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Abstract
We extend PRIME, an intermediate-resolution protein model previously used in simulations of the
aggregation of polyalanine and polyglutamine, to the description of the geometry and energetics of
peptides containing all twenty amino acid residues. The 20 amino acid side chains are classified
into 14 groups according to their hydrophobicity, polarity, size, charge and potential for side chain
hydrogen bonding. The parameters for extended PRIME, called PRIME 20, include hydrogen-
bonding energies, side-chain interaction range and energy, and excluded volume. The parameters
are obtained by applying a perceptron- learning algorithm and a modified stochastic learning
algorithm that optimizes the energy gap between 711 known native states from the PDB and decoy
structures generated by gapless threading. The number of independent pair-interaction parameters
is chosen to be small enough to be physically meaningful yet large enough to give reasonably
accurate results in discriminating decoys from native structures. The most physically meaningful
results are obtained with 19 energy parameters.

INTRODUCTION
The purpose of this paper is to describe efforts to extend the force field for PRIME, an
implicit-solvent intermediate- resolution protein model developed in our group, to proteins
other than polyalanine, polyglutamine and polyglycine. PRIME was introduced in 20011 to
enable simulation of the aggregation of simple homoproteins, particularly polyalanine, into
fibrillar structures. By reducing the protein representation to four spheres per amino acid,
treating solvent implicitly and modeling geometric constraints, hydrogen bonding and
hydrophobic interactions through a combination of hard-sphere and square-well interactions,
we were able to simulate the spontaneous formation of a system of 96 KA14K peptides into
ordered fibrillar structures in hours on a fast workstation.2 PRIME has also been used to
investigate the fibrillization of polyglutamine.3 The high speeds were achieved by using
discontinuous molecular dynamics, a very fast alternative to traditional molecular dynamics,
which is applicable to discontinuous potentials such as the hard sphere and square well
potential.4 In this paper we describe efforts to extend the simple model used to describe
polyalanine to all 20 amino acids.

PRIME is one of many coarse grained potentials currently being used to provide biophysical
insights into protein folding and aggregation.2–12. Such models are particularly useful for
studying the behavior of large systems of proteins over long time scales. This is because the
detail and realism that makes atomistic force fields like Amber13 and CHARMM14, so
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useful for the study of specific proteins, comes with a computational price tag that limits the
length of the simulations and hence the system sizes and time scales that can be accessed.
Although the protein models developed in the early years of protein folding simulation could
be classified as either coarse grained models or atomistic models, the spectrum between the
two has filled in over time. In recent years major efforts have been underway to develop
protein models of intermediate resolution whose simplified geometry and energetics are
nevertheless capable of providing information about specific proteins.7,9,15 We aim to add
PRIME to this group because it offers several advantages compared to other protein models
that are particularly suitable for studying protein aggregation. These are: (1) the
decomposition of forces between residues into discontinuous potentials allows us to take
advantage of the high speeds possible in discontinuous molecular dynamics, (2) the simple
4-sphere-per-residue representation offers a good compromise between atomistic and pearl
necklace treatments of protein geometry, (3) the use of discontinuous potentials, as opposed
to harmonic potentials, to enforce bonding and angular restrictions speeds up the
simulations, and (4) the simple yet accurate treatment of hydrogen bonding by a directional
square-well potential enhances the formation of secondary structures like alpha helices and
beta sheets.

The long term goal of this research is to develop the capability to simulate the various stages
of protein aggregation, from the formation of low molecular weight oligomers early in the
process to the assembly of ordered aggregates (fibrils or amyloid) later in the process.
Protein aggregation is associated with serious and eventually-fatal neurodegenerative
diseases including Alzheimer’s and Parkinson’s.16,17 Recent studies indicate that it is the
early oligomers (and not the fully formed fibrils) that are likely responsible for toxicity in
these diseases.17–20 This observation has stimulated computational researchers to examine
the dynamical processes associated with the formation of small oligomers.21–23 However
even though these events occur early in the aggregation process on time scales that might be
accessible the limited number of peptides that can be simulated simultaneously makes
atomistic simulations less than ideal for this purpose. Studies of oligomerization based on a
small number of peptides must contend with the problem that the free energy barriers
associated with oligomeric changes depend on the number of peptides.24 Coarse-grained
simulations, however, allow us to simulate large systems having many peptides for long
times, giving us the chance to examine more than one stage of the aggregation process.

The strengths of the effective interaction potentials in coarse-grained protein folding models
have traditionally been obtained by one of the following two methods. The first method is
the statistical extraction of energy parameters in which the residue-residue contact energies
are estimated by relating the frequency of residue-residue contacts in the Protein Data Bank
to those in a reference state, taken to be the quasichemical (Bethe) description of a random
mixture of amino acids.25–36 Since the landmark work of Miyazawa and Jernigan29, which
yielded 210 energy parameters for a Cα–based protein representation, a number of
refinements of this approach have been made including: improved calculation of the
reference state probabilities,29,36 more detailed descriptions of protein geometry and
distance dependent forces,31,37 incorporation of protein-solvent interactions,36, and better
optimization procedures including iterative methods.30,37,38

The second method is the energy gap optimization method which, following Anfinsen’s
argument that the native state free energy in given physiological conditions is a global
minima, searches for energy parameters that make the energy of the native structure less
than those of a large set of decoy structures. In this method, the thermodynamic stabilities of
a large number of native structures are optimized subject to a large number of constraints or
inequalities. The optimized solutions have been found by various methods including linear
programming, a mathematical technique which maximizes linear equations under
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constraints, or the perceptron learning algorithm, a neural network approach that iteratively
adjusts weighting factors until reaching an expected or optimized output, etc.39–49 Most of
the early methods for determining interaction energies (including those used in the statistical
extraction of energy parameters) were based on a contact energy approach in which the
protein was represented as a chain of united atoms and the range of interactions between two
united atoms was assumed to be independent of the amino acid type.29,39 Later, methods
were introduced in which the energy parameters depended on the distance between the
united atoms; these approaches showed better performance in discriminating native structure
from decoys.44,49 Other improvements include the development of new and better ways to
generate decoys using a Monte Carlo algorithm, better energy minimization techniques for
decoys, high resolution decoys,38,46,50 to include structure environments,47,48 and even to
calculate pair interactions between side-chain centroids and backbone-backbone hydrogen
bonds separately.51 Although most of the estimated parameter sets were used to
discriminate native structures among decoys sets or for fold recognition, a few have been
used in on- or off-lattice simplified polymer-like models for protein folding.28,52

Unlike most of the papers describing energy parameter estimation which seek 210
parameters, one for every possible amino acid pair, we seek to establish a smaller set of
parameters that would be sufficiently detailed for protein aggregation simulations and also
makes good sense physically. By “making sense physically” we mean that they should
reflect the relative strengths of the types of forces thought to be operating between particular
pairs of residues, e.g. hydrophobic/ hydrophilic, positive/negative charge, hydrogen
bonding, etc. This is a challenging task since having more independent parameters generally
gives a better performance in discriminating native structures from decoys.46,50
Furthermore, it is known that even 210 contact energy parameters can become insufficient
for discriminating real native structures as the number of test structures grows.41,50
However, having too many parameters can lead to situations in which the parameter space of
interaction energies becomes too complex and meta-stable, causing the estimated parameters
to depend on the initial values or technical methods for estimating parameters. An additional
type of problem that can be encountered when there are large numbers of parameters is that
the energy parameters fitted for example for a particular type of interaction, for example
hydrophobic interactions between V-V, L-L, I-L, M-I, F-I, can fluctuate and show no
consistent trends compared to their hydrophobic scale.

The idea of having a small group of energy parameters to represent pair interactions in
simplified protein folding models is, of course, not new. The simplest possible classification
is the two-group HP classification introduced originally by Chan and Dill53 in which a
protein is classified as either hydrophobic or polar. Another well known grouping is the five-
group classification by Wang and Wang,54 which contains five representative amino acids
(I, A, G, E, K) and was used successfully to build the SH3 domain in a protein engineering
experiment.55 However this five-group classification is too simple to be applied to our
extended PRIME model since it does not classify the charged and polar amino acids and it
does not have any information about side-chain hydrogen-bonds. Other possible groupings
include the 7-letter alphabet of Maiorov and Crippen,39 the four-letter alphabet of
Betancourt and Thirumalai (based on a hydrophobicity scale),56 the 9 classes of Buchete
and Thirumalai,57 and the hierarchical 2 to 14 group classification of Thomas and Dill.30

In this paper, we present procedures to estimate the side-chain/side-chain energy parameters
(well depths) and hydrogen bonding energy parameters between backbone NH and CO,
between side chain and side chain, and between side chain and backbone NH and CO for use
in an extended version of the PRIME model, which we will call PRIME20. We also use
PDB information to determine side chain diameters, Cα - Cβ bond distances, and square well
diameters for all possible interacting pairs of sites. Our hope here is that the problems
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associated with having a small number of energy parameters may be compensated for by
having physically meaningful energy parameters and relatively realistic protein geometry,
including unique diameters and bond lengths for each side chain. The energy gap
optimization approach is used. The contact energies from the native states of 711 proteins in
the protein data bank (PDB) are compared with those of nearly two million decoy structures
generated by gapless threading techniques.58 The optimum set of energy parameters is
calculated using the perceptron learning algorithm.59 We also suggest a new modified
version of the perceptron learning technique that includes a stochastic component. Our
approach differs from other knowledge-based potential studies in that we tried to reduce the
number of independent pair-interaction parameters to be small enough that our pair
interaction energies are physically meaningful and yet large enough to give us reasonably
accurate results in discriminating decoys from native structures in the PDB database

Highlights of our results are the following. The 20 amino acid side chains are classified into
14 groups according to their hydrophobicity, polarity, size, charge and potential for side
chain hydrogen bonding. The latter property is further classified based on the type and
number of polar atoms present on the side chain. The most physically meaningful results are
obtained with 19 energy parameters. Addition of the stochastic algorithm to the perceptron
learning scheme stabilizes the learning process by preventing dependence of the final
solution on the initial guesses for the parameters. This is illustrated for the case of a simpler
7 group classification containing 12 energy parameters. Finally we consider a smaller
database containing 585 PDBs and find that the types of proteins included in the PDB
database have a significant effect on the quality of the results.

MODEL AND METHOD
In the PRIME model, each amino acid residue is composed of a 3-sphere backbone
comprised of united atoms NH, CαH, and CO, and a single-sphere side chain (CH3- for
alanines).1–2 See Figure 1. Ideal backbone bond angles, Cα-Cα distances and residue L-
isomerization are achieved by imposing pseudobonds. All forces are modeled by either hard-
sphere or square-well potentials with realistic diameters. The solvent is modeled implicitly;
its effect is factored into the energy function as a potential of mean force. Interactions
between hydrophobic side chains are represented by a square-well potential. Hydrogen
bonding between amide hydrogen atoms and carbonyl oxygen atoms is represented by a
directionally-dependent square-well attraction between NH and CO united atoms.

In order to obtain a realistic estimate of energy parameters it is necessary to have a good set
of native structures and decoys. We downloaded 3693 PDBs having at most 25% sequence
homology from PDB_select website.60 We eliminated membrane proteins and multi-
domain proteins. We also eliminated PDBs with non-standard amino-acids, broken-chains,
Cα-only representations, missing atoms, and ligands, small single helices and coiled
peptides. Finally we set up the 711 PDBs listed in supplemental Table 1. Those PDBs were
mapped onto the PRIME 4-sphere per residue geometry by assigning the centers of the
PRIME backbone spheres, NH, Cα and CO, to lie at the same positions as the centers of the
PDB backbone atoms N, Cα and C, and assigning the center of the PRIME side chain to lie
at the same position as the center of mass of the PDB side-chain atoms.

From those four united-atom model PDBs, radial distribution functions (RDF) for all pairs
of united atoms were plotted to allow estimation of the side chain sphere and well diameters.
Figure 2(a) is a sample plot for the radial distribution function between the Ala-Ala and Val-
Val centroids. More precisely it is the population × 4πr2 versus the distance in Å between
the side chain centroids estimated from 711 PDBs; bin sizes are set at 0.2. The sphere
diameters are chosen to be the starting point of the distribution, i.e. the closest non-zero
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value of the RDF for each amino-acid pair. The well diameters are not as easy to choose
since there is no obvious cutoff beyond which the RDF is again zero. Instead we plot an
alternate distribution function, similar to the radial distribution function, which only counts
pair interactions between united atoms when more than half of the distances between the
heavy atoms on the first united atom and those on the second are less than 5.5Å. Sample
distributions for Ala-Ala and Val-Val pair interactions with the 5.5Å criteria are shown in
Figure 2(b). The well diameters are chosen to be the average values of the distribution plus
1.645σst, where σst is the standard deviation, which is a 90% criteria if the distribution
follows the standard distribution. The sphere and well diameters are shown in supplemental
Tables 2 and 3.

Approximately 1.6 to 1.9 million decoys (depending on the constraints for removing very
compact decoys having more pair-interactions than the native structures), were generated
using a gapless threading algorithm.58 Improved techniques for decoy generation using
Monte Carlo or molecular dynamics simulation46,50 could have been applied but we do not
need high resolution decoys since our goal is to find a small number of interaction
parameters which can discriminate low-resolution decoys. Decoys are created by threading
one native sequence onto the structures of other sequences. The Cα, N and C of the native
sequence are placed in the same positions as the Cα, N and C on the other structures. The
side-chain centroid positions of different amino acids on the threaded structures are adjusted
so as to maintain the native distance associated with the original amino acids in the native
sequence.

The generated decoys are, of course, not stable which means that their energies must be
higher than native state energies. This gives 1.6 to 1.9 million inequalities which say that the
difference between the energy of the kth decoy corresponding to native state j and the energy
of native state j must be greater than a minimum energy gap parameter, Δ,

(1)

or equivalently

(2)

, where i is the type of interaction and ε (i) is the interaction parameter for the i-type pair
interaction. Here, N(i,j,k) is the number of i-type pair interactions on the kth decoy structure
corresponding to native state j, and N(i,j) is the number of i-type pair interactions on the jth
native structure. N(i,j) and N(i,j,k) are calculated by using the sphere- and well-diameters
described above.

The perceptron-learning algorithm was used to find the set of optimized contact energy
parameters, ε(i) that satisfy the inequalities in eqn(2). The algorithm begins with an initial
guess for ε(i). It then searches through all the proteins and their decoys for the (j, k) that
yields the minimum energy difference between a decoy structure and its native structures
(E(d − n)), i.e. the minimum scalar product (J⃗min · ε ⃗). The search is subject to the following
three constraints imposed in order to eliminate decoys (j, k) that are far more compact than
native structures.

(3)
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(4)

(5)

Here NHB is the number of hydrogen-bonds, NST is the number of strong interactions, and
NWK is the number of weak interactions in the (j, k) decoy structures. These three constraints
are needed because we do not have enough interaction parameters to satisfy the enormous
number of inequalities. Once the (j, k) associated with the minimum scalar product is
determined, the energy vector (ε⃗) is iterated by

(6)

, where t is the iteration step and δ is small value that controls convergence of the optimized
solution. At the new iteration step, the (j,k) are searched at energy vector ε⃗(t + 1) until a new
minimum energy difference and associated J⃗min is selected. This process is repeated until ε⃗
converges to a stable vector, which is the solution. Supplemental figure 1 illustrates the
procedure. To satisfy all the inequalities, the angle between J⃗ and ε⃗ should be less than 90°.
Therefore adding a small part of J⃗min to the next value of ε⃗ makes the angle between J⃗min
and ε⃗ decrease, leading to improved likelihood of satisfying the inequalities after many
iterations. If all the inequalities were satisfied, Δ would be zero or a small positive value and
the learning process for this system would be called “learnable”. However given the small
number of parameters used in this work it is impossible to satisfy the enormous number of
inequalities. Instead we tried to find parameters to satisfy as many inequalities as possible,
(i.e. to have Δ be the least possible negative value within the constraints of eqn (3) to (5).

Even within the framework of satisfying as many inequalities as possible we still face the
barrier of the ruggedness of parameter space and the dependence on the initial values of the
parameters. Problems associated with the dependence of our perceptron-learning-algorithm
solution on the initial guesses for the energy parameters prompted us to introduce stochastic
acceptance criteria into the learning algorithm iteration scheme.

In the perceptron learning plus stochastic process method, hereafter called the stochastic
learning algorithm, new energy parameter vectors are updated either by the standard
perceptron learning iteration scheme, Eqn (6), or by the addition of a random fluctuation,
essentially a shuffling, to the old the energy vector based on a series of energy changes
given by eqn(12) to (14) for a stochastic acceptance criteria. In order to set up the stochastic
acceptance criteria, four energies are defined. The first energy is the average over all (j,k) of
the normalized difference between the decoy and native energies divided by the product of
the standard deviation (σ) for each protein and the normalization factor  where Nres is
the number of residues for each protein.

(7)

This corresponds to −Zscore. We divide by  to even out the energy scale over the various
protein sizes because the energies of the native structures are proportional to  in our
database. The second energy is the average over all (j,k) of the normalized difference
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between the decoy and native energies having negative values, again divided by the
normalization factor .

(8)

The third energy is the minimum value over all possible (j,k) of the normalized decoy minus
native energy and is given by

(9)

The fourth energy is a summation of weighted energy parameters given by

(10)

with

(11)

This fourth energy is a kind of statistical score function designed to account for and
counterbalance any major differences in frequency of appearance of a particular type of
interaction, i, in the native state and decoy structure databases. It has the effect of enhancing
the strong attractive interactions and preventing repulsive interactions such as KK, EE from
becoming too large.

The four types of energy changes associated with iterating between step t and t+1,
ΔE1,ΔE2,ΔE3,ΔE4, can be evaluated as

(12)

(13)

(14)

(15)

The energy change ΔE that appears in our acceptance criteria for the stochastic update
repeatedly cycles through the four energy changes given above; i. e.,
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Finally our acceptance criterion for the iteration between step t and t+1 is given by the
following. If ΔE ≤ 0 or a random number ≤ AR, where AR is the acceptance rate, then
accept the original standard learning algorithm update iteration

(16)

Otherwise add random fluctuations to the parameter values.

(17)

where Ran is a random number.

The reason we add the random fluctuations to the energy vector in the second case is that
without the addition of random fluctuations the energy would remain constant, and hence
the next decoy selection would yield the same minimum scalar product as in the previous
iteration. This would have rendered the process equivalent to the original perceptron
learning algorithm. This somewhat complex modification of the perceptron learning
algorithm yields unique and stable solutions for the enormous number of inequalities in our
calculation without becoming trapped in local minima on the rugged parameter space
landscape. During the learning process we need to normalize the parameters as the method
proceeds; if we do not that, some of the parameters would grow to be very big and others
will become zero. To prevent this we apply a normalization factor by resetting ε (i) at each
iteration to be ε(i) = ε(i)/|ε(1)|.

RESULTS- Extended parameter set that accounts for side chain hydrogen-
bonding

We have grouped the twenty amino acids into fourteen groups according to their physico-
chemical characteristics. Our reasoning is the following. We start by noting that sixteen of
the amino acids can be classified into groups based on whether or not they are hydrophobic
{LVIMFYW}, negatively charged{ED}, positively charged {KR}, or polar{STNQH}. The
remaining four amino acids, ALA, CYS, PRO, and GLY are fairly unique and for this
reason are each classified into their own group. Thus the eight classifications are
{LVIMFYW} {A} {C} {ED} {KR} {P} {STNQH} {G}. We further divide the
hydrophobic residues into two groups, small hydrophobic residues {LVIM} and large
hydrophobic residues {FYW}; the aromatic side chains in the latter group tend to enhance
the hydrophobic effect. Thus so far we have identified nine groups. Next we break out those
amino acids which are capable of side chain hydrogen bonding due to the presence of
nitrogen, oxygen, or sulfur on their side chains. Thirteen of the amino acids have this
capability (M,Y,W,C,D,E,K,R,T,S,N,Q,H); these can be classified based on the nature of
their polar atoms. M is singled out from LVI due to its polar sulfur. Y with a oxygen and W
with two nitrogens are distinguished from the other aromatic residues, and assigned to their
own group due to their different polar atoms. S and T are grouped together because they
both have one polar oxygen in their side chain. N and Q are distinguished from S, T and H
since they have two polar atoms (nitrogen and oxygen). Finally H is also singled out due to
its two nitrogens. From the above consideration, there are 14 amino acid groups: {LVI} {M}
{F} {Y} {W} {A} {C} {ED} {KR} {P} {ST} {NQ} {H} {G}.

Given the 14 representative amino-acids, 91 pair interactions are possible, assuming that G
does not interact. The number of pair interactions can be reduced by combining similar
interaction types into a single group as is shown in Table 1. The top row and first column of
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Table 1 show the 13 groups (G is omitted).(The first column also lists the NH and CO
backbone united atoms.) Each group is named according to its first amino acid so for
example the group LVI is written in the table as L{VI} but in describing the interaction
between this group and another group we will only indicate the first amino acid. So for
example if we talk about the interaction “LE” we are referring to all possible interactions
between the groups {LVI} and {ED}, i.e. LE, LD, VE, VD, IE, and ID. The second row
indicates the type of polar atom, S, SH, O, OH or NH, on the side chain for each group. The
third row indicates whether the side chain can act as an H- bond donor (D), or acceptor (A),
or both (D&A). The numbers in the matrix indicate the interaction type—there are 23 types;
these are described in Table 2. Examples that illustrate why certain pair interactions have
been combined into the same group are the following. The interactions LL, LM, MM are
assumed to have the same interaction strength since they are relatively small amino acids
and they interact solely by hydrophobic interactions. The interactions YK, YQ, YH, WQ,
WH are assumed to have the same interaction strength since they are between large aromatic
hydrophobic and large polar amino acids with the possibility of hydrogen-bonding.
Moreover, interactions involving hydrogen-bonding between polar atoms on side-chains
(M,Y,W,C,E,K,S,Q,H) and NH, CO atoms on backbones are assumed to have the same
interaction strength. In these cases the NH on the backbone can form hydrogen bonds with
acceptors on the side chains of M, Y, C, E, S,Q, H, and the CO on the backbone can interact
with donors on the side chains of Y,W,C,K,S,Q,H. Although the Pro-Pro interaction is likely
different from the Pro-Polar interaction, it is difficult to estimate because the number of Pro-
Pro interactions in the 711 native PDBs is very small. The absence of data to “learn” from
can cause abnormal runaway behaviors in the learning process where the applicable energy
parameter increases without bound upon parameter rescaling. Since both the Pro-Pro
interaction and Pro-Polar interactions do not include any hydrophobic, hydrogen-bonding or
charged interactions we have grouped them together for expediency.

Table 3(left) shows the interaction parameters obtained by the stochastic learning algorithm
based on 711 PDBs with different R1,R2,R3 combinations under the constraint that the
strong attractive hydrophobic interactions (parameter numbers 1,2,3,4,5,6,8) are more
negative than weak attractive hydrophobic interactions (parameter number 12). In the
calculation of R2 (Eqn 4) and Nst (the number of strong interactions), the strong interactions
are taken to be backbone-backbone hydrogen bonding, strong hydrophobic interactions and
disulfide bond interactions between C and C, i.e. parameter numbers (1,2,3,4,5,6,8). In the
calculation of R3 (Eqn 5) and Nwk, the weak attractive interactions are taken to be the weak
hydrophobic interactions, charged attractive interactions and hydrogen-bonding between
side-chains, i.e. parameter numbers (10,12, 17,18,19,22). Even though the evaluated
interaction parameters do not satisfy all of the inequalities in the learning process and
depend on the values of R1, R2, and R3, the Z-score values of ~-2.3 signify that almost 98%
of the inequalities are satisfied. Moreover each parameter set is very stable, meaning it does
not depend on the initial parameters chosen in the learning algorithm. Even starting from
very different initial values of the parameters gives results that are identical up to the third
decimal digit. Thus the results are believed to be the global minimum in parameter space.

Comparing the relative values of the different types of parameters in Table 3(left) indicates
that our results are physically reasonable (with one exception to be discussed in the next
paragraph). Values in Table 3(left) clearly show that the strong attractive interactions--- the
hydrophobic interactions (LL,LF,FF,YY) and the CC disulfide bond --- have large negative
values and the weak attractive interactions--- the hydrophobic (LA,AA), charged (EK), and
side-chain hydrogen-bond interactions interaction numbers (17,18,19,22) --- have small
negative values. Also the interactions between aromatic residues (5,6) are slightly stronger
than the hydrophobic interactions between small residues(2). In calculating the C-C
disulfide bond interaction, two parameters were determined: the first operates at close range
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(<2.8Å) to mimic the covalent bond and the second operates at longer range (>2.8Å) and is
non-covalent. The first is interaction 8 and the second is included with interaction 13. The
parameter ratio AA/NHCO is between 0.05 and 0.15, which is in good agreement with the
ratio used in the PRIME model simulations of polyalanine. The parameter ratio CC/NHCO
is between 0.5 and 0.8. The interaction 10(EK) between residues with unlike charges is
negative and the interactions between residues with the same charge, 9(EE) and 11(KK), are
positive although small; interaction 11(KK) is smaller than interaction 9(EE), probably due
to the slight hydrophobic effect for large side-chains. The only value in Table 3 that is not
reasonable is parameter 14(C{YW}), which shows a positive value, contradicting common
sense. The explanation for this is that the (C{YW}) interaction is a relatively rare event in
our database of native and decoy conformations.

To address the positive (C{YW}) problem we further reduce the number of independent
parameters by grouping parameters (15,16) (14,17), (18,19), (20,21) into their own
individual groups, now numbered 14,15,16, and 17 respectively, arriving at a set of 19
parameters whose results are shown in Table 3(right). (The correspondence between the
interaction parameters indices in the 19 parameter set and those in the 23 parameter set is
indicated in the 2nd and 3rd columns of Table 2.) All pair interactions are physically
meaningful since their relative values are consistent with their physico-chemical nature, e.g.
hydrophobic, charged, side-chain hydrogen-bonding, etc., without any unexpected values
like CY in table 3(left). The ratios of the various pair-interactions to the backbone-backbone
hydrogen bond (NHCO) are also sensible.

It is of interest to consider an even simpler classification in which the possibility of side
chain hydrogen bonding is not accounted for, In this case we have 7 groups of amino acids:
strongly hydrophobic (LIVFYWM), weakly hydrophobic (A), glycine, (G), covalent
bonding (C), polar (PSTHNQ), negatively-charged (DE) and positively -charged (KR). For
this set we designate 12 types of interactions: (NH-CO) hydrogen-bond, (LL) strong
hydrophobic interaction, (LA) hydrophobic-alanine, (L{P,E,K}) hydrophobic-polar or
charged, (AA) alanine-alanine, (A{P,E,K}) alanine- polar or charged, (CC) disulfide bond,
(C{L,A,P,E,K}) cysteine-others, (P{P,E,K}) polar-polar or charged, (EE) negative charges
repulsive interaction, (KK) positive charges repulsive interaction, (EK) opposite charges
attractive interaction.

Supplemental tables 4 and 5 show the results for the 12 parameters estimated by perceptron
learning without (table 4) and with (table 5) the stochastic algorithm starting from 4
different initial values (I.V.) of the interaction parameters. In these calculations the
constraint parameters that appear in eqns (3)- (5) are chosen to be R1=0.2, R2=0.2, R3=0.3,
since they tend to yield a ratio AA/NHCO= 0.15 which is close to 0.1. The interaction
parameters in supplemental table 4 evaluated without using the stochastic procedure of
eqn(17) have two different final values, depending on the initial guesses for the parameters.
However when the stochastic procedure is added (Supplemental table 5) the parameter
values no longer depend on the initial values, which means we are more likely to have
arrived at the optimum parameter values. Therefore our complex stochastic procedure of
eqn(17) based on the four energies of eqn(12) to eqn(15) is necessary if we are to obtain a
unique solution to the enormous number of inequalities in eqns (1) and (2). One shortcoming
of this set is that the value of interaction 3(LA) is rather large compared to those of LL and
AA. The 12 parameter set could be useful as pair interactions in coarse-grained simulations
but would be unable to account for the type of side chain hydrogen-bonding that plays an
important role in fibril-forming peptide like GNNQQNY.61

It is also of interest to see how sensitive the results are to the size of the database. We set up
another database of native structures with 585 PDBs. In this case we removed binding
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proteins and mutated PDBs from the 711 protein database but added in small helix and
coiled peptides. The resulting values for the 19 parameters extracted from the 585 PDB are
shown in supplemental table 6. The interactions determined using this 585 PDB database is
not as physically reasonable as those determined using the 711 database. For example
compare the first column in supplemental table 6 (with R1=0.05, R2= 0.15, R3=0.15 with
the first column of table 3 (right) The weak attractive interactions (LA,MS,YS,QQ) are
larger in supplemental table 6 than in table 3 (right), and QQ is larger than LL. Parameter
values in the second, third and fourth columns are selected from among the many R1,R2,R3
combinations considered, since they have the attractive feature that AA/NHCO is close to
0.1. In addition the pair interactions (MS,YS,QQ) having side-chain hydrogen-bonding have
large negative values and are even stronger than the hydrophobic interaction (LL). Therefore
we can conclude that removing small proteins, which is how the 711 PDB database was
constructed, yields a better database than removing binding and mutated proteins which is
how the 585 PDB database was constructed for in estimating pair-interaction parameters.

The following question naturally arises. Can the parameters estimated in this paper, which
are essentially intramolecular pair interactions since they are based on single chain
information in the PDB, be applied to the aggregation of peptides, which is driven primarily
by inter-chain interactions? The difference between intra- and intermolecular interactions
has been addressed by Keskin et al.62 who concluded that the assumption that intra- and
inter-molecular pair potentials are well correlated is valid only when the reference state used
is solvent-mediated. Since no reference state is used in our work, an alternative way to
answer this question is to compare our results with those of other potentials having different
reference states. Pokarowski and coworkers analyzed 29 published contact-interactions., and
classified them into two types.63 The first group includes the Miyazawa-Jernigan (based on
solvent mediated reference state)64, Betancourt and Thirumalai65, Skolnick65, and Tobi -
Bahar interactions51; these were all dominated by a one-body hydrophobicity scale similar
to that of Wertz and Scheraga.66 The second group of contact potentials includes the
Miyazawa-Jernigan potential (based on residue mediated reference state)64 and the contact
energies of Baker’s group67; these were correlated with a residue-dependent factor called q
as well as with the a one-body hydrophobicity scale close to the Kyte-Doolittle scale.68 We
have calculated the correlations between the average 19 parameters in table 3 and the 29
different pairwise contact potentials selected by Pokarowski et al.63 by using their
correlation definition given by <x −x̄,y− ȳ>/nσxσy, where x and y are parameter values,
<…,…> represents a scalar product, the bar indicates an average, n is the number of
parameters, and σx is a standard deviation. Only five types of potentials show a correlation
value larger than 0.7 with our parameters. They are the BT(0.704), SKOb(0.732)
SKOa(0.721), MJ3h(0.716), BFKV(0.732) which belong to the class where the solvent
mediated reference state is employed.56,64,65,69 The correlations between our average 19
parameters and the potentials associated with the residue mediated reference state,
MJ1(0.405), MJ3(0.447) and B2(0.340),64,67,70 are relatively low. Therefore our 19 pair-
potential parameter set is closer to solvent mediated pair potentials than to residue mediated
pair potentials. Thus our use of the pair potential parameters calculated here as inter-
molecular potential parameters in simulations of protein aggregation is supported by Keskin
et al’s discussion.

DISCUSSION
We developed a new stochastic procedure to overcome dependence on the initial values in
the perceptron learning algorithm. The pair interaction parameters for use in the extended
version of PRIME, called PRIME 20, are estimated using this modified stochastic
perceptron learning algorithm. The aim here was to reduce the number of independent pair-
interaction parameters (compared to the usual 210 parameters) to be small enough that our
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pair interaction energies would be physically meaningful and yet large enough to give us
reasonably accurate results in discriminating decoys from native structures in the PDB
database. The smallest number of parameters that gives reasonable interactions is 19; these
account in a satisfactory way for hydrophobic, charged, side-chain hydrogen-bonding
interactions. A 12 parameter set that does not account for side-chain hydrogen bonding was
less successful at describing the relative values of the various types of interactions that one
would expect on physico-chemical grounds. The types of proteins included in the learning
algorithms; PDB database appear to be critical in estimating pairwise interaction parameters;
in particular single helix and nearly unstructured coiled peptides should be removed in
learning procedures.

Application of the newly constructed PRIME20 force field described here, with its
heterogeneous values for the pair interaction energy strengths and ranges, mass, bond- and
pseudo-bond lengths and, squeeze distances, to the aggregation of small peptides such as
Aβ(16–22) and Aβ(25–35) are under way. Thus far PRIME 20 has been tested by applying
DMD simulations to systems containing forty eight Abeta16–22(KLVFFAE) peptides.
Spontaneous formation of twisted cross-beta structures or stacked beta-sheets is observed
over a range of fixed protein concentrations and temperatures starting from random initial
configurations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Geometry of PRIME. Covalent bonds are shown with gray lines connecting united atoms. At
least one of each type of pseudobond is shown with a coloured line. Pseudobonds are used to
maintain backbone bond angles, consecutive C distances, and residue L-isomerization. The
united atoms are not shown full size for ease of viewing.
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Figure 2.
(a) Radial distribution function for Ala-Ala and Val-Val pair interactions. (b) Pair
distribution for Val-Val and Ala-Ala with heavy atom distance cutoff 5.5Å.
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Table 2

Descriptions for 23(19) interaction parameters based on whether they have hydrophobic or charged
interactions, the side chain size, and the possibility of hydrogen-bonding. Hydrogen bonding with sulfur(S) is
considered separately because it is usually weaker than the hydrogen bonding via NH and O. The 22nd

parameter (QQ,QH,HH) is separated out since those amino acids have two polar atoms in their side-chains.

Parameter names and indices Descriptions for
Hydrophobic (HP) or Charge,
Size or Types of Amino Acids
(A.A.)Hydrogen-Bond (HB) types

Number of Parameters 23 19

NHCO 1 1 Backbone HB

LL,LM,MM 2 2 Strong HP, Small-Small A.A.

L{FYW},MF 3 3 Strong HP, Small-Large A.A. HB with S

M{YW} 4 4 Strong HP, Small-Large A.A.

F{FYW},WW 5 5 Strong HP, Large-Large A.A.

Y{Y,W} 6 6 Strong HP, Large-Large A.A. Side HB

AA 7 7 Weak HP

CC(Covalent Bond) 8 8 Breakable disulfide-bond

EE 9 9 Charged(--)

EK 10 10 Charged(−+)

KK 11 11 Charged(++)

A{LMFYW} 12 12 Weak HP, Ala- HP sidechains

C{LMFAC} 13 13 Cys-HP sidechains

C{YW} 14 15 Cys-HP sidechains, Side HB with S

{LMF}{EP},{YWC}P,{LF}S 15 14 HP sidechains – Small Polar(P)

{LF}{KQH},WK 16 14 HP sidechains – Large P

{MC}{KSQH},CE 17 15 Side HB with S

{YW}{ES},{ES}{SQH},KS 18 16 Side HB

{YW}{QH},YK 19 16 HP sidechains – Large P, Side HB

A{EKPSQH} 20 17 Ala - P

P{EKPSQH} 21 17 Pro - P

QQ,QH,HH 22 18 Large P – Large P, Side HB

Backbone-SideChain HB 23 19 Backbone-Side HB
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