Northern
Sudanic cattle raisers expanded westward across the Sahara [6,56,65] (Figure 3). A subset of
Nilo-Saharans, namely Nilotic pastoralists, originating from eastern Sudan is also known to
have migrated southeastward to Kenya and northern Tanzania within the past 3,000 years
[64].

Additionally, many Nilo-Saharan-speaking populations from East Africa have high levels of
Afroasiatic Cushitic ancestry (likely of Ethiopian origin [64]), suggesting a long history of
gene-flow between Nilo-Saharans and Cushites [18]. Archaeological studies have indicated a
shared cultural practice of cattle herding between Nilo-Saharans and Cushites in northern
Kenya which likely brought these linguistically distinct populations into repeated contact with
one another over the past several thousand years [6,56]. Cushitic agropastoralists are also
thought to have expanded into southern Kenya and central northern Tanzania, engaging in
cultural exchange and inter-marriage with southern and eastern Nilotic pastoralists [6] (Figure
1). This archaeological and genetic evidence of gene-flow between Nilo-Saharans and Cushites
is consistent with other genetic data that showed the shared presence of an East African-specific
mutation associated with lactose tolerance in these linguistically distinct populations [66].
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The reverse migration of non-Africans into Africa was also shown to contribute to the gene-
pool of modern African populations. For example, high levels of both Middle Eastern/European
and eastern African Cushitic ancestry were detected in the Saharan African Beja, indicative of
possible gene-flow from non-African populations [18]. These genetic patterns correlate well
with linguistic and archaeological data that suggest that modern-day Beja pastoralists
descended from northern Cushitic-speakers who migrated from Ethiopia to the Red Sea coast
of Sudan [56]. Furthermore, the Beja have also had more intensive contact with the Middle
East through commercial trade across the Red Sea as early as the 9th century A.D. and with
nomadic camel herders of Arab Bedouin origin who settled in Sudan beginning in the 14th

century A.D. [6] (Figure 1). These studies demonstrate that migration in Africa occurred at
different points in time and over a range of geographic areas, resulting in complex patterns of
genetic variation.

Dietary Adaptations
Natural selection, the process by which favorable heritable traits become more common in
successive generations and unfavorable heritable traits become less common [67], operates to
either increase or decrease the frequency of mutations that have an effect on an individual’s
fitness. Selectively advantageous mutations associated with diet have evolved in populations
which likely enabled ancestral humans to adapt to their environment, including changes in
cultural practices. This section will focus on a few case studies of dietary adaptation primarily
in African populations (for a detailed review of additional genetic adaptations in Africa, see
reference [1]).

Lactase persistence, the ability to digest fresh milk and other dairy products into adulthood,
varies in frequency in different human populations. However, the lactase persistence trait is
common in pastoralist and dairying populations, such as northern Europeans, and certain
African and Arabic nomadic groups [68]. Previous studies identified the T allele at a C/T SNP
located 13910 bp upstream of the lactase gene (LCT) as the likely causal mutation of lactase
persistence in Europeans and a few West African pastoralist populations, such as the Fulani.
However, this mutation was not found to be a strong predictor of lactase persistence in other
African populations that practice pastoralism [69,70]. A recent study [66] of 43 populations
from Tanzania, Kenya, and the Sudan identified three polymorphisms (G/C-14010, common
in Tanzania and Kenya, T/G-13915 and C/G-13907, common in northern Sudan and Kenya)
located ~14 kb upstream of LCT that are significantly associated with lactase persistence in
East African populations. Further analysis revealed evidence consistent with a recent ongoing
selective sweep over the past 3,000–7,000 years [66]. Recent resequencing studies have also
found additional variants within this genomic region upstream of LCT in other African
populations [71,72]. However, the functional impact of these polymorphisms on lactose
tolerance has not been firmly established.

Genetic data have indicated that past migration events may have resulted in the presence of
shared genetic variation among pastoralist populations in different regions of Africa. For
example, a survey of SNPs associated with lactase persistence in Africa found the C-14010
mutation at low frequency in several southern African Bantu-speaking pastoralists [73]This
study argued for the spread of this mutation into southern Africa by migrating Khoe pastoralists
who may have admixed with migrating Nilotic or Cushitic herders from East Africa, with
subsequent admixture occurring between Khoe and Bantu-speakers in southern Angola around
2 kya [73]. Similar results have been observed in other East African and southern African
populations (A. Ranciaro & S.A. Tishkoff, unpublished data, [72]). Recent Y-chromosome
evidence has also suggested that eastern African Nilotic pastoralists migrated to southern-
central Africa and admixed with local populations within the last few thousand years,
supporting the hypothesis of an East African origin of southern African pastoralism [60].
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Overall, these findings are a striking example of convergent evolution, local adaptation due to
strong selective pressure resulting from shared cultural practices in Europeans and Africans,
and gene-culture co-evolution [66,74].

