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ABSTRACT: The active site of myosin contains a group of highly conserved amino acid residues whose roles in
nucleotide hydrolysis and energy transduction might appear to be obvious from the initial structural and
kinetic analyses but become less clear on deeper investigation. One such residue is Ser236 (Dictyostelium
discoideum myosin II numbering) which was proposed to be involved in a hydrogen transfer network during
γ-phosphate hydrolysis of ATP, which would imply a critical function in ATP hydrolysis and motility. The
S236Amutant protein shows a comparatively small decrease in hydrolytic activity and motility, and thus this
residue does not appear to be essential. To understand better the contribution of Ser236 to the function of
myosin, structural and kinetic studies have been performed on the S236A mutant protein. The structures of
the D. discoideummotor domain (S1dC) S236A mutant protein in complex with magnesium pyrophosphate,
MgAMPPNP, and MgADP 3 vanadate have been determined. In contrast to the previous structure of wild-
type S1dC, the S236A 3MgAMPPNP complex crystallized in the closed state. Furthermore, transient-state
kinetics showed a 4-fold reduction of the nucleotide release step, suggesting that the mutation stabilizes a
closed active site. The structures show that a water molecule approximately adopts the location of the missing
hydroxyl of Ser236 in the magnesium pyrophosphate and MgAMPPNP structures. This study suggests that
the S236A mutant myosin proceeds via a different structural mechanism than wild-type myosin, where the
alternate mechanism is able to maintain near normal transient-state kinetic values.

The mechanism of myosin ATPase and its activation by actin
have been studied extensively in order to understand the mole-
cular basis ofmotility and other cellular events. To date, a similar
kinetic mechanism has been found for all myosin classes,
although the rates of particular steps and their coupling with
actin vary widely with type, according to the specific function of
themyosin (1-6). In this sequence,ATPbinding, as well as Pi and
ADP release, is at least a two-step process, which together with
hydrolysis itself leads to a minimal seven-step scheme to describe
the elementary pathway (eq 1).

Intrinsic tryptophan fluorescence has been a key probe for
distinguishing myosin conformers within the pathway. Many

myosin isoforms show a fluorescence enhancement on binding
ATP with a further enhancement associated with hydrolysis,
as qualitatively represented by the * symbol. Wild-type Dictyo-
stelium discoideum (Dd) myosin II, however, shows no enhance-
ment on the initial ATP binding steps as it lacks tryptophan
residues near the nucleotide binding pocket. Indeed, a small
quench can be detected in some conditions (7). Mutant Dd
constructs, in which tryptophan residues were introduced near
the binding site to give a larger signal, demonstrated that ATP
binding is at least two step (8), as with skeletal muscle myosin
II (9-11). This binding process involves an initial weak encounter
complex followed by a nearly irreversible trapping of the ATP,
the latter step having a rate constant of >400 s-1. The large
tryptophan fluorescence enhancement attributed to the hydro-
lysis step (20-160 s-1 forDdmyosin II (12, 13)) was subsequently
resolved into a rapid and reversible transition which changed the
environment of a specific tryptophan (Trp501) and preceded
ATP hydrolysis itself (14). The seven-step scheme was therefore
expanded as shown in eq 2, in which the † symbol represents the
small quench observed with wild-type Dd myosin II.

These findings are consistent with structural studies which
indicated that switch 2 must move from an “open” to “closed”
position, in order that hydrolysis can occur. Switch 2 is located at
one end of a helix, the “relay helix”, which transmits the
information from the ATPase site to the C-terminal converter
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domain. The conserved Trp501 tryptophan is located in a loop at
the other end of the relay helix and seems a nearly ideal reporter
of events at the ATPase site, even though it is 50 Å away. Site-
directed mutagenesis of Trp501 to another aromatic residue
abolishes the nucleotide-induced fluorescence enhancement (7,15).
This result indicates that the other three tryptophan residues in the
myosin motor domain are insensitive to nucleotide binding and
hydrolysis. Switch 2 closure and hence the relay helix tryptophan
movement and fluorescence enhancement therefore precede the
hydrolysis step itself.

There are now a large number of crystal structures available
for myosins that define the major structural transitions that
underlie the steps in the pathway and suggest the mechanisms
involved in the conversion of chemical energy into directed
movement (16-22). Currently, there are three primary confor-
mations recognized for the myosin motor. Historically, the first
of thesewas seen in chicken skeletalmyosin subfragment 1, which
most closely represents the “post-rigor” or prehydrolysis state in
the kinetic cycle, where switch 2 is open (16). The second
conformation is that of the pre-power stroke in which switch 2
is closed (18, 23). The third conformation is presumed to
represent the “rigor” state and is observed in the apo states
(nucleotide free) of myosins V, VI, and II (19-22). These
conformational states are defined by the extent of closure of
the large cleft that splits the 50 kD region of the motor domain,
the orientation of the lever arm, and the conformation of the
active site residues.

In the “post-rigor” state the 50 kD cleft is open, but switch 1 in
the nucleotide binding site is closed and favors high-affinity
binding to ATP and low-affinity binding to actin. The transition
to the pre-power stroke conformation is coupled with partial
closure of the 50 kD cleft and switch 2 movement. This serves to
orient the active site for nucleotide hydrolysis andprevent the loss
of Pi. This transition is also accompanied by a large rotation of
the light chain binding region that serves to prime the molecule
for the power stroke. The final step in the conformational cycle is
prompted by myosin rebinding to actin. The apo structures of
myosins V, VI, and II, which are believed to mimic the actin-
bound state for myosin, show that this transition is accompanied
by closure of the 50 kD cleft and rotation of the lever arm to yield
a power stroke. Importantly, actin binding is accompanied by the
twisting of a large β-sheet that forms the backbone of the motor
domain (24). This twisting motion changes the relationship
between switch 1 and 2 and the P-loop such that Pi and ADP
can no longer bind tightly (19-22). Thus, activation of the
product release is coupled to translational movement of the actin
filament relative to the myosin.

The above mechanism is based on attempts to correlate chemi-
cal states observed in solution with crystal structures. However,
detailed kinetic studies have revealed that two or more myosin
conformational states may be present at significant concentrations
for a single nucleotide state (7, 14). Crystallization necessarily will
select a single conformational state. To date, ATPγS, ADP, PPi,
and AMPPNP have yielded crystals ofDd S1dC1 in the open state
(equivalent to the M†ATP and M†ADP states) (25, 26), while
ADP 3AlF4 and ADP 3VO4 have yielded the closed states, which
serve asmimics of theDdM* 3ADP 3Pi complex (eq 2) (18, 23). On
the other hand, ADP 3BeFx complexes have been crystallized in

both states (17, 18). This is not surprising, given that the
equilibrium between the open and closed states in solution is often
within an order of magnitude of 1 and therefore little energy input
is required to shift the dominant species. Low temperatures used
for crystallization tend to favor the open state, whichmay account
for AMPPNP generally crystallizing in this state, even though the
closed state is present at significant concentration at 20 �C.

This study focuses on the function of Ser236 (Dd numbering)
in the hydrolysis of ATP and maintenance of the metastable
M*ADP 3Pi state. Analysis of the active site ofDdmyosin switch
2 open and closed structures shows there is no amino acid side
chain that could be used as a catalytic base near the γ-phosphate.
This suggests that the γ-phosphate acts as the fundamental
general base in a reaction with a water molecule to produce
hydrolysis. It was originally hypothesized that a highly conserved
serine residue (Ser236) in the vicinity of the γ-phosphate may be
involved with a proton relay mechanism to facilitate this proton
rearrangement from the nucleophilically attacking water mole-
cule to the γ-phosphate (18, 23). However, mutational analysis in
both smooth andDdmyosin II argued that this residue does not
play amajor role in nucleotide binding nor nucleotide hydrolysis,
as the kinetics of these steps are only slowed by 2-5-fold (27, 28).
Furthermore, the S236Amutation in bothDd and smoothmuscle
myosin only causes a 7- and 2-fold decrease in motility, respec-
tively, which further highlights the question of why this residue is
conserved in all myosin classes. Classical molecular dynamics
(MD) and combined quantum mechanical and molecular me-
chanical (QM/MM) calculations (29) have been utilized to
calculate the rate-limiting activation barriers for the Ser236
assisted proton relay mechanism and for the direct proton
transfer from water to the γ-phosphate. It was found that the
Ser236 assistedmechanism had only a slightly lower rate-limiting
barrier (29).

In an effort to understand the role of Ser236, a kinetic analysis
of the S236A mutant protein has been performed in conjunction
with a structural analysis of the protein in the open and closed
conformation. The S236A mutation favors the closed state more
than the wild type and has permitted the structure of myosin-
bound AMPPNP in the pre-power stroke in which switch 2 is
closed to be determined. The structure was obtained in the
presence of blebbistatin because this yielded better crystals;
however, the same crystal form was obtained without this
inhibitor. Blebbistatin is an inhibitor that favors the closed
state (30, 31). This allows a view of a γ-phosphoryl moiety in
the closed statewhich provides insight into the hydrogen bonding
that helps to maintain ATP and ADP 3Pi in the closed state and
suggests an alternative role for S236A in preventing hydrolysis
until switch 2 has closed.

EXPERIMENTAL PROCEDURES

Construction, Expression, and Purification of S236A.
Escherichia coli strainTOP10wasused for all cloning.D.discoideum
SldC myosin II consisting of Asp2-Asn759 followed by a seq-
uence that encodes a non-native C-terminal peptide LPN was
cloned into a modified pDXA-3C expression vector (32) that
placed an N-terminal 6His tag prior to a tobacco etch virus
(rTEV) protease cut site. The N-terminal sequence of the
expressed protein was MHHHHHHGRHMSGSAENLYFQ-
GGN. This introduces GGN in place of MD at the N-terminus
of SldC after cleavage with rTEV. The S236A mutation was
introduced using QuikChange site-directed mutagenesis with

1Abbreviations: S1dC, myosin motor domain; APS, Advanced
Photon Source, Argonne National Laboratory; PEG, polyethylene
glycol; PPi, pyrophosphate.
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primers 50-CCCGTAACAACAATGCATCTCGTITCGG-30 and
50-CCGAAACGAGATGCATTGTTGTTACGGG-30, and the
resulting construct was then sequence verified. D. discoideum
ORFþ cells were transformed with the resulting expression vector
using a Gene Pulser II (Bio-Rad) electroporator as follows. Cells
were grown inHL5medium to a density of (3-6)� 106 cells/mL,
washed, and resuspended in ice-cold electroporation buffer
(10 mMKH2PO4, 20 mMHEPES, 140 mMKCl, 10 mMNaCl,
2 mM MgCl2, pH 7.5) at 5 � l07 cells/mL. Electroporation (one
pulse of 1.25 kV, 50 μF) was performed in a 0.4 cm cuvette after
mixing 0.4 mL of cell suspension with 20 μL of 1 μg/mL plasmid.
After electroporation, 0.6 mL of HL5 medium at room tempera-
ture was added, and 10 and 100 μL of the cell suspension was
plated onto 100 mm Petri dishes containing 10 mL of HL5. After
24 h of incubation at 21 �C, the selection was started by replacing
the medium with HL5 containing 20 μg/mL G418 (Invitrogen).
Seven days posttransfection, large individual clones were picked
into 24-well plates and expanded for expression tests (33). Clones
that showed the highest level of recombinant protein expression
were used for large-scale cell growth (1 L of HL5 medium
containing 10 μg/mL G418 in a 2 L shaking flask seeded with
(1-2) � 106 cells and shaken at 21 �C/200 rpm until stationary
phase was reached).

The myosinmotor domain was purified as before (34). Specifi-
cally, 50 g of cells was lysed in 200 mL of 50 mM Tris-HCl,
pH 8.0, 2 mM EDTA, 0.2 mM EGTA, 20% ethylene glycol,
1 mM DTT, 5 μg/mL leupeptin, 1 mM PMSF, 0.1 mM TLCK,
15 μg/mL RNase A, 100 units of alkaline phosphatase, 1%
Triton X-100, and one tablet of Complete EDTA-free protease
inhibitor (Roche). This was followed by centrifugation at
200000g and homogenization of the pellet with 100 mL of
HKMbuffer (50mMHEPES, pH7.3, 30mMpotassium acetate,
10 mM MgSO4, 20% ethylene glycol, 150 mM NaCl, 7 mM
β-mercaptoethanol, 5 μg/mL leupeptin, 1 mM PMSF, 0.1 mM
TLCK, and a tablet of Complete EDTA-free protease inhibitor
(Roche)). Another round of centrifugation and homogenization
was performed with 12 mM ATP in the HKM buffer. The last
centrifugation step produced the final supernatant that was
applied to a Ni-NTA (Qiagen) column. The protein bound to
the Ni-NTA column was washed first with high salt buffer
(50 mM Hepes, pH 7.3, 300 mM potassium acetate, and 3 mM
benzamidine) and then low salt buffer (50 mM Hepes, pH 7.3,
30 mM potassium acetate, and 3 mM benzamidine) followed by
elution with a 0-500 mM imidazole gradient. Fractions contain-
ing the protein were pooled and dialyzed overnight against
10 mM Hepes, pH 7.4, 50 mM NaCl, 0.2 mM EDTA, 1 mM
DTT, 0.2 mM NaN3, and complete EDTA-free protease inhi-
bitor (Roche). Cleavage of the 6His tag was performed using
rTEV protease (purified as described in ref 35), and the solution
was passed overNi-NTAagain to remove the rTEV protease and
the 6His tag. Fractions containing S1dC were again pooled and
dialyzed overnight in the above dialysis buffer. The protein was
finally concentrated to 10 mg/mL in a Centriprep-50 microfiltra-
tion device, frozen as 30 μLdroplets in liquid nitrogen, and stored
at -80 �C.
Crystallization and Freezing. For the MgADP 3VO4 and

MgAMPPNP crystal forms, the S236A mutant protein of S1dC
at 12 mg/mL was first mixed with blebbistatin to a final concen-
tration of 0.5 mM. Blebbistatin was added to the crystallization
because it improved the quality of the final crystals. Previous
studies have shown that the active site is virtually identical in the
presence and absence of blebbistatin (34). The protein solution

was allowed to incubate at room temperature for 10 min in the
dark before a 1/9th volume of 10� nucleotide analogue cocktail
was added. The 10� MgADP 3VO4 cocktail contained 10 mM
MgCl2, 20 mM ADP, and 30 mM sodium vanadate. The 10�
MgAMPPNP cocktail contained 20 mM MgCl2 and 20 mM
AMPPNP.Bothwere allowed to incubate with the protein for 1 h
on ice in the dark after mixing. The protein solutions were mixed
with a 12% polyethylene glycol (PEG) 8K, 250 mMMgCl2, and
pH 7.0 100 mM MOPS precipitant solution in a 1 to 1 μL ratio.
The drops were streaked-seeded the following day using crushed
crystals from an earlier crystallization experiment. Crystals
continued to grow over the course of 2 weeks until they had
attained their maximum dimensions of ∼700 � 200 � 80 μm.
Crystals were cryoprotected prior to being frozen by being
gradually transferred into a cryosolution of 16% PEG 8K,
300 mM MgCl2, 100 mM MOPS, pH 7.0, and 25% ethylene
glycol solution. A synthetic mother liquor solution that matched
the original well solution of 12% polyethylene glycol (PEG) 8K,
250 mM MgCl2, and pH 7.0 100 mM MOPS together with the
ligand mixture was prepared and used to dilute the cryosolution
in a mother liquor:cryoprotectant solution ratio 1:0, 3:1, 1:1, 1:3,
and 0:1. The time of each soak was 7, 5, 5, 3, and 1 min,
respectively. The crystals were then flash-frozen using a nitrogen
cold stream. Crystals of the magnesium pyrophosphate complex
(S236A 3MgPPi) were grown by mixing a 10� trapping solution
cocktail containing 20mMeach ofMgCl2 and sodium pyrophos-
phate with the S236A mutant protein at 12 mg/mL to a final
1� concentration and incubated on ice for 1 h, in the absence
of blebbistatin. This mixture was mixed 1:1 with a precipitant
solution containing 12.5% methyl ether polyethylene glycol
(MePEG) 5K, 117 mM ammonium acetate, and pH 8.0 100 mM
Hepps. The drops were streaked-seeded the following day using
crushed crystals from an earlier crystallization experiment.
Crystals continued to grow over the course of 2-3 weeks. The
cryoprotectant solution consisted of 16% MePEG 5K, 185 mM
ammonium acetate, 25 mMNaCl, 100 mMHepps, pH 8.0, 20%
ethylene glycol, and 4% glycylglycine, together with 2 mM
MgCl2 and 2 mM sodium pyrophosphate. The crystals were
then flash-frozen using a nitrogen cold stream.
Data Collection, Structure Determination, and Refine-

ment. X-ray data for the S236A 3MgADP 3VO4 and S236A 3
MgAMPPNP complexes were collected at the Advanced Photon
Source (APS) in Argonne, IL, using a MAR-165 detector at
COM-CAT 32-ID. A total of 280 frames, eachwith an oscillation
range of 0.5�, were collected at 150mm. The data were integrated
and scaled with the HKL2000 program package (36). The
structures were determined by molecular replacement with the
program Molrep (37) utilizing the structure of S1dC 3MgADP 3
VO4 (PDB accession number 1VOM) (23) as the starting model.
The structure was refined with Refmac5 in the CCP4 package,
and water molecules were located and added using the model
building program COOT (38, 39). The conformations for
AMPPNP and blebbistatin were obtained from coordinate sets
1MMNand 1YV3, respectively (26, 34). Themodelsweremanually
adjusted with the model building program COOT (38, 39).

Data for S236A 3MgPPi were collected at APS using a ADSC
Q315 315 mm � 315 mm mosaic CCD detector at SBC-CAT
19-ID. A total of 220 frames, each with an oscillation range of
1�,were collectedat 180mm. Integrationandsolutionof the structure
were performed as above with the exception that the starting model
was that of S1dC 3MgPPi (PDB accession code 1MNE) (25). Data
collection and refinement statistics are given in Table 1.
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Kinetic Measurements. Transient tryptophan fluorescence
measurements were recorded using an Applied Photophysics
SX18MV stopped-flow instrument with 295 nm excitation and a
WG320 cutoff filter in the emission channel (7). ATP-induced
dissociation of actin complexes with S1dC was monitored by
light scattering at 340 nm as described previously (13). Concen-
trations of components are stated for the reaction chamber (i.e.,
half the syringe concentrations). Slow time courses were also
monitored by manual mixing using an SLM 8000 spectrofluo-
rometer with the same excitation wavelength and emission filter.
Reactions were performed in a buffer containing 40 mM NaCl,
20 mM TES or Hepes, and 2 mM MgCl2 at pH 7.5 and 20 �C,
unless otherwise stated. Records were normally collected with a
logarithmic time base to ensure similar weighting was givenwhen
fitting fast and slow phases in multiphasic reactions (40). Rate
constants were obtained by fitting to single or double exponential
functions using Kaleidagraph (Synergy Software) or the Applied
Photophysics Pro-Data software. Standard errors in the fitted
parameters were generally <1%, and standard deviations in
parameter values between repeat measurements were <20%.
Corrections were made to account for photobleaching, which
was of the order of 1% decrease per minute in the stopped-flow
apparatus.

To determine the extent of ATP hydrolysis following the
binding step, 50 μL of 5 μM γ-32P-labeled ATP was mixed with
an equal volume 20 μM S1dC construct, and the reaction was
quenched after 10 s with 100 μL of 6%perchloric acid. The 32P-Pi
was extracted using a phosphomolybdate-based procedure as
described previously (7). The extent of ATP hydrolysis was
corrected for the 32P-Pi detected in a control sample quenched
at zero time.

RESULTS AND DISCUSSION

Crystal Structures. Structures for the open and closed forms
of S236A S1dC have been determined. Complexes exhibiting the
closed form were obtained for both S236A 3MgAMPPNP and
S236A 3MgADP 3VO4, where the overall protein topologies are
very similar to the previously determined closed forms of S1dC
observed inMgADP 3VO4andMgADP 3AlF4complexes (18,23).
The root mean square differences between the equivalent
R-carbon atoms for S236A 3MgAMPPNP and S236A 3MgADP 3
VO4 and the reference data sets for S1dC 3MgADP 3VO4 (1YV3
and 1VOM) are 0.15 and 0.37 Å, respectively, for 645 structurally
equivalent amino acid residues. As noted earlier, blebbistatin was
utilized to improve the quality of the crystals of the S236A 3
MgAMPPNP complex. It is thus noteworthy that the S236Amutant
protein complexedwithblebbistatin andMgAMPPNP is exceedingly
similar (rms 0.15 Å) to the equivalent wild-type protein complexed
with vanadate in the presence of blebbistatin. The same crystal lattice
wasobtained for theS236A 3MgAMPPNPcomplex in the absenceof
blebbistatin, where this crystal form is only commensurate with the
closed form of myosin because of the 70� rotation of the converter
domain. Likewise, the structure of S236A 3MgPPi, which exhibits
the open conformation, is very similar to that of the wild-type com-
plex (1MNE(25)) where the rootmean square difference is 0.35 Å for
704 structurally equivalent amino acid residues.

The structures for the S236A 3AMPPNP, S236A 3MgADP 3
VO4, and S236A 3MgPPi complexes were determined to 1.84, 2.0,
and 2.0 Å resolution, respectively (Table 1). It is noteworthy that
Trp501 is ordered in all of the structures determinedhere. This is not
unexpected for the two structures of the closed state (S236A 3
MgAMPPNP and S236A 3MgADP 3VO4) since this residue is typi-
cally ordered in this conformational state. It is unusual to observe
Trp501 in theopenstate (S236A 3MgPPi).Typically, residues500-508
are disordered in the open conformation, whereas only residues
503-506 are disordered in the S236A 3MgPPi complex. This further
demonstrates that the contents of the active site can have subtle effects
on the environment of this spectroscopically sensitive residue, even
when the overall structure of the protein is exceedingly similar.

In all complexes, the electron density for the ligands in the
active sites is unequivocal, as is the electron density surrounding
the S236A mutation (Figure 1 and Supporting Information
Figure 1). The mutation itself does not introduce any significant
changes in the positions of the amino acid residues in either the
open or closed forms (Figures 2 and 3). Indeed, the only obvious
changes are in the position of the water molecules associated with
the γ-phosphate binding pocket.

It is widely accepted that the open conformation of myosin,
as exemplified by the S1dC 3MgPPi or S1dC 3MgATP com-
plex (25, 41), is not competent to hydrolyze ATP because the
watermolecule responsible for hydrolysis is not in an appropriate
location for nucleophilic in-line attack on the γ-phosphoryl
moiety. Furthermore, the water molecules that are in the active
site are hydrogenbonded in such away that the putative locations
of lone pairs of electrons that would be expected to attack the
γ-phosphorus atom are coordinated to other components of the
active site.

Examination of the structure of the S236A 3MgPPi complex
shows that removal of the hydroxyl on Ser236 allows, relative to
the wild-type structure, the intrusion of a water molecule that
hydrogen bonds between one of the nonbridging oxygen atoms
of the terminal phosphoryl group, the carbonyl oxygen of
Ser237, and the guanadinium Nη of Arg238 (Figure 2A). The

Table 1: Data Collection and Refinement Statistics

MgADP 3VO4 AMPPNP MgPPi

space group C2221 C2221 P21212

unit cell parameters

a, b, c (Å) 88.4, 146.4,

153.7

88, 147,

153.4

104, 180.8,

53.9

R = β = γ (deg) 90 90 90

wavelength (Å) 0.97885 0.97885 1.00707

resolution range (Å) 50-2.0 50-1.84 30-2.0

reflections: measured 332841 503544 529646

reflections: unique 64281 84770 69055

redundancy 5.2 (4.0) 6 (4.6) 7.7 (7.8)

completeness (%) 96.7 (90.1) 98.7 (97.6) 99.8 (98.6)

average I/σ 18.6 (2.9) 35.7 (5.3) 17.6 (3.9)

Rsym (%) 6.1 (23.7) 5.1 (15.2) 11.5 (40.6)

Rwork (%) 19.3 19.9 18.9

Rfree (%) 23.4 22.7 23.6

no. of protein atoms 708 706 5976

no. of water molecules 352 445 736

Wilson B-value (Å2) 23.6 24 19.7

average B factors (Å2)

S1dC 26.3 26.8 20.9

solvent 28.5 32.3 30.2

Ramachandran (%)

most favored 92 92.3 92.9

additionally allowed 7.5 6.9 6.8

generously allowed 0.2 0.5 0.1

disallowed 0.3 0.3 0.1

rms deviations

bond lengths (Å) 0.013 0.011 0.013

bond angles (deg) 1.356 1.339 1.411

chiral 0.094 0.111 0.098
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water molecule is within van der Waals distance (3.5 Å) of the
β-carbon of Ala236. This prompts a rearrangement of two of
the primary water molecules in the structure of S1dC 3MgATP
(Figure 2B).

The water structure of the S236A 3MgADP 3VO4 complex is
identical to that of wild-type S1dC 3MgADP 3VO4 (Figure 3).
The absence of the Ser236 hydroxyl in the S236A complex
introduces a hole that is not filled in the closed conformation.
This is not surprising from a structural point of view, since the
γ-phosphate binding pocket is quite small and only contains two
water auxiliary molecules outside of the axial water molecule
coordinated by the vanadate anion. (There are two other water
molecules associated with the magnesium ion.) All of the active
sitewatermolecules in the vanadate complexes exhibit a complete
four-coordinate hydrogen-bonding network and as such would
be difficult to displace. As a consequence, removal of the
hydroxyl from Ser236 leaves a hole, rather than prompting a
rearrangement of the contents of the active site.

Comparison of the water structure in S236A 3MgAMPPNP
relative to that seen in S236A 3MgADP 3VO4 shows that the
γ-phosphate binding pocket contains three water molecules
(outside of the two water molecules associated with the magne-
sium ion). Two of these occupy essentially identical locations
to the auxiliary waters seen in both S236A 3MgADP 3VO4 and
wild-type S1dC 3MgADP 3VO4 (Figure 4A). The third occupies
essentially the same location as the water molecule that occupies
the hole left by removal of the serine hydroxyl in the S236A 3
MgPPi open complex (Figure 4B). This water molecule in the
S236A 3MgAMPPNP complex forms a four-coordinate hydro-
gen-bonding network with one of the nonbridging oxygen atoms
of the γ-phosphoryl group, the carbonyl oxygen of Ser237, the
guanadinium Nη of Arg238, and one of the conserved auxiliary
water molecules. The only difference in the coordination of this
water molecule, relative to that seen in the S236A 3MgPPi

complex, is the additional hydrogen bond to the conserved water
molecule that is absent in the open conformation.

The γ-phosphoryl group of the S236A 3MgAMPPNP closed
complex provides insight into the structural transitions that occur
between the open and closed conformations of the myosin motor

domain. In particular, it shows how the γ-phosphoryl moiety is
coordinated in the active site in the closed state. As can be seen, the
location of the γ-phosphoryl group relative to the P-loop and upper
50 kD section of the motor domain is very similar in the S236A 3
MgAMPPNP closed complex and in the S1dC 3MgATPopen com-
plexes. This is consistent with the general understanding that the
position of ATP does not change in the active site in order to faci-
litate hydrolysis. Rather, it is repositioning of switch 2 which sup-
ports movement of a water molecule into the axial location relative
to the γ-phosphorus and its bond to the bridging oxygen to ADP.
Transient-State Kinetics. Shimada et al. reported a less that

2-fold reduction in the basal steady-state Dd Mg 3ATPase rate
on introduction of the S236A mutation (28). Li et al. found a
4-fold reduction for the equivalent mutation in smooth muscle
myosin (27). We readdressed this measurement using single turn-
over analysis, as this approach is less sensitive to uncertainties
in the active protein concentration. Using intrinsic tryptophan
fluorescence, single ATP turnovers of theDd S1dCwild-type and
S236A mutant revealed a 3.4-fold reduction in the rate-limiting
product release step, from 0.021 to 0.0058 s-1 (Figure 5). In a
separate experiment, acid quenching the reaction after 10 s,
when the ATP binding phase was nearly complete, followed by
Pi analysis, showed 37% of the ATP was hydrolyzed to the
M* 3ADP 3Pi state for the S236A mutant, compared with
40-80% typically obtained for wild-type preparations (7). As
an independent check of the ATP turnover rate, a manual assay
was set up in which 100 μM ATP was mixed with the either
4 μM wild-type or S236A construct, and after 100 s, when the
tryptophan fluorescence level reflected the steady state, 5mMPPi
was added as a competitive ligand (Supporting Information
Figure S2A). The decay in tryptophan fluorescence followed a
single exponential with rate constant 0.028 s-1 for the wild-type
construct and 0.0068 s-1 for S236A. These values are similar to
the rate constants determined from single turnover analysis in a
stopped-flow instrument, as described above, and reflect the
decay of the M*ADP 3Pi complex in both cases. These measure-
ments confirm the previous findings (26, 27) that Ser236 is not
essential for near-normal catalytic activity but that the basal
ATPase of the S236A construct is lower.

FIGURE 1: Stereoviewof the electron density for S236A 3MgAMPPNP in the closed conformation at 1.84 Å resolution. The electron density map,
contoured at 3σ, was calculated from coefficients of the formFo-Fc where theMgAMPPNP,Ala236, and the associated watermolecules were
omitted from the phase calculation and refinement.Mg2þ is shown as a green sphere. Figures 1-5 were prepared with the program Pymol (42).
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ATP binding and hydrolysis yielded a 40% enhancement in
tryptophan fluorescence for both wt and S236A Dd S1dC
(Supporting Information Figure S2B), although the mutant
showed a greater proportion (30%, cf. 15% total amplitude) of
a concentration-independent slow phase (0.5 s-1, cf. 2 s-1,
respectively). The rate constant of the fast phase increased with
increasing [ATP] and reached amaximumof 125 s-1 forwild type
(Kapp = 208 μM) and 97 s-1 for S236A (Kapp = 192 μM). The
values for the observed rate constants at saturating ATP are
higher than those we reported previously for wild-typeDdM759
preparations (17 s-1 (13)) and the Trp501þ construct (30 s-1 (7))
but are within the range reported forDd constructs with differing
C-terminal truncations (12). ADP binding to both preparations
was accompanied by a small quench in fluorescence (around 2%)
that was not sufficient for detailed kinetic characterization but
indicated that ADP bound with an apparent kon in the region of

106 M-1 s-1. This is in line with previous studies on the mutant
Dd Trp501þ, containing a single tryptophan residue, where the
signal to background was much larger (7). ADP displacement
with ATP yielded a dissociation rate constant of 0.28 s-1 for
S236A compared with 1.6 s-1 for wild type. Overall, these studies
indicate that S236A shows near wild-type behavior, but with a
tendency to release nucleotides around 4 times slower than the
wild type, suggesting stabilization of a closed state.

As with ATP, AMPPNP binding to wild type and S236A also
gave a biphasic fluorescence enhancement, but the second slower
phase was more marked in both cases (Figure 6). The overall
fluorescence enhancement was 17.6 ( 1.7% (SD n = 5) for wt
and 31.6 ( 1.9% (SD n = 5) for S236A. For S236A, the fast
phase increased linearly with [AMPPNP] to yield an apparent
second-order rate constant of 4.8 ((1.0 SE) � 104 M-1 s-1 and
exceeded a value of 12 s-1 (kobs at 500 μM AMPPNP). The

FIGURE 2: Stereoviews the γ-phosphoryl binding site in the S236A 3MgPPi complex and a comparison with wild-type S1dC 3MgATP. Both of
these complexes represent the open state ofmyosin. