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The catalytic dynamic resolution (CDR) of rac-2-lithio-N-Boc-piperidine using chiral ligand 8 or
its diastereomer 9, in the presence of TMEDA has led to the highly enantioselective syntheses of
either enantiomer of 2-substituted piperidines using a wide range of electrophiles. The CDR has
been applied to the synthesis of R- or S-pipecolic acid derivatives, (+)-p-conhydrine, (S)-(+)-
pelletierine, (S)-(—)-ropivacaine, and formal synthesis of (—)-lasubine Il and (+)-cermizine C.
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2-Substituted piperidines are found in many alkaloids and medicinal compounds which are
derived from pipecolic acid. In 1989, Beak showed that racemic members of this class of
compounds can be conveniently prepared by deprotonation and electrophilic quench of N-
Boc-piperidine, 1, using s-BuLi and N, N, N’, N'-tetramethylethylenediamine (TMEDA).1
Although the chiral base s-BuL.i/(—)-sparteine efficiently and enantioselectively
deprotonates N-Boc-pyrrolidine,2 the same base complex is less effective with N-Boc-
piperidine.3 Partial success has recently been reported using O’Brien’s (+)-sparteine
surrogate, which affords up to 88:12 er (R:S) in variable yields (depending on the
electrophile), but this method is limited to one enantiomer.4

An alternative approach is the use of dynamic resolutions, and the most successful results to
date for resolution of 2-lithio piperidines have been reported by the Coldham group.5 In
dynamic thermodynamic resolutions (DTRs), chiral ligands coordinate to the metal of a
chiral organolithium causing it to undergo carbanion inversion at a selected temperature, and
populate one stereoisomer through equilibration. Upon cooling to freeze the equilibrium,
reaction with an electrophile gives enantioenriched products.6 Coldham recently reported
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that N-Boc-2-lithiopiperidine 2 can be resolved by DTR using several monolithiated
diamino alkoxide ligands (Scheme 1).5

A catalytic dynamic resolution (CDR) of 2-lithio-N-trimethylallylpyrrolidine was recently
reported.7 We now report the discovery of a CDR of rac-2 using new ligands that afford
excellent enantioselectivity, for either enantiomer of 2-substituted piperidines.

In their report on the stoichiometric DTR of rac-2, Coldham, et al, indicated that the
resolution is facilitated by the addition of lithium isopropoxide.5 With this in mind, we
investigated the enantioselectivity of dilithio diaminoalkoxides 7-9 in a stoichiometric DTR
using the Coldham conditions. We were gratified to find the high er’s shown in Figure 1.
Note that diastereomeric ligands 8 and 9 afford very high er, and opposite configurations of
3.

A successful CDR depends on several factors, including a lower barrier for DTR than for
racemization at a given temperature.8 A plot of AG* vs. temperature for racemization of 2 in
the presence of TMEDA and DTR of 2.8 in the presence of TMEDA revealed that the
barrier for DTR is lower than for racemization below —27 °C (see Supporting Information).
Thus a CDR was attempted by generating the racemic organolithium 2 by deprotonation in
Et,0O at —78 °C with s-BuLi/TMEDA, followed by addition of 10 mol% of 8, warming to
—45 °C for three hours, then cooling to —78 °C and quenching with Me3SiCIl. We were
gratified to obtain 3 in 74% yield and 96:4 er (Table 1, entry 1). Several other electrophiles
were evaluated under the same CDR conditions, with the results summarized in Table 1,
entries 2-14. Excellent enantiomer ratios and good yields were obtained in all cases.
Procedures to recover the chiral ligand are included in the SI.

CDR using ligand 8 and quenching with BusSnCl afforded (S)-10 in 66% yield and 96:4 er.
With ligand 9, (R)-10 was obtained in 62% yield and 97:3 er. When CO, was used as
electrophile, N-Boc-(R)-(+)-pipecolic acid, (R)-11, was obtained in 78% yield and 98:2 er
using 8. Quenching with CICO,Me afforded enantiopure methyl pipecolate ester (R)-12
using ligand 8 and (S)-12 using ligand 9. Reaction with PANCO afforded enantiopure anilide
(R)-13 using ligand 8.

The electrophilic bimolecular substitutions discussed above (entries 1 to 7), proceed via a
polar pathway, presumably with retentive substitution at the metal bearing carbon (Sg2ret).9
However, when (S)-2 was trapped directly with either allyl chloride or benzyl bromide,
nearly racemic products were obtained. These nonselective reactions probably proceed
through a single electron transfer (SET) pathway.10 The enantioselectivity of the allylations
was therefore evaluated under Negishi conditions, which have been successfully applied in
this system,4 whereby 2 is transmetalated with ZnCl, and coupled using CuCN-2LiCl.
Under these conditions, allyl bromide afforded (R)-14 with ligand 8 in 63% yield and 95:5
er (entry 8). When CDR using ligand 9 was employed, (S)-14 was obtained in 59% yield and
96:4 er (entry 9). A similar protocol using ligand 8 and Negishi coupling with benzyl
bromide gave enantiopure (R)-15 in 65% yield (entry 10).

CDR of rac-2, followed by addition to aldehydes and ketones was also investigated, with the
results summarized in Table 1, entries 11-14. Not surprisingly,11 the adducts from addition
to cyclohexanone, benzaldehyde, and 1-naphthaldehyde cyclized, in situ, to oxazolidinones,
the latter two as mixtures of diastereomers. Nevertheless, the configuration at the lithium-
bearing carbon of 2 was maintained, with all adducts exhibiting high er’s. Quenching with
acetaldehyde provides a convenient way to prepare the enantiopure alcohol 19 in 78% yield
as a mixture of diastereomers (85:15 dr, entry 14).
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When (S)-2 was quenched with propionaldehyde, the alcohol 20 was obtained as a 70:30
mixture of diastereomers, both of which had 96:4 er. Separation of the diastereomers by
column chromatography and hydrolysis of the carbamate from the major diastereomer
afforded the alkaloid (+)-p-conhydrine (Scheme 2).

Hydrogenation of (S)-14 and deprotection afforded (S)-(—)-coniine; Wacker oxidation and
deprotection afforded (S)-(+)-pelletierine (Scheme 3). Cheng and coworkers have recently
prepared (S)-14 from glutaraldehyde in 6 steps, and showed that (S)-14 can be readily
converted to (—)-lasubine Il and (+)-cermizine C via (S)-(+)-pelletierine.12

CDR of 2 with ligand 9 and electrophilic quench with 2,6-dimethylphenyl isocyanate
afforded enantiopure (>99:1 er) (S)-21 in 69% yield (Scheme 4). After deprotection,
alkylation with 1-bromopropane in the presence of K,COj3 yielded (S)-(—)-ropivacaine in
three overall steps and 61% overall yield.

In summary, the discoveries of ligands 8 and 9 coupled with their ability to resolve N-
Boc-2-lithiopiperidine catalytically have provided an efficient route for the highly
enantioselective syntheses of 2-substituted piperidines of either absolute configuration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Dilithio ligands for dynamic resolution.
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Scheme 1.
DTR of N-Boc-2-lithiopiperidine 2.5
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Scheme 2.

Synthesis of (+)-p-conhydrine

i) s-BuLi (1.2 equiv), Et20, TMEDA (4.0 equiv), =78 °C, 3 h; ii) 8, (10 mol%), -45 °C, 3 h;
iii) EtCHO, -78 °C, 2 h; iv) CF3CO2H, CH2CI2.
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Scheme 3.

Synthesis of (S)-(+)-pelletierine and (S)-(—)-coniine. Formal synthesis of (—)-lasubine Il and
(+)-cermizine C.12

i) Pd(OH), (1.0 eq), H» (1 atm), MeOH, rt, 48 h; ii) CF3CO,H, CH,Cl,, 0 °C, 2 h, then
NaOH, pH 10; iii) PdCl, (1.0 eq), CuClI (10 mol%), O,, DMF/H,0 (10:1), rt, 10 h; iv)
CF3CO%H, CH,Cly, 0 °C, 2 h, then NaOH.
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Scheme 4.

Synthesis of (S)-(—)-Ropivacaine

i) s-BuLi (1.2 eq), Et,0, TMEDA (4.0 eq), —78 °C, 3 h, then 9, (10 mol%), —45 °C, 3 h,
—78 °C, 2,6-dimethylphenyl isocyanate, 2 h, >99:1 er; ii) CF3COOH, CH,Cl,, rt, 10 h, then
NaOH; iii) isopropyl alcohol, 1-bromopropane (3.0 equiv), KoCOj3 (3.0 equiv), H»0, 100
°C, 6 h.
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Table 1

CDR of 2 at —45 °C for 3 h using ligand 8 (or 9 where noted).

®

1. s-BuLi, 4 eq TMEDA,
2. 10 mol% L*, —45 °C

7o (), W (L
" or
I?.I ‘E I'I\I E
Boc Boc

\ 3.E*,—78 C
%Oc Ee0 L"=8 L*=9
Entry E* Product(s) % Yield er

1 Me,SiCl (9)-3 74 96:4
2 Bu,SnCl (5)-10 66 96:4
3 BusSnClI (R)-10 62 97:32
4 co, (R)-11 78 98:2
5 MeOCOCI (R)-12 88 >99:1
6 MeOCOCI (5)-12 85 >99:12
7 PhNCO (R)-13 68 >99:1
8 Allyl bromide (R)-14 63 95:5D
9 Allyl bromide (S)-14 59 96:4a.b
10 BnBr (R)-15 65 >99:1b
11 Cyclohexanone 60 94:6

(R)-16
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O 1. s-BuLi, 4 eq TMEDA, —78 °C O Q
2. 10 mol% L*, —45 °C " or

N" 3 E,-78%C N~ E N
Boc Boc Boc
1 Et0 L'=8 L'=9
Entry E* Product(s) % Yield er
12 PhCHOS 74 (62:38dr) | >99:1 & 98:2
17
13 1-NpCHO® 66(82:18dr) | 94:6 & 93:7
N Np
)~0
o]
18
14 CHgCHOC 78 (85:15dr) >99:1 for both
19

aUsing ligand 9

b . L .
via Negishi cross coupling
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Co. . . .
Major diastereomer illustrated
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