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Maintaining appropriate beliefs about variables needed for effective decision making can be difficult in a dynamic environment. One key
issue is the amount of influence that unexpected outcomes should have on existing beliefs. In general, outcomes that are unexpected
because of a fundamental change in the environment should carry more influence than outcomes that are unexpected because of
persistent environmental stochasticity. Here we use a novel task to characterize how well human subjects follow these principles under a
range of conditions. We show that the influence of an outcome depends on both the error made in predicting that outcome and the
number of similar outcomes experienced previously. We also show that the exact nature of these tendencies varies considerably across
subjects. Finally, we show that these patterns of behavior are consistent with a computationally simple reduction of an ideal-observer
model. The model adjusts the influence of newly experienced outcomes according to ongoing estimates of uncertainty and the probability
of a fundamental change in the process by which outcomes are generated. A prior that quantifies the expected frequency of such
environmental changes accounts for individual variability, including a positive relationship between subjective certainty and the degree
to which new information influences existing beliefs. The results suggest that the brain adaptively regulates the influence of decision
outcomes on existing beliefs using straightforward updating rules that take into account both recent outcomes and prior expectations
about higher-order environmental structure.

Introduction
Behavior often depends on the ability to predict future outcomes
from past experiences. In an unchanging environment, beliefs
that underlie effective predictions are typically stable. However,
in a dynamic environment, the past does not always predict the
future, and beliefs must therefore sometimes adapt rapidly, par-
ticularly after unexpected outcomes (Rushworth and Behrens,
2008). One common and effective algorithm for describing such
adaptation is the delta rule (Williams, 1992; Sutton and Barto,
1998):

Bt � 1 � Bt � �t � �t (1)

where a new belief at time t � 1 (Bt � 1) depends on the previous
belief (Bt) and the error made in predicting the most recent out-
come (�t). The influence of the new outcome is controlled by the
learning rate (�t). When �t � 0, the updated belief reflects the
previous belief but not the most recent outcome. When �t � 1,
the updated belief reflects the most recent outcome but not the
previous belief.

Assigning influence to new outcomes in a dynamic environ-
ment is difficult because the source of prediction errors is gener-
ally unknown (Behrens et al., 2007; Yu and Dayan, 2005). One
source of error is stochastic fluctuations in an otherwise stable
action–outcome relationship (“noise”). Noise can make each out-
come a bad predictor of the next, implying that new outcomes
should affect beliefs only minimally. Another source of error is a
fundamental change point in the action–outcome relationship
(“volatility”). Change points can render historical outcomes irrele-
vant, implying that new outcomes should influence beliefs strongly.

Previous work has shown that, on average, human subjects
elevate learning rates during periods of volatility on probabilistic
decision tasks. Such behavior can be fit by both a Bayesian model
for optimal belief updating and a computationally frugal exten-
sion of delta-rule updating (Behrens et al., 2007; Krugel et al.,
2009). Our goal was to build on these studies and, instead of
relying on model fitting to average behavior on simple choice
tasks, directly measure the learning rates used by subjects in noisy
and volatile environments. We also sought to reconcile these data
with both the Bayesian and delta-rule models to better under-
stand the underlying neural computations.

We developed a novel task that required subjects to predict the
next numerical value to be presented in a sequence (see Fig. 1A).
The values were chosen randomly from a Gaussian distribution
with a mean that changed occasionally, giving rise to both noisy
and volatile prediction errors. The subject updated each predic-
tion as a fraction of the current prediction error, equivalent to
setting the learning rate (�t). Thus, the task provided a trial-by-
trial measurement of outcome influence.
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We present several new findings. First, subjects recognized
change points from unexpectedly large prediction errors, which
temporarily increased prediction uncertainty and the influence
of subsequent outcomes. Second, there were strong individual
differences, including some subjects who were highly influ-
enced by new outcomes and others who generally ignored
them. Third, these behaviors were consistent with a modified
delta-rule model, derived from a systematic reduction of the
Bayesian ideal observer (Adams and MacKay, 2007; Fearnhead
and Liu, 2007; Wilson et al., 2010), in which individual differ-
ences were attributed to different expectations about the rate
of occurrence of change points. The results provide a novel,
quantitative framework describing the dynamics of belief up-
dating in a changing environment.

Materials and Methods
Behavioral tasks
Human subject protocols were approved by the University of Pennsylva-
nia internal review board. Thirty subjects (13 female, 17 male; mean age,
25.2 years; range, 19 –31 years) participated in the study after providing
informed consent. Twenty-seven subjects completed both the estimation
and confidence tasks (see below), in that order. One subject completed
only the estimation task, and two subjects completed only the confidence
task.

Estimation task. This task required subjects to predict each subsequent
number to be presented in a series of numbers. For each trial t, a single
number (Xt) was presented that was a rounded pick sampled indepen-
dently and identically from a Gaussian distribution whose mean (�t)
changed at unsignaled change points and whose SD (�t) was fixed for
each of the four experimental blocks of 200 trials (5, 15, 25, or 35, pre-
sented blockwise in ascending order for 14 subjects and descending order
for 14 subjects); that is, Xt � �(�t, �t). Change points in the mean of the
generative distribution occurred after at least five trials plus a random
pick from an exponential distribution with a mean of 20 trials. Thus,
the true rate of change points, or hazard rate (H, in units of change
points/trial) was 0 for the first five trials after a change point and 0.05
for all trials thereafter. The average hazard rate of a change point
across all trials was 0.04.

The display showed a line representing the range of possible numbers
(0 to 300), a bar representing the current estimate, a bar representing the
most recent number presented, and a line between these bars represent-
ing the current prediction error (see Fig. 1 A). The subject updated his or
her prediction on each trial to an integer value between the previous
prediction and the newly generated number (ensuring that learning rates
would fall between zero and one) using a video gamepad. Each subject
first performed two training blocks (SDs of 3 and 20). Each session con-
sisted of four test blocks.

Subjects were told that the numbers were generated from a noisy pro-
cess that would change over the course of the task. They were instructed
to minimize their prediction errors, on average, across all blocks of the
task; i.e., minimize ���t��. Payout depended on how well they achieved this
goal. Because prediction errors depended substantially on the specific
sequence of numbers generated for the given session, we computed two
benchmark error magnitudes to help determine payout. The lower
benchmark (LB) was computed as the mean absolute difference between
sequential generated numbers, ��Xt � Xt � 1��. The higher benchmark
(HB) was the mean difference between mean of the generative distribu-
tion on the previous trial and the generated number, ��Xt � �t � 1��.
Payout was computed as follows:

��t� � LB � $8 (2)

LB � ��t� � 2/3 LB � 1/3 HB � $10 (3)

2/3 LB � 1/3 HB � ��t� � 1/2 �LB � HB� � $12 (4)

��t� 	 1/ 2�LB � HB� � $15 (5)

The reduced Bayesian model, when given the true hazard rate (0.04), was
capable of achieving the maximum payout for all task sessions.

Confidence task. This task was similar to the estimation task, except
subjects also indicated their confidence in each prediction. A series of
numbers was generated as above (three blocks of 200 trials with SDs 10,
20, and 30). Subjects were instructed not only to make a prediction on
each trial, as described above, but also to indicate a symmetric window
around the prediction that they believed, with 85% confidence, would
contain the next number. Subjects earned “points” on each trial in which
the generated number fell within the specified window. Feedback in-
cluded a sound to indicate when the generated number fell within the
specified window and a running tally of points earned by the subject.