Similarly, starch consumption is variable among populations with different subsistence
patterns, but is more notably elevated in agricultural and certain hunter-gatherer groups [75].
It has been suggested that a genetic adaptation arose in distinct populations in response to an
increase in dietary starch intake. Perry and colleagues [75] examined the number of copies of
the salivary amylase gene (AMY1), which plays a role in starch hydrolysis, in distinct
populations with contrasting levels of starch consumption, including several African
populations. This study observed a greater number of AMY1 gene copies in populations with
a high starch diet (consisting of European Americans, Japanese, Hadza (African)) compared
to populations with a low-starch diet (consisting of Biaka and Mbuti Pygmies (African), Datog
(African), and Yakut (Asian)), arguing that dietary differences rather than ancestry influenced
gene copy number [75]. Perry and coworkers [75] suggest that positive selection has been the
dominant force affecting the divergence in gene copy number among populations at the
AMY1 locus. However, targeted resequencing and long- range haplotype analyses of the
AMY1 gene in additional populations with distinct subsistence patterns, including culturally
diverse Africans, might be informative for confirming signatures of recent selection, providing
further evidence for adaptive evolution at this locus.

Another important dietary adaptation is bitter taste perception which may have evolved in
humans to prevent the ingestion of plant toxins. The ability to taste the bitter synthetic
compound phenylthiocarbamide (PTC) is a highly variable trait in humans, and is correlated
with both the ability to taste naturally bitter substances in food and food preference [76,77]. A
large proportion of the phenotypic variance in PTC sensitivity has been attributed to genetic
variability at TAS2R38, a bitter taste receptor gene, located on chromosome 7 [78]. Specifically,
three amino acid substitutions at TAS2R38 that form two common amino acid haplotypes have
been shown to influence PTC sensitivity: a dominant taster haplotype, PAV and a non-taster
haplotype, AVI [1]. A genetic analysis of TAS2R38 in geographically diverse populations,
including a small number of Africans, uncovered evidence of balancing selection at this locus,
such as an excess of intermediate-frequency variants and an ancient divergence between the
major taster and nontaster haplotypes (estimated to be 1.5 million years ago) [79]. These
patterns of diversity suggest that variants at this locus are selectively advantageous, likely
playing a role in food choice [77,79–81], and may represent long-term genetic adaptations in
humans. More recently, genetic data have also shown that additional haplotypes associated
with a broader range of PTC sensitivity are present in culturally and linguistically distinct
African populations (M.C. Campbell and S.A. Tishkoff, unpublished data), raising the
possibility that a wider range of sensitivity to naturally bitter compounds among Africans might
be advantageous in Africa. These studies provide further information regarding the evolution
of genetic variation associated with bitter taste perception and the role that genetic/phenotypic
variability may play in dietary preference in human populations.

Future Directions
To date, only a fraction of the many ethno-linguistic groups in Africa has been extensively
studied for genome-wide variation. Analyses of genetic diversity in more geographically and
ethnically distinct African populations will be critical for testing models of modern human
origins and dispersal out of Africa, as well as for inferring African demographic history. With
the recent development of both “next generation” sequencing technology and methods for
targeted sequencing, together with their rapidly decreasing costs, it may be feasible to
resequence large portions of the genome, and conceivably the entire genome[82], in diverse
African populations to more accurately test evolutionary models and to infer demographic
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history. The integration of archaeological, linguistic, paleoclimatic, and geographical
information with these genetic data will be particularly useful in this reconstruction, providing
a more unified account of historic and prehistoric events in Africa. Indeed, the “1000 genomes”
project, which aims to discover novel variants through targeted and whole-genome
resequencing in a subset of the extended HapMap populations, represents a first step in
identifying novel genome-wide variation in more diverse Africans. However, given the
extensive population structure present in Africa, additional linguistically and culturally distinct
Africans will likely be needed to more fully characterize levels and patterns of variation which
can then be used to infer population history.

