

NIH Public Access **Author Manuscript**

Org Lett. Author manuscript; available in PMC 2010 September 24.

Published in final edited form as:

Org Lett. 2008 September 4; 10(17): 3907–3909. doi:10.1021/ol8014623.

Enantioselective Total Synthesis of (+)-Largazole, a Potent Inhibitor of Histone Deacetylase

Arun K. Ghosh* and **Sarang Kulkarni**

Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907

Abstract

An enantioselective total synthesis of cytotoxic natural product, $(+)$ -largazole (1) is described. It is a potent histone deacetylase inhibitor. Our synthesis is convergent and involves the assembly of thiazole 3-derived carboxylic acid with amino ester 4 followed by cycloamidation of the corresponding amino acid. The synthesis features an efficient cross metathesis, an enzymatic kinetic resolution of a β-hydroxy ester, a selective removal of a Boc-protecting group, a HATU/HOAtpromoted cycloamidation reaction, and synthetic manipulations to a sensitive thioester functional group.

> In January 2008, Luesch and co-workers reported the isolation of largazole, a novel 16 membered depsipeptide from Floridian marine cyanobacterium *Symploca* sp.¹ Largazole's structure was elucidated by extensive NMR studies and through chemical degradation. It has shown impressive growth inhibitory activity of transformed mammary epithelial cells (MDA-MB-231) in a dose dependent manner with a GI_{50} value of 7.7 nM. In addition, it has shown excellent selectivity over nontransformed murine mammary epithelial cells (NMuMG) with a $GI₅₀$ of 122 nM. More recently, Luesch, Hong, and co-workers reported the first total synthesis of largazole. Their synthesis featured a macrocyclization at C6 and a late stage addition of the thioester using cross metathesis. Subsequently, they determined that histone deacetylase (HDAC) is the molecular target for largazole.² This is very significant as HDAC inhibitors are emerging as a new and exciting class of antineoplastic agents for the treatment of solid and nematological malignancies.³ Incidentally, a number of depsipeptides are undergoing clinical trials for treatment of various cancers.⁴ Largazole's important biological activity, its selectivity for cancer cells, and its unique structural features led to considerable interest in its chemistry and biology. To establish structure-activity relationships and design novel structural variants, we sought a convergent route to largazole. Herein, we report an enantioselective synthesis of (+)-largazole.

akghosh@purdue.edu.

Supporting Information Available: Experimental procedures and ${}^{1}H$ - and ${}^{13}C$ -NMR spectra for compounds $1-5$, $7-11$, 15. This material is available free of charge via the Internet at [http://pubs.acs.org.](http://pubs.acs.org)

As shown in Figure 1, our synthetic strategy involves a late stage cycloamidation of a sterically less demanding carboxylic acid and an amine to form the 16-membered ring from the corresponding amino acid derived from **2**. Ester derivative **2** could be obtained by the formation of an amide bond between the acid arising from thiazole methyl ester **3** and the **4**-derived amine. Our plan is to carry out the remainder of the synthesis with the sensitive thioester functional group attached. The synthesis of thiazole **3** can be achieved from a **5**-derived thiazole acid and protected (R) -2-methyl cysteine $6⁵$ Amino ester 4 could be accessed by a cross metathesis reaction between thioester **8** and optically active allylic alcohol **7** followed by a Yamaguchi esterification with the appropriately protected L-valine. Alcohol **7** could be prepared by a lipase mediated kinetic resolution of racemic β-hydroxy ester.

As shown in Scheme 1, our synthesis starts with the known azido amide 9⁶ which was treated with Lawesson's reagent in THF for 12 h to provide the corresponding thioamide in 67% yield. ⁷ The resulting thioamide was then reacted with ethyl bromopyruvate in refluxing ethanol for 1 h which provided thiazole 5 in 82% yield.⁸ Saponification of ester 5 with 1 M aqueous LiOH gave the acid. The resulting acid was then coupled with trityl- protected α -methyl cysteine⁹ under EDC/HOBt conditions in the presence of diisopropylethylamine to furnish amide **10** in 96% yield over 2 steps. The conversion to thiazole-thiazoline fragment **11** was achieved following a procedure reported by Kelly and co-workers.10 Accordingly, amide **10** was reacted with 3 equiv. of triphenylphosphine oxide and 1.5 equiv. of Tf_2O in CH_2Cl_2 at 0 °C for 10 min to provide ester 11 in 89% yield. The azide group in 11 was reduced using $PPh₃$ in refluxing methanol¹¹ to give the amine which was then exposed to Boc₂O to furnish fragment 3 in 95% yield over 2 steps.

Optically active synthesis of β-hydroxy ester and its conversion to ester **15** is shown in Scheme 2. Racemic aldol product **12** was prepared by LDA deprotonation of *t*-butyl acetate followed by reaction of the resulting enolate with acrolein at −78 °C to provide **12** in 81% yield. The racemic alcohol was then exposed to lipase PS-30 in pentane in the presence of excess vinyl acetate at 23 °C for 12 h to provide enantio enriched alcohol **13** and acetate derivative **14** in 45% and 42% yields respectively. Selective removal of the acetate was carried out by exposure of **14** to potassium carbonate in methanol at −30 °C to afford optically active β-hydroxy ester **7** in high enantiomeric purity (93% *ee*). The enantiomeric excess was determined by formation of the corresponding Mosher ester of alcohol **15** followed by analysis of 19F NMR.12 The kinetic resolution of β-hydroxy ester has provided a convenient access to optically active esters. ¹³ For preparation of alcohol **15** we planned a cross metathesis of alcohol **7** and thioester **8**. The requisite thioester was prepared by reaction of 3-butene thiol¹⁴ and octanoyl chloride in the presence of DMAP. A cross metathesis reaction of alcohol **7** and thioester **8** in the presence of 3 mol% Grubbs' 2nd generation catalyst afforded *E*-olefin **15** exclusively in 67% yield.¹⁵

The final assembly of the largazole fragment is shown in Scheme 3. *N*-Boc-valine **16** was subjected to esterification with alcohol 15 using Yamaguchi's protocol.¹⁶ Accordingly, reaction of **16** with 2,4,6-trichlorobenzoyl chloride in the presence of diisopropylethylamine gave the anhydride. Reaction of the resulting anhydride with alcohol **15** and DMAP furnished thioester **4** in 91% yield. Selective deprotection of the Boc group in the presence of a *t*-butyl ester was carried out by exposure of 4 to 30% trifluoroacetic acid in CH₂Cl₂ at 0 °C for 20 min to provide amine **17**. For assembly of the largazole subunits, saponification of methyl ester **3** was carried out with 1 M aqueous LiOH to give acid **18**. Coupling of acid **18** with amine **17** was accomplished by using HATU and HOAt in the presence of diisopropylethylamine to furnish the requisite protected amino ester **2** in 66% yield. Formation of the 16-membered cycloamide was carried out in a two-step sequence involving: (1) exposure of **2** to trifluoroacetic acid at 23 $\rm{^{\circ}C}$ for 3 h to remove both the Boc and the *t*-butyl groups; (2) treatment of the resulting amino acid with 2 equiv. of HATU and 2 equiv. of HOAt in the presence of diisopropylethylamine under dilute conditions to provide synthetic (+)-largazole (**1**) in 40%

Org Lett. Author manuscript; available in PMC 2010 September 24.

isolated yield (2 steps). The spectral data (1 H- and 13 C-NMR) of synthetic (+)-largazole (1, $[\Box]^{23}$ _D +24, *c* 0.13, MeOH; lit.¹ $[\Box]^{20}$ _D +22, *c* 0.1, MeOH) is identical with that reported for the natural $(+)$ -largazole.¹

In summary, we have accomplished an enantioselective synthesis of (+)-largazole (**1**). The synthesis will provide a convenient access to a variety of largazole derivatives. Structural modifications are currently in progress.¹⁷

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Financial support by the National Institute of Health is gratefully acknowledged. We thank Mr. David D. Anderson of Purdue University for his help with the HPLC analysis.

References

- 1. Taori K, Paul VJ, Luesch H. J Am Chem Soc 2008;130:1806. [PubMed: 18205365]
- 2. Ying Y, Taori K, Kim H, Hong J, Luesch H. J Am Chem Soc 2008;130:8455. [PubMed: 18507379]
- 3. (a) Viqushin DM, Coombes RC. 2002;13:1. (b) Marchion D, Munster P. Expert Rev Anticancer Ther 2007;7:583. [PubMed: 17428177]
- 4. Piekarz R, Bastes S. Curr Pharm Des 2004;10:2289. [PubMed: 15279609]
- 5. Pattenden G, Thom SM, Jones MF. Tetrahedron 1993;49:2131.
- 6. Dyke JM, Levita G, Morris A, Ogden JS, Dias AA, Algarra M, Santos JP, Costa ML, Rodrigues P, Barros MT. J Phys Chem A 2004;108:5299.
- 7. Ozturk T, Ertas E, Mert O. Chem Rev 2007;107:5210. [PubMed: 17867708]
- 8. Boyce RJ, Pattenden G. Tetrahedron 1995;51:7313.
- 9. For synthesis of the enantiomer see Hara S, Makino K, Hamada Y. Tetrahedron Lett 2006;47:1081.
- 10. You SL, Razavi H, Kelly JW. Angew Chem Int Ed 2003;42:83.
- 11. Pal B, Jaisankar P, Giri VS. Synth Commun 2004;34:1317.
- 12. Dale JA, Dull DL, Mosher HS. J Org Chem 1969;34:2543.
- 13. (a) Vrielynck S, Vandewalle M, García AM, Mascareñas JL, Mouriño A. Tetrahderon Lett 1995;36:9023. (b) Pollini GP, Risi CD, Lumento F, Marchetti P, Zanirato V. Synlett 2005:164.
- 14. Minozzi M, Nanni D, Walton JC. Org Lett 2003;5:901. [PubMed: 12633101]
- 15. (a) Scholl M, Ding S, Lee C, Grubbs RH. Org Lett 1999;1:953. [PubMed: 10823227] (b) Chatterjee AK, Choi T, Sanders DP, Grubbs RH. J Am Chem Soc 2003;125:11360. [PubMed: 16220959]
- 16. Inanaga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull Chem Soc Japan 1990;55:7.
- 17. During the review of this manuscript, two other syntheses have appeared in the literature, see: (a) Nasveschuk CG, Ungermannova D, Liu X, Phillips AJ. Org Lett. 10.1021/ol8013478 (b) Seiser T, Kamena F, Cramer N. Angew Chem. 10.1002/anie.200802043

Figure 1. Retrosynthetic analysis of largazole

Scheme 1. Synthesis of segment **3**

Scheme 2. Synthesis of thio ester **15**

 NIH-PA Author ManuscriptNIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Org Lett. Author manuscript; available in PMC 2010 September 24.