Point values were chosen to incentivize confidence windows that were
85% likely to contain the next number in the sequence, as follows. The
expected value of points earned across all possible window sizes was
defined by a Gaussian distribution with a mean equal to the minimum
range capable of including 85% of the probability density under the
generative distribution. The number of points at stake for a given win-
dow size was computed by dividing the expected value of that window
size by the probability that the new outcome would fall within this win-
dow (assuming the window is centered on the actual mean of the gener-
ative distribution). Thus, total points earned at the end of the session
depended both on the ability to correctly estimate the mean, but also the
use of windows that approximated 85% confidence intervals. Points
earned by subjects (SP) were compared to the number points that would
be earned by the two benchmark strategies described above, if those
strategies used confidence-window sizes that maximized expected point
value (LBP and HBP). Payout was computed as follows:

SP 	 LBP � $8 (6)

LBP 	 SP 	 2/3 LBP � 1/3 HBP � $10 (7)

2/3 LBP � 1/3 HBP 	 SP 	 1/2 (LBP � HBP) � $12 (8)

SP 
 1/2 (LBP � HBP) � $15 (9)

Data analysis. Prediction errors were computed by subtracting the
subject’s prediction (Eq. 1, Bt) from the actual outcome (Xt) on each trial.
Learning rates were calculated for each trial according to Eq. 1: the cur-
rent update, Bt � 1 � Bt, was divided by the current prediction error, �t.
Trial-by-trial error z-scores were computed by dividing the absolute
error magnitude by the SD of the generative distribution. Error-
independent learning rates were computed by first fitting a sigmoid-
shaped, cumulative Weibull function (with four parameters, governing
shape, offset, lower bound, and upper bound) to learning rate as a func-
tion of error z-score. The residuals to this fit represented learning rates
that were relatively independent of error magnitude. Relative uncertainty
was computed by taking the z-score of confidence window size for a given
generative SD.

Models
Optimal performance requires inferring the mean (in the estimation
task) and width (in the confidence task) of the probability distribution
over future outcomes, given all previous outcomes, p(Xt � 1 � X1:t). We
first develop a full, Bayesian solution to this problem. We then system-
atically reduce this Bayesian solution to a more computationally tractable
algorithm that is a form of delta rule.

The Bayesian solution depends on knowledge of the underlying gen-
erative process. There are many different ways of describing this process
that are mathematically equivalent and therefore could, in principle, be
used to formulate the Bayesian ideal observer. For example, outcomes in
our task could be generated by a process that depends on a binary variable
describing whether or not a change point occurred on a given trial, or,
alternatively, by a scalar variable describing the number of outcomes
(“run length,” or r) that occurred since the most recent change point. In
either case, Bayesian inference can be accomplished by inverting the
generative process (Adams and MacKay, 2007; Behrens et al., 2007;
Fearnhead and Liu, 2007). Here we consider a generative process that
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depends on run length primarily because this process can be related to a
modified delta rule in a straightforward manner.

Specifically, the generative process for our task is based on a weighted
coin flip that determines whether the current run of r outcomes will
continue (rt � rt � 1 � 1). If the run does continue, then the generative
mean �t is set to the previous mean (�t � �t � 1). If the run does not
continue (which happens with probability H, which in our task is 0 if r 	
5 and 0.05 otherwise, but for simplicity can be thought of as a constant),
then r is reset to zero, and a new mean is picked from a uniform distri-
bution [�t � U(0, 300)]. In either case, an outcome (Xt) is generated on
each trial from a normal distribution [Xt � �(�t, �)]. Within this gen-
erative framework, the predictive distribution can be expressed in terms
of the possible means of the generative distribution, given all previous
data:

p�Xt�1X1:t� � �
�t

p�Xt�1, �tX1:t� � �
�t

p�Xt�1�t� p��tX1:t�

(10)

where all of the relevant information from previous outcomes is stored in
the final term, p(�t�X1:t), which can be expressed as the marginal (with
respect to run length) over the joint distribution across the current values
of both the mean and run length:

p��tX1:t� � �
rt

p��t, rtX1:t� (11)

One strategy for solving this problem is to first compute the joint distri-
bution and then marginalize across all possible run lengths. The joint
distribution can be computed according to Bayes’ rule:

p��t, rtX1:t� �
p�X1:t�t, rt� p��t, rt�

p�X1:t�
(12)

where the likelihood term, p(X1:t��t, rt), can rewritten as a joint distribu-
tion including the mean and run length from the previous trial, margin-
alized over these variables, and rearranged as follows:

p��t, rtX1:t�

�

p�Xt�t, rt��
�t�1

�
rt�1

p��trt, �t�1� p�rtrt�1� p��t�1, rt�1X1:t�1�

p�XtX1:t�1�

(13)

In this case, the likelihood (first) term specifies the probability of only the
newest outcome given all possible values for the current mean and run
length, and the prior probability of the possible means and run lengths
are determined according the transition functions specified by the gen-
erative process and the probability distribution over mean and run length
computed on the previous trial.

Because the prior in Equation 13 depends only on knowledge of the
generative process and the posterior distribution computed on the pre-
vious trial, the process is Markovian and can be updated in a straightfor-
ward manner after each new outcome. When the hazard rate is known,
this updating procedure can be implemented using the message-passing
algorithm depicted in Figure 6 A. After t trials, the model updates predic-
tive distributions (in Xt � 1) for each of the t � 1 possible run lengths, as
well as the probability distribution over those run lengths. When the
hazard rate is unknown, like for our subjects, the optimal solution is
more complicated. It requires maintaining a distribution over not only
possible run lengths, but also possible hazard rates, which requires either
(t � 1) 2 or (t � 1) 3 separate predictive distributions depending on
whether the hazard rate is constant or variable over time, respectively
(Wilson et al., 2010). To make this algorithm more computationally
tractable, we implemented a pruning algorithm shown previously to
reduce computations with a minimal loss of performance (Wilson et al.,
2010).

Reduced Bayesian model. We also developed an even more computa-
tionally tractable and neurally feasible inference algorithm that is based
on a systematic reduction of the full Bayesian model. In this model, the

predictive distribution is not computed across all possible run lengths,
but instead with respect to a single, expected run length (r̂t). On each
trial, the model considers two possibilities: that a change point did or did
not occur. Accordingly, the probability of a change point (cp) on a given
trial, �, can be computed using Bayes’ rule:

p�cpXt� � �t �
p�Xtcp� p�cp�

p�Xt�

�
p�Xtcp� p�cp�

p�Xtcp� p�cp� � p�Xt�cp� p��cp�

�
U�Xt0, 300� H

U�Xt0, 300� H � ��Xt�̂t, �̂t��1 
 H�
(14)

where U(Xt�0, 300) is the uniform distribution from which Xt is gener-
ated (independent of the previous generative distribution) if a change
point occurred, �(Xt��̂t, �̂t) is the predictive distribution if a change
point did not occur (and thus depends on both r̂t and recent outcomes),
and H is the hazard rate (set to 0.04, the average value for the task).

The variance of the predictive distribution depends on both the run
length and the expected amount of noise from the generative
distribution:

�̂t
2 � N2 �

N2

r̂t
(15)

where N is the SD of the generative distribution; see below for an alter-
native model in which this quantity is inferred from the data. In Equation
15, the first term on the right-hand side reflects uncertainty about the
outcome for the given �, and the second term reflects uncertainty about
the actual location of �. As run length increases, uncertainty about the
location of � decreases, but uncertainty implicit in the stochasticity of the
generative process (noise) remains.

The expected (mean) value of the predictive distribution is based on
two possibilities, one that a change point occurred, and thus only the
most recent data point is relevant,

�̂t
cp � Xt (16)

and a second possibility that a change point did not occur, and thus the
mean is updated to take into account the new data point,

�̂�cp
t �

�Xt � r̂t � �̂t � 1�

r̂t � 1
(17)

The mean of the posterior distribution is an average of these two possi-
bilities, weighted by the probability that a change point occurred:

�̂t �
�Xt � r̂t � �̂t � 1��1 
 �t�

r̂t � 1
� �tXt (18)

An advantage of this approach is that this update equation can be rear-
ranged as a delta rule:

�̂t � �̂t � 1 � �t � �t (19)

where �t is the prediction error (Xt � �̂t), and �t is the learning rate:

�t �
1 � �tr̂t

r̂t � 1
(20)

Similarly, the expected run length is updated on each trial according to
the two possible generative scenarios and their respective probabilities:

r̂t � 1 � �r̂t � 1��1 
 �t� � �t (21)

Computing best-fitting hazard rates. To test whether prior expectations
about hazard rate could account for across-subject variability, we fit the
reduced model to data from each subject with the hazard rate as a free
parameter. The model was applied separately to each block, with N (Eq.
15) fixed to the true generative SD for that block. The best-fitting hazard
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rates were determined using a constrained search algorithm (fmincon in
MATLAB; min/max hazard, 0/1) that found the value of H that minimized
the total squared difference between model and subject predictions.

We considered two possible implementations of the reduced Bayesian
model. The first made predictions as the mean of the current predictive
distribution (�̂t). The second made predictions as the mean of the dis-
tribution at time t � 1. This quantity depends on not only the current
predictive distribution, but also the uniform prior distribution, because
there is a possibility that a change point might occur and thus the next
number would come from a new distribution. All analyses were done
with the first implementation, which provided better fits to the behavioral
data [the ratio of Bayesian information criteria of fits using the first vs the
second model had a median (interquartile range) value across task blocks of
0.93 (0.86–0.97); paired Wilcoxon test for H0: median � 0, p 	 0.001].

Inferring noise using the reduced model. Because subjects were not told
explicitly the amount of noise (the SD of the distributions used to gen-
erate the numbers), we also developed a version of the reduced model
that included an algorithm to infer the amount of noise from the data.
This model computes a quantity whose expectation is equal to the gen-
erative noise:

N̂t�1
2 � N̂t

2 � �t�N� � � r̂t�t
2

r̂t � 1

 N̂t

2� (22)

where N̂ 2 is the inferred variance, which is updated according to a delta
rule that depends on both the run length and prediction error. The ex-
pected value of the prediction-error term (in parentheses) is zero for
non-change-point trials.

The learning rate, �t(N), affects the extent to which new prediction
errors influence the noise estimate and was assumed to be proportional
to the probability that the trial contained information about variance
(i.e., was not a change point trial) and inversely proportional to the
amount of such information collected previously:

�t�N� �
1 
 �t

�
1

t

�1 
 �t�
(23)

Thus, �t(N) goes to zero if a change point is likely to have occurred or as
the number of previous non-change-point trials goes to infinity.

Although this algorithm is capable of inferring noise, it uses learning
rates that tend toward zero after only a few trials, and thus seem unlikely
to be used by subjects. We therefore modeled the possibility that learning
rates used to infer noise were related to those used to infer �. Specifically,
we instituted a minimum �(N) that depends on the hazard rate ( H), the
model parameter that dictates the average learning rate (see Fig. 8 B):

��N�
MIN � �H � �1 
 �t� (24)

where � is a scaling constant. For Figure 9, C, F, and I, � was set to 0.5
(results were similar using values ranging from 0.2 to 1).

Reduced Bayesian model with under-weighted likelihood information.
To more closely match our measured behavioral data, we revised the
reduced model to reduce the weight of likelihood information in change-
point detection. Thus, in lieu of Equation 14, this version computed �t as
follows:

�t �
U�Xt0, 300)�H

U(0, 300)�H��(Xt�̂t, �̂t
2)�(1�H)

(25)

where the likelihood weight, �, is a fractional term (0 . . . 1) that limits the
use of likelihood information in change-point detection. When � � 0,
the model becomes a fixed learning rate delta-rule model in which the
learning rate is determined by H. When � � 1, the model is equivalent to
the reduced Bayesian model discussed above. This model was fit to sub-
ject data with � and H as free parameters, using a constrained search
algorithm to minimize the squared difference between subject and model
predictions.

Reduced Bayesian model with drifting mean. A final alternative model
used a generative framework that assumed that the mean of the genera-

tive distribution drifted from trial to trial. Although such drift did not
actually occur, we wanted to test whether subjects behaved as if it did.
This kind of drift is often accounted for using a Kalman filter, which
provides an efficient means for updating beliefs based on noisy samples
from a drifting process. However, this approach performs poorly in en-
vironments with discontinuous changes, such as in our task. Conversely,
the pure change-point model provides an efficient algorithm for updat-
ing beliefs when the world changes only at discreet change points. We
therefore combined these approaches, as follows. The drift was assumed
to be ��(0,D), where D is the drift rate. This generative framework
prescribes more uncertainty about the location of the true mean, which
leads to a wider predictive distribution (to replace Eq. 15):

�̂t
2 � N2 �

N2

r̂t
� D2 (26)

To consolidate uncertainty about the mean into a single variable and
allow correct computation of the learning rate (Eq. 20), we recomputed
the run length to reflect the total uncertainty about the mean of the
distribution:

r̂t* �
N2

�t
2 (27)

This adjusted run length was used for the learning rate (Eq. 20) and
update (Eq. 21) equations. This model was fit to subject data with N, D,
and H as free parameters.

Results
We used a novel estimation task to quantify how human subjects
update beliefs in the face of both noise and volatility. Below, we
first describe the task and show that subjects tended to use differ-
ent learning rates to update beliefs under different conditions.
Second, we show that the choice of learning rate depended on the
degree to which estimation errors were larger than expected, the
recency of such an unexpectedly large error, and the relative un-
certainty of the subject. Third, we introduce a novel model, which
is a form of Bayesian ideal observer reduced to implement delta-
rule updating, that captures many key aspects of the data. Fourth,
we use the model to show that individual differences in perfor-
mance suggest differences in whether errors tend to be inter-
preted as either noise or volatility. Fifth, we introduce several
model variants that even more closely match human behavior.

Learning rate varied from trial to trial
Thirty subjects performed the estimation and confidence tasks in
57 total sessions. The tasks required the subject to sequentially
update a belief about the next number in a series. The numbers
were picked from a Gaussian distribution with a mean that
changed at random intervals (change points) and an SD (noise)
that was stable over each block of 200 trials (Fig. 1A). Subjects
were instructed to estimate the next number that would be gen-
erated by the computer and to minimize the error on these esti-
mates. Visual feedback consisted of a bar that reflected the
difference between the subject’s estimate and the most recently
generated number shown on each trial and the mean absolute
error shown at the end of each 200-trial block. Payment scaled
inversely with the mean absolute error for the session.

In principle, payout maximization required basing estimates
on the median (in this case also the mean) of the generative
distribution. However, information about the generative distri-
bution was not given to subjects explicitly. Therefore, they were
required to infer properties of this distribution on the previously
observed numbers. The behavioral data were consistent with a
sequential-updating strategy that approximated the central ten-
dency of the generative distribution (data from an example session
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are shown in Fig. 1B). Estimates tended to
approximate the mean during periods of
stability and then change relatively rapidly at
change points in the generative distribution
to resettle at the new mean.

In theory, a delta-rule algorithm might
generate qualitatively similar, adaptive
behavior even when the learning rate is
fixed to a constant value, because update
magnitude would be proportional to er-
ror magnitude. However, such a fixed
learning-rate model was not a valid de-
scription of behavior for this task (Fig.
1D). The subjects used learning rates that
differed from trial to trial and spanned the
allowed range from 0 to 1. Moreover, al-
though the learning rates used by different
subjects varied considerably (the mean
learning rate per subject ranged from 0.07
to 0.71), the particular sequence of learn-
ing rates chosen by each subject provided
better predictions than randomly ordered
sequences of the same values [the median
(95% confidence intervals) value, com-
puted across subjects, of the difference in
mean absolute error between 1000 random-
ized sequences vs the actual sequence per
subject, 2.59 (2.46, 2.72); Wilcoxon test for
H0: median � 0, p 	 0.001]. Thus, subjects
made effective predictions by assigning
some outcomes more influence than others.
The remaining analyses aimed to under-
stand the rules that governed how this as-
signment of influence was made.

Learning rate depended on
surprising outcomes
One important factor that governs the
magnitude of the chosen learning rate is
the occurrence of change points in the
mean of the generative distribution. In
general, when a change point occurs, in-
formation obtained before the change
point is no longer useful in making pre-
dictions, and thus the learning rate should
increase to emphasize newly arriving in-
formation. Consistent with this idea, sub-
jects typically used higher learning rates
on change-point trials (the first trial of a new mean of the gener-
ative distribution) than on other trials (Fig. 2A).

Change-point locations were unknown to the subjects and
thus must have been inferred from statistical features of the se-
quential trial outcomes. One such feature is the magnitude of
error (�) relative to expected errors. Change points are likely to
correspond to a surprisingly large error, where surprise is defined
with respect to the expectation of ���. Consistent with this idea,
the overall positive relationship between � and ��� depended
heavily on the SD of the generative distribution (Fig. 2B,C). A
given absolute error magnitude tended to lead to a higher learn-
ing rate for less noisy distributions, when such an error was less
expected. To further quantify this effect, we normalized absolute
prediction errors by the SD of the generative distribution. This
“z-scored error” was predictive of learning rate, relatively inde-

pendent of the noise magnitude (Fig. 2C) (Spearman’s 
 across all
subjects was 0.15; permutation test for H0: 
 � 0, p 	 0.001). We
also note that this basic trend was consistent but varied consid-
erably in magnitude across subjects (Fig. 2D), a finding that we
analyze in more detail below.

The effect of a change point on the choice of learning rate
persisted for many trials beyond the occurrence of the change
point. In the trials following a change point, prediction errors
tended to decrease sharply, as subjects adjusted their estimates to
match the new distribution (Fig. 3A, gray). In contrast, learning
rates tended to decrease more gradually after a change point (Fig.
3A, black). This gradual decay in learning rate did not depend on
the magnitude of the relative (z-scored) prediction error: after
adjusting for the relationship between learning rate and z-scored
error (see Fig. 2D), there were still changes in learning rate that

A

B

C

D

Figure 1. Estimation task and its relationship to prediction errors and learning rate. A, Schematized trial of the estimation task.
The subject makes a prediction (blue) and is then shown the outcome (red) and the error made in predicting the outcome (teal).
After the subject updates his prediction as a fraction of the error, a new outcome is generated. B, An example session. Numbers (red
line) are generated from a normal distribution with a variance that is constant within blocks of 200 trials (vertical, dotted lines) and
a mean (dashed black line) that changes at random times. The subject’s trial-by-trial predictions are shown in blue. C, Trial-by-trial
prediction errors from the session in B (actual in red minus prediction in blue). Histogram (right) shows the distribution of
prediction errors made over the course of the entire session. D, Trial-by-trial learning rates from the session in B, computed as the
fraction of the prediction error used to update the next prediction using a delta rule, as shown. Histogram (right) shows the
distribution of learning rates across the entire session.
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persisted for many trials after a change point. The peak value in
this adjusted learning rate tended to occur on the first trial after a
change point and then decay gradually (Fig. 3B).

Learning rate magnitude was related to confidence
Ideal-observer theory suggests that any information acquired af-
ter a change point should be highly influential because the ob-
server is uncertain about his or her current belief (Yu and Dayan,
2003; Wilson et al., 2010). Conversely, subsequent acquisition of
information from a stable environment should lead the observer
to become more confident and less influenced by each new out-
come. To examine this relationship between confidence and
learning rate and test how well it could explain the slowly decay-
ing learning rates shown in Figure 3, we trained subjects on a task
that required specification of an 85% confidence window. This
task probed not only the central tendency of the subject’s belief
about the generative distribution, but also uncertainty that sub-
jects had in their own estimates. The example session in Figure
4A shows estimates (solid blue) and the 85% confidence win-
dows (dashed blue) specified by a subject over the course of a full
session.

There was a systematic relationship between the size of the
confidence window and the SD of the generative distribution,

with greater uncertainty corresponding to
higher noise (Fig. 4B). Moreover, subjects
tended to make trial-by-trial adjustments
to the confidence window to reflect
changes in uncertainty, particularly after a
change point. On average, confidence
windows were largest after a change point
and gradually became smaller as subjects
collected more data from the new distri-
bution (Fig. 4C). This effect was largest
when there was less noise and change
points were most easily detectable. The
time course of this decay is similar to the
error-independent decay in learning rate
(compare Figs. 4C, 3B).

In addition to these general trends
across subjects, there was considerable in-
dividual variability in the choice of
confidence-window size (e.g., Fig. 4B,
whiskers) that was related to learning rate.
This relationship is typified by the behav-
ior of two example subjects, shown in Fig-
ure 5, A and B. Subject S.G. (Fig. 5A) used
small learning rates and tended to specify
large confidence windows, indicating
high uncertainty (Fig. 5A). In contrast,
subject L.Y. tended to use large learning
rates and small confidence windows (Fig.
5B). In addition to these differences in
mean learning rate and uncertainty be-
tween these two subjects, there was also a
difference in the relationship between the
two variables. Subject S.G., who tended to
use small learning rates overall, tended to
use relatively larger learning rates on trials
in which she was most uncertain about
her previous estimate. In contrast, subject
L.Y., who tended to use large learning
rates overall, tended to use smaller learn-
ing rates on trials in which she was most

uncertain about her previous estimate.
Across subjects, mean confidence-window size was negatively

correlated with mean learning rate (Fig. 5C). This relationship
implies that subjects who tended to use large learning rates and
thus were highly influenced by new information (like subject
L.Y.) also tended to be more confident in their estimates.
Moreover, the mean learning rate used by a given subject
across all conditions was predictive of how that subject’s
learning rate related to the confidence-window size from the
previous trial (Fig. 5D). Subjects who tended to use small
learning rates (like subject S.G.) chose larger learning rates
after trials in which they specified a large confidence window,
suggesting that these subjects were most influenced by outcomes
when they were most uncertain. In contrast, subjects who tended to
use large learning rates (like subject L.Y.) chose larger learning rates
after trials in which they specified a small confidence window, sug-
gesting that these subjects were most influenced by outcomes when
they were most certain.

The overall negative relationship between confidence window
size and learning rate might seem at first to contradict ideal-observer
theory. As noted above, an ideal observer should make extensive use
of new information, and therefore use high learning rates when un-

Figure 2. Learning rates increased after unexpected errors. A, Mean � SEM learning rates on trials in which the mean of the
generative distribution changed (ordinate) versus on other trials (abscissa; error bars are obscured by the points). Points are data
from individual subjects. Filled symbols indicate Wilcoxon test for H0: equal median learning rates on change-point and non-
change-point trials, p 	 0.05. B, Learning rate plotted as a function of median absolute error magnitude, averaged using running
bins of 150 trials, for four different SDs of the generative distribution, as indicated. Data are averaged across all subjects. Solid and
dashed lines indicate mean and SEM, respectively. C, Learning rate plotted as a function of median relative error magnitude,
plotted as in B. The relative error magnitude was computed by dividing the absolute error magnitude by the SD of the generative
distribution. D, Individual subject learning rates plotted as a function of relative absolute error magnitude (gray lines). The black
line indicates a cumulative Weibull function fit to data from all subjects.
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certainty is high. However, as we show in the
next section, there are at least two sources of
uncertainty, which for this task have poten-
tially different effects on an ideal observer.
Taking into account these multiple sources of
uncertainty can help to clarify the relationship
between actual and optimal behavior.

A reduced Bayesian delta-rule model
Optimal prediction in a discontinuously
changing environment is a computation-
ally demanding problem (Yu and Dayan,
2005; Wilson et al., 2010). A solution to
this problem requires maintaining a set of
nodes, each of which maintains the pre-
dictive distribution for a possible dura-
tion of stability, or run length (r) (Adams
and MacKay, 2007; Fearnhead and Liu,
2007). Optimal predictions are made on
each trial by taking a weighted average of
these nodes. However, in this approach, the
number of nodes scales linearly with the
number of observations if the rate at
which change points occur, or hazard
rate, is known (Fig. 6A), or as a power of
the number of observations if the hazard
rate is unknown (Wilson et al., 2010).
Thus, the optimal solution to our task must
maintain and update likelihood estimates
for thousands of predictions based on dif-
ferent possible generative scenarios.

Our goal was to test models that could
at least approximate optimal performance
while using more plausible mechanisms.
We therefore considered a particular re-
duction of the full Bayesian ideal-observer
model (Fig. 6B). Instead of maintaining
information about each possible value of
r, this model maintains only a single “ex-
pected run length” (r̂) node. On each trial,
the model considers two possible genera-
tive scenarios: that the newly generated
number came from the same distribution
as the previous one, or that the new num-
ber came from a new distribution. Proba-
bilities of these possible scenarios are
computed according to Bayes’ rule, and r̂
is updated accordingly. A compelling fea-
ture of this complexity reduction is that
the new model implements a form of delta
rule (Eq. 19). The learning rate depends
on both r̂ and the probability that a change
point occurred (Eq. 20). In the limit as the
probability of a change point goes to zero,
the model prescribes a learning rate equal
to 1/(r̂ � 1) (Fig. 6C). However, as the
probability of a change point goes to one,
the learning rate increases linearly toward one, consistent with a
discarding of historical information that is unlikely to pertain to the
new environment. The reduced Bayesian model achieves similar
performance to that of the full model, and both models performed
better than a delta rule that used a fixed learning rate that minimized
absolute errors over a session (Fig. 6D).

The reduced Bayesian model exhibited many of the same
characteristics as human subjects on the estimation task (Fig. 7).
Like for the psychophysical data, the model’s choice of learning
rate tended to increase as a function of error magnitude, with
larger increases when the SD of the prior, stable distribution was
small (Fig. 7A–C). Moreover, the model tended to have higher

Figure 3. Learning rates decayed slowly after change points. A, Prediction errors (gray, left ordinate) and learning rates (black,
right ordinate) plotted as a function of trials after a change point. Solid lines indicate the mean across all subjects and all conditions;
dotted lines indicate SEM. B, Learning rate residuals plotted as a function of trials after a change point. Residuals were computed
by subtracting the learning rates predicted by the cumulative Weibull fit shown in Figure 2 D from the actual learning rates, and
thus reflect the portion of learning rate that was not explained by relative error magnitude. Points and error bars are mean � SEM
across all subjects.

A

B C

Figure 4. Subjective confidence measurements. A, An example session of the confidence task. Subjects specified a symmetric
window (dashed blue lines) around their estimate (solid blue line) that they were 85% certain would contain the next number (red)
generated using the current mean (dashed black line) and SD (stable in blocks, indicated by the vertical, dotted lines). B, Box-and-
whisker plot (central line is the median, box is the interquartile range, and whiskers are the data range) of the distribution of the
mean width of the 85% confidence window computed per subject for each standard-deviation condition. C, Relative uncertainty as
a function of trials after a change point. Relative uncertainty was computed by dividing the specified confidence window size by the
size of the smallest window capable of including 85% of the probability density in the actual generative distribution (B, x-axis
markers). Solid and dotted lines indicate mean and SEM, respectively.

12372 • J. Neurosci., September 15, 2010 • 30(37):12366 –12378 Nassar et al. • Dynamics of Belief Updating



learning rates on the trial after a change point, which then de-
cayed gradually over many trials (Fig. 7D,E). In the model, this
gradual decay is caused by the decay in uncertainty occurring
over the same period (Fig. 7F). Despite these overall trends that
matched the subjects’ behavior, the model tended to perform
much better and in fact closely matched the performance of the
full Bayesian model (Fig. 6D).

A straightforward manipulation of the model could also re-
produce much of the across-subject variability. A key parameter
of the model is the hazard rate (H), which describes the ex-
pected rate of change points. This parameter has been shown to
differ across subjects in change-point detection tasks (Steyvers
and Brown, 2006). We fit the model to data from each subject
separately for each different SD of the generative process with
the hazard rate as a single free parameter. This procedure
allowed us to test whether the reduced model could explain
not only the trends in subject learning rates, but also whether
differences across subjects could be explained by varying ex-
pectations about the instability of the generative environment.

Subjects that tended to use higher learning rates were best fit by
higher hazard rates (Fig. 8A). This effect is attributable mostly to the
fact that higher hazard-rate models tend to use higher learning rates
(Fig. 8B) because they infer change points more frequently. The fit

hazard rates tended to be much larger than
the actual hazard rate of change points in
our task, which, averaged across all condi-
tions, was equal to 0.04 (Fig. 8A, vertical
dashed line). Thus, the model suggests that
subjects tended to overestimate the fre-
quency with which changes occur, to a de-
gree that varied considerably across
subjects. Moreover, the different fit values of
the hazard rate affected model performance
in a manner that at least qualitatively
matched across-subject differences, includ-
ing the dependence of learning rate on
z-scored error (compare Figs. 2D, 7C).

Models with inferred noise better
matched behavior
We extended the reduced Bayesian model
to account for our finding that subjects
who tended to be most confident in their
estimates were also the quickest to update
those estimates given new information
(Fig. 5C). This finding seems counterin-
tuitive to the notion that learning rate
should be largest when confidence is low-
est (and thus new information should be
highly informative). However, two main
types of uncertainty exist within the task
that have opposite effects on the learning
rate (Eq. 15). One type of uncertainty is
related to run length: when the run length
is small, few samples contribute to the es-
timate of the mean of the generative dis-
tribution, making that estimate uncertain
and therefore imposing higher learning
rates (Fig. 6C). The second type of uncer-
tainty is related to the expected SD of the
generative distribution, or noise: when
the estimate of noise is high, the model
tends to underestimate the probability of

a change point, leading to a decrease in learning rate. We propose
that this second form of uncertainty has a strong effect on the
choice of learning rates.

To examine this idea, we extended the model to include dif-
ferent forms of noise estimation (Fig. 9) and compared the per-
formance of each form of the model to the behavioral data
presented in Figure 5. The simplest form used estimates of noise
that were fixed within a block (Fig. 9A). In this case, overall un-
certainty, like learning rate, declined with run length (Eq. 15).
Higher hazard-rate models inferred lower run lengths, on aver-
age, leading to a strong, positive relationship between mean un-
certainty and learning rate across simulated sessions (Fig. 9D).
There was also a strong, positive relationship between uncer-
tainty and learning rate across simulated trials that tended to
decline as a function of the mean learning rate, but never to below
zero (Fig. 9G). Thus, this model did not match the behavioral
data.

The second model used a sequentially updated estimate of
noise (Eq. 22). When applied to the same task conditions that the
subjects experienced, this model generated estimates of noise that
were highly unstable early in each session but then stabilized as
more information was collected (Fig. 9B). However, even these
stabilized estimates tended not to match the value of the true

A

C D

B

Figure 5. Relationship between confidence and learning rate. A, B, Trial-by-trial learning rates plotted as a function of uncer-
tainty (confidence-window width) for an example task block (SD, 20) for two different subjects. Solid lines are linear fits. Arrows
indicate the mean values of the confidence-window width and learning rate. C, Mean relative uncertainty (computed as the
z-scored confidence-window width across all conditions per subject) plotted as a function of mean learning rate. Symbols and error
bars are mean � SEM per subject. The solid line is a linear fit (r ��0.38; p � 0.04). The negative correlation implies that subjects
who used higher learning rates tended to be more certain about their predictions. D, Trial-by-trial relationship between relative
uncertainty and learning rate per subject (ordinate, computed as Spearman’s 
 as in A and B; filled symbols indicate H0: 
 � 0,
p 	 0.05; a positive or negative value indicates that the subject tended to use higher or lower learning rates on trials in which they
were more uncertain about their previous prediction, respectively) plotted as a function of the average learning rate used by that
subject. Symbols and error bars are the mean � SEM per subject. The solid line is a linear fit (r ��0.44; p � 0.02). The negative
correlation implies that subjects who used lower learning rates tended, on average, to have more positive trial-by-trial relation-
ships between uncertainty and learning rate.
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generative noise (the ratio of estimated to
actual noise ranged from 0.5 to 1.2 after
200 simulated trials, where hazard rate
was set to the value that best fit perfor-
mance of each individual subject). The
model’s dependence on hazard rate (in
particular via biased values of r̂ in the
prediction-error term in Eq. 22) gave rise
to a negative relationship between hazard
rate and noise estimates, because with
high hazard rates, errors tended to be in-
terpreted as change points rather than
noise. Because high hazard rates corre-
spond to larger learning rates, on average,
these effects resulted in a negative rela-
tionship between overall uncertainty and
learning rate, like in the behavioral data
(Fig. 9E). There was also a strong, positive
relationship between uncertainty and
learning rate across simulated trials that
tended to decline as a function of the
mean learning rate, but never to below
zero (Fig. 9H). Thus, this model also did
not match the behavioral data.

The third model used a more realistic,
suboptimal strategy for inferring noise
(Eq. 24). This model assumed that beliefs
about the noise of the generative distribu-
tion, like beliefs about its mean, were up-
dated using learning rates that varied
substantially across subjects. In particular,
this model assumed that beliefs about
noise were updated using learning rates
proportional to those used to update be-
liefs about the mean of the distribution.
This procedure led to more variable esti-
mates of noise than the other two models
(Fig. 9C) and, like the second model, a
strong, negative relationship between
overall uncertainty and learning rate
across simulated sessions (Fig. 9F). More-
over, unlike the second model and like the
behavioral data, this model showed both
positive and negative correlations between
trial-by-trial uncertainty and learning rate
that depended on hazard rate (Fig. 9I). Specifically, high hazard rates
corresponded to a negative correlation between learning rate and
total uncertainty, whereas low hazard rates corresponded to a posi-
tive correlation between learning rate and uncertainty. These results
imply that subjects use an imperfect noise-inference algorithm that
updates beliefs about noise rapidly and in proportion to the rate at
which they update beliefs about the mean, �. This algorithm leads
subjects who expect more changes to see less noise and can account
for intersubject variability in the relationship between uncertainty
and learning rate.

Thus, the hazard rate is central to an account of the across-
subject variability in learning rates, uncertainty, and the relation-
ship between the two. This account suggests a strategic trade-off
that was navigated in different ways by different subjects (Fig.
10). Subjects who were fit by high hazard rates tended to perform
relatively well in the first few trials after a change point but rela-
tively poorly during periods of stability. Conversely, low-hazard
subjects tended to perform relatively poorly after change points

but well during periods of stability. Thus, the choice of hazard
rate reflected a trade-off between successful prediction amid
noise and successful adaptation after change points.

Models that underweigh errors better matched behavior
Above we used a model with only a single free parameter, the
hazard rate, to describe the main trends in updating behavior for
individual subjects and the population. However, this model was
quantitatively inconsistent with subject performance. In particu-
lar, subjects did not react to change points as effectively as the
model. Subjects tended to use higher learning rates after change
points than on other trials, but to a lesser extent than the model
(Fig. 11A). This suboptimal behavior of human subjects reflected
a relationship between learning rate and z-scored error that was
too flat (Fig. 11B).

One explanation for this difference might be that subjects unde-
ruse likelihood information when assessing whether a change point

A
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Figure 6. Bayesian model. A, Message-passing algorithm for the full model. Run length (r) refers to the number of data points
obtained previously from the current generative distribution. On each trial, the distribution either changes and r is set to zero, or the
generative distribution does not change and r is increased by one. After t trials, the algorithm must maintain and update t � 1
predictive distributions (one for each possible r) and the probability distribution across these possible values of r. B, Message-
passing algorithm for the reduced model. Instead of considering all possible values of r, the model considers only the possibility that
a change point did occur (represented by solid lines from r � 0 to r � 1) or did not occur (represented by all other solid lines).
Posterior probabilities of these alternatives are computed according to Bayes’ rule, then combined by taking the expected value of
the run-length distribution r̂ (small, gray, filled circles). Only a single, approximate predictive distribution is maintained and
updated on a trial-by-trial basis. This approach massively reduces complexity and leads the algorithm to take the form of a delta
rule (see Materials and Methods). C, Learning rates used by the reduced Bayesian model can be described analytically in terms of r̂
and change-point probability. Lines indicate relationships between learning rate and change-point probability for a given r̂
(increasing for darker lines). The dotted black line reflects the theoretical limit of the function as r̂ goes to infinity. D, Performance
of subjects and models. Mean absolute errors made by the full Bayesian model (FB), the reduced Bayesian model (RB), a delta-rule
model using the best fixed learning rate possible for each session (FA), subjects (S), and a delta-rule model using subject learning
rates in random order (rS) are shown.
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occurred on a given trial. Adding a parame-
ter (Eq. 25, �) to the reduced model that
allows for such suboptimal computation
lets the model range from a fixed learning
rate delta-rule model (� � 0) to the
reduced-Bayesian model (�� 1). Fits of this
parameter indicate that all subjects fall be-
tween the two extremes, and that most of
the subjects seemed to adjust learning rates
only modestly when compared to the
reduced-Bayesian model (Fig. 11C).

A second possible explanation for the
shallowness of the relationship between
learning rate and z-scored error is that
subjects maintain inaccurate beliefs about
environmental statistics other than hazard
rate. For example, subjects might expect
the mean of the generative distribution to
drift from trial to trial. This possibility can
be modeled by adding drift variance (Eq.
26, D) to the variance on the predictive
distribution after each time step. This
model can be applied to subject data with
drift (D), hazard rate (H), and expected
noise (N) all fit as free parameters (Eqs.
26, 27), producing predictions that have a
more shallow relationship between learn-
ing rate and z-scored error (Fig. 11B).
This model described subject behavior
better than either the reduced-Bayesian
model with only the hazard rate as a free
parameter (for 30 of 30 subjects) or a
delta-rule model with a fixed learning rate
(for 28 of 30 subjects). The reduced-
likelihood model was similarly effective at
describing subject behavior relative to the
reduced-Bayesian model with only the
hazard rate as a free parameter (for 30 of
30 subjects) or a delta-rule model with a
fixed learning rate (for 29 of 30 subjects)
(Fig. 11D).

Discussion
The goal of this work was to examine quantitatively the influence
of sequential outcomes on the beliefs of human subjects in a
dynamic environment with both noise and abrupt, unsignaled
change points. Unlike previous studies (Corrado et al., 2005; Be-
hrens et al., 2007; Krugel et al., 2009), we used a task that allowed
for a trial-by-trial measurement of the learning rate (Fig. 1),
which reflects the degree to which a new outcome influences an
existing belief. This approach allowed us to identify two primary
relationships between learning rates and the outcomes that gave
rise to them. The first was that the learning rate tended to increase
as a function of the absolute magnitude of the most recent pre-
diction error, scaled by the expectation of noise. The second was
that the learning rate, along with uncertainty, tended to rise im-
mediately then decay slowly after a change point.

To account for these results, we developed a simplified version
of a Bayesian ideal-observer model. The model’s learning rates
are analytically tractable and depend on only two variables:
change-point probability and run length. For a given run length,
change-point probability is monotonically related to the magnitude
of the absolute error, scaled by the noise of the generative distribu-

A

D E F

B C

Figure 7. The reduced Bayesian model qualitatively reproduces belief-updating behavior. All plots in this figure depict
simulated data using the reduced Bayesian model. One model parameter, the hazard rate, was fit for each block to minimize
the difference between model and subject predictions. A, Learning rate as a function of absolute error magnitude for
different SDs of the generative distributions, as shown (compare Fig. 2 B). B, Learning rate as a function of z-scored error,
plotted as in A (compare Fig. 2C). C, Across-subject variability in the relationship between learning rate and z-scored error,
simulated by fitting data from different subjects with different hazard rates (gray lines). The black line is the cumulative
Weibull fit (compare Fig. 2 D). D, Z-scored error (gray, left ordinate) and learning rate (black, right ordinate) plotted as a
function of trials after a change point. The solid and dashed lines indicate mean � SEM (compare Fig. 3A). E, Learning rate
residuals plotted as a function of trials after a change point. Residuals were computed by subtracting the learning rates
predicted by the cumulative Weibull fit shown in C from the actual learning rates, and thus reflect the portion of learning
rate that was not explained by relative error magnitude. Points and error bars are mean � SEM across all simulated data
(compare Fig. 3B). F, Relative model uncertainty (computed as the minimal window containing at least 85% of the
probability density in the predictive distribution specified by the model divided by the 85% width of the true generative
distribution) plotted as a function of trials after a change point. The grayscale reflects the SD of the given task block, as
indicated (compare Fig. 4C).

Figure 8. Relationship between learning rate and hazard rate. A, Variability in subject learn-
ing rates can be described by the hazard rate in the model. Subjects that are fit best by high
hazard rate versions of the reduced Bayesian model use higher learning rates, on average. The
dashed line indicates the actual average hazard rate for the task. Points and error bars represent
the mean and SEM, respectively. The solid line is a linear fit (r � 0.84; p 	 0.001). B, Higher
hazard rate models tend to use higher learning rates. Points and error bars represent the mean
and SEM for all fits to a given subject (across all task blocks). The solid line is a linear fit (r � 0.98;
p 	 0.001).
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tion. By relating learning rate to change-
point probability, the model simulates the
positive relationship between learning rate
and absolute error in our behavioral data
(compare Figs. 2C, 7B). Thus, the model,
like the subjects, resets beliefs when they are
no longer applicable to the current
environment.

In contrast to change-point probabil-
ity, run length is inversely related to both
learning rate (Fig. 6C) and uncertainty
(Eq. 15). When the model recognizes a
change point, run length is reset to one,
leading to increased uncertainty and driv-
ing any subsequent outcome to carry
more influence (Fig. 7E). Run length in-
creases as a function of trials after a change
point, leading to a narrower predictive dis-
tribution and smaller learning rates, consis-
tent with our behavioral data (compare Figs.
3B, 7E, and 4C, 7F). Thus, the model, like
the subjects, relies more heavily on historical
outcomes when more pertinent outcomes
have been observed.

Our reduced model shares commonal-
ities with a number of relatively simple
models developed previously to describe
animal and human learning behavior.
Several models of classical conditioning,
including the Rescorla–Wagner model, a
straightforward form of the delta rule, and
the Pearce-Hall model, which describes
changes in associability between stimuli,
learn from surprising outcomes (Pearce
and Bouton, 2001). However, unlike our
approach, these models do not distinguish
between noisy and volatile errors. Such a
mechanism has been incorporated into a
recently proposed extension to the delta
rule, in which recent errors are compared
to older ones (Krugel et al., 2009). This
comparison allows the model to react to
change points with increased learning
rates, but not in a manner that scales with
noise and without a notion of uncertainty.

Bayesian approaches to belief updat-
ing, although often computationally de-
manding, can provide such a notion of
uncertainty by assessing the probabilities
of many possible generative scenarios.
Such models can effectively describe hu-
man behavior on armed-bandit tasks in
which the reward structure either drifts
(Daw et al., 2006) or changes discontinuously (Behrens et al.,
2007). We showed that a reduced version of the optimal belief-
updating algorithm, formulated as a delta rule, can effectively
model behavior when it includes elements of both the true gen-
erative environment (discontinuous change) and a nonexistent
element (drift). This result suggests that subjects adjust learning
according to perceived generative processes that do not necessar-
ily match the actual generative processes, an idea that likely ex-
tends to armed-bandit tasks in which subjects are uncertain
about the exact reward structure.

Such differences between actual and perceived generative
models might also explain the substantial variability across
subjects in the extent to which individuals updated existing
beliefs based on new information. Some subjects tended to
maintain existing beliefs under nearly all conditions (i.e., used
learning rates near zero). In contrast, other subjects tended to
adjust their beliefs dramatically in response to each new out-
come (i.e., used learning rates near one). This variability was
related to subjective certainty, in that subjects who used higher
learning rates were also more confident in their predictions
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Figure 9. On-line noise inference. Individual variability was simulated by using models that employed the hazard rates fit to
individual subject data (see Computing best-fitting hazard rates in Materials and Methods) (in all panels, grayscale represents the
different hazard rates, with lighter shades for higher rates). Three models that differed only in their method for computing noise
were used to simulate performance. The first, simplest model (left) used the actual SD of the generative distribution. The second
model (middle) inferred noise using an on-line algorithm with learning rates that assumed noise was constant over each block of
200 trials (Eqs. 22, 23). The third model (right) inferred noise using the same algorithm as the second model, but with a minimum
learning rate that depended on hazard rate (Eq. 24). A–C, Noise estimates from each model over the course of each 200-trial block
in which the SD of the generative distribution was equal to 10. D–F, The mean uncertainty estimate for each simulated block of
trials plotted as a function of the mean learning rates used in that simulation. Lines are linear fits. Negative relationships in E and
F reflect the fact that individuals modeled with higher hazard rates tended to use higher learning rates and infer less noise. G–I,
Correlations between uncertainty and learning rate within single simulated task blocks plotted as a function of the mean learning
rate simulated for that subject. Lines are linear fits. All models show a negative relationship, but only the third model matches the
behavioral data, with low mean learning rates typically corresponding to positive relationships between learning rate and uncer-
tainty, and high mean learning rates typically corresponding to negative relationships between learning rate and uncertainty.
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and tended to show more negative relationships between un-
certainty and learning rate.

The reduced Bayesian model can account for this individual
variability by adjusting the prior probability of change points, or
hazard rate. Increasing the hazard rate leads to higher estimates of
change-point probability, and thus higher learning rates, on av-
erage. Under these conditions, a larger proportion of errors are
attributed to change points, rather than noise. This attribution
leads to a chronic underestimation of noise and accounts for the
otherwise counterintuitive, negative relationship between aver-
age uncertainty and learning rate. Thus, the model suggests that
individual variability reflects a form of perceptual bias about how
errors are interpreted.

Such a perceptual bias might be useful if it reflects the true
probability of change points in the current environment, partic-
ularly if new information is scarce. However, we found that most
subjects behaved as if they substantially overestimated the true
hazard rate (Fig. 8). Thus, individuals appear to have precon-
ceived strategies for coping with probabilistic environments.
Given the computational complexity of existing models for on-
line inference of hazard rate (Wilson et al., 2010), it seems plau-
sible for such higher-order policies to develop over a longer time,
either through experience on the developmental timescale or per-

haps even evolutionary selection. However,
this still leaves open the question of why
such diverse policies exist across our subject
pool.

The answer to this question might in-
volve a fundamental trade-off inherent in
selecting a hazard rate. Using a high hazard
rate implies high sensitivity to change
points, but oversensitivity to noisy out-
comes during periods of stability. In con-
trast, lower hazard rates provide less
sensitivity to noisy outcomes but also
less sensitivity to change points. Sensi-
tivity to either change points or noise
might have different consequences un-
der different conditions or for different
individuals, giving rise to the diversity
of predispositions about hazard rate that
we observed. One potential genetic sub-
strate of this predisposition is a polymor-
phism in monamine catabolism enzyme
catechol-O-methyltransferase (COMT)
that leads to lower learning rates in rever-
sal tasks but improved performance in
working-memory tasks (Bruder et al.,
2005; Krugel et al., 2009). Our task is, to
our knowledge, the first to demonstrate
both the advantages and disadvantages of
hazard-rate policy, and thus may serve as
a valuable tool for determining whether
COMT or other polymorphisms play a
role in navigating this trade-off.

A strong motivation for the form of
reduced Bayesian model that we used was
its relationship to delta-rule models of
learning, whose biological underpinnings
have been studied extensively (Niv, 2009).
Among the strongest biological evidence
is the discovery of signals in the brainstem
dopaminergic system that encode a form

A B

Figure 10. Hazard rate trade-off. A, Average absolute errors made by subjects one to
five trials after a change point plotted as a function of the fit hazard rate from the reduced
Bayesian model for each subject (points). The line is a linear regression (r � �0.43; p �
0.02). The negative relationship implies that subjects who used higher hazard rates made
better predictions after change points. B, Average absolute errors made by subjects six or
more trials after a change point plotted as a function of the fit hazard rate for each subject
(points). The line is a linear regression (r � 0.51; p 	 0.01). The positive relationship
implies that subjects who used lower hazard rates made better predictions during periods
of stability.

A

C D

B

Figure 11. Better descriptive models to capture suboptimal performance. A, Although subjects (filled symbols; data are
plotted as in Fig. 2 A) and the reduced Bayesian model (open symbols) both used higher learning rates after change points
than during a stable period, the model tends to show a larger effect. B, Relationship between learning rate and relative
error magnitude for subjects (dotted line; the fit from Fig. 2 D) and several models fit to subject behavior, as indicated. C,
Histogram of the average likelihood weight fit to each subject (Eq. 25, �). When � � 0, the model updates beliefs
according to a fixed learning rate delta rule. When � � 1, the model is the reduced Bayesian model. All subjects fell
between these two extremes. D, Bayesian information criterion (BIC) for all models in B fit to subject data. Lower values
imply better fits, including penalties for additional parameters. Points and error bars are mean � SEM across subjects. The
grayscale and model numbers are as in B.
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of reward-prediction error (Eq. 1, �) (Schultz, 1998). More recent
work has begun to link these prediction-error signals to activity in
anterior cingulate cortex (ACC), a brain area thought to encode
information related to subjective beliefs used for decision mak-
ing. ACC neurons encode subjective beliefs about outcome prob-
ability and value and action cost (Kennerley et al., 2009). Single
neurons in monkey ACC also encode prediction errors, a finding
that is corroborated by human functional magnetic resonance
imaging (fMRI) and EEG data (Debener et al., 2005; Matsumoto
et al., 2007; Hayden et al., 2009). Ablation of ACC in macaques leads
to impaired use of outcome history in the guidance of action selec-
tion, further suggesting a role in belief updating (Kennerley et
al., 2006).

Despite these advances in understanding neural substrates for
delta-rule learning in terms of prediction errors (Eq. 1, �), less is
known about the learning rate (Eq. 1, �). The learning rate regu-
lates the relative contributions of stored information about pre-
vious outcome history and the new sensory information about
the current outcome. One possible implementation involves in-
teractions between top-down cognitive control and bottom-up
sensory processing, and thus might be related to similar mecha-
nisms of attention (Dayan et al., 2000; Posner, 2008). However,
nothing is known about how those mechanisms relate to the
learning rate we examined in this study.

Our model provides several insights that might help identify
some of the underlying mechanisms. The first is that learning rate
depends critically on the estimated change-point probability.
Change-point probability is related to absolute prediction-error
magnitude, scaled by expected uncertainty. Absolute prediction-
error signals are encoded by neurons in monkey ACC, the same
area thought to encode decision-relevant beliefs and prediction
errors related to those beliefs (Matsumoto et al., 2007). Thus, the
ACC might also contain at least one of the necessary variables to
compute learning rate. Consistent with this idea, fMRI measure-
ments of the ACC in human subjects engaged in a dynamic prob-
abilistic task correlated with a model parameter (volatility) that
reflected an optimal assessment of the rate at which reward con-
tingencies were likely to be changing and learning rates fit to
subjects (Behrens et al., 2007; Krugel et al., 2009). This signal
might also include subjective hazard-rate biases, because subjects
who were best fit by high learning-rate models tended to show
larger ACC blood oxygen level-dependent responses to new out-
comes than subjects fit by low learning-rate models.

Another prediction of the model is that learning rates are
computed according to run length. It is unknown whether the
ACC encodes run length; however, it would provide a parsimo-
nious solution to the compartmentalization of belief-updating
machinery within the brain. Theoretical work has also suggested
that an uncertainty signal inversely related to run length might be
encoded by a more global neuromodulatory system, such as the
locus ceruleus–norepinephrine system (Yu and Dayan, 2005).

Our task and model provide a framework for testing this
possibility.
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