Finally, African populations have been severely underrepresented in studies of genetic
adaptation. Given that Africans possess high levels of genetic and phenotypic diversity, and
live in distinct environments, it is likely that ethnically and geographically diverse populations
in Africa have undergone local adaptation. To gain a better understanding of genetic and
phenotypic adaptations in human populations, it is imperative to include a wider range of
ethnically diverse African populations living in distinct environments in genetic studies.
Moreover, genome-wide resequencing in a number of African populations is likely to lead to
the identification of novel population-specific variation associated with variable traits. The
development of statistical and computational methods for detecting selection across the
genome that distinguish the effects of selection and demography will also be critical for
identifying the genetic basis of adaptation in Africa. Overall, studies of adaptation combined
with information on African demographic history will provide a more robust and accurate view
of the processes that have shaped the genomes of African populations.
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Figure 1. Classification of major language families and proposed historic and prehistoric migration
events within Africa
African languages have been classified into four major linguistic families as follows: Niger-
Kordofanian (spoken predominantly by agriculturalist populations across a broad geographic
distribution in Africa), Afroasiatic (spoken predominantly by northern and eastern African
pastoralists and agropastoralists), Nilo-Saharan (spoken predominantly by central and eastern
African pastoralists) and Khoesan (a language containing click-consonants, spoken by eastern
and southern African hunter-gatherers). This map also shows a number of key migration events
that occurred in Africa, most notably the expansion of Bantu-speakers from a homeland in
Nigeria and Cameroon first into the equatorial rainforests and then into eastern and southern
Africa, as well as the migration of Nilo-Saharan-speakers both westward and eastward from a
Sudanese homeland. Additionally, Cushitic-speakers from the Ethiopian highlands migrated
northward to the Red Sea coast of Sudan (where their modern-day descendants, the Beja,
presently live) as well as southward into Kenya and Tanzania [6]. (based on Figure 1 from
reference [2]).

Campbell and Tishkoff Page 13

Curr Biol. Author manuscript; available in PMC 2010 September 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. The ‘Recent African Origin’ model of modern humans and population substructure in
Africa
A study of genome-wide polymorphic markers in 121 ethnically diverse African populations
indicated the presence of 14 genetically distinct ancestral population clusters in Africa [18].
According to the Recent African Origin model of modern human origins, anatomically modern
humans evolved in Africa around 200 kya, migrated to Eurasia within the last 40,000–80,000
years and then migrated to the Americas within the last 15,000–30,000 years. The geographic
expansion from Africa is thought to have been accompanied by a population bottleneck and a
concomitant loss of genetic diversity. Studies have also suggested that a serial founder model
of migration occurred in the history of non-Africans in which the migration of populations
across much of the globe occurred in many small steps, with each migration event involving
a sampling of variation from the previous population [25,29,33,46]. In this figure, decreasing
intensity of color represents the concomitant loss of genetic diversity as populations migrated
in an eastward direction from Africa. Solid horizontal lines indicate gene-flow between
ancestral human populations and the dashed horizontal line indicates recent gene-flow between
Asian and Australian/Melanesian populations (based on Figure 2 from reference [1]).
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Figure 3. Map of African climate, vegetation and culture in the early Holocene (adapted from Maps
5 and 6 in reference [6])
Following a period of dramatic increase in rainfall ~10.5 kya, the expansion of both rainforest
vegetation in the Congo Basin and woodland savanna farther north and south of the rainforest
belt, as well as the expansion of tropical steppe and grassland vegetation into the Sahara region
occurred. New lakes also appeared, while old lakes grew in size along the southern edges of
the Sahara [6]. Between 10.5 – 8.5 kya, several key demographic events occurred among
culturally distinct ancestral African populations, including the migration of Nilo-Saharan-
speakers from their homeland in Sudan northward to the dry tropical steppe vegetation of the
eastern Sahara where they practiced agropastoralism [6]. Northern Erythraites (Afroasiatic-
speakers) also lived mainly in the Mediterranean climate of the northern Sahara where they
engaged in herding and wild grain collection[6]. The distributions of these cultural groups,
among others depicted on this map, roughly correspond to the present-day distribution of major
linguistic groups in Africa (Refer to Figure 1). The shift from dry to wetter climatic conditions
in the early Holocene likely provided an opportunity for ancestral Africans to develop cultural
traditions, such as agriculture and herding, in a more favorable environment leading to further
technological developments in Africa [6].
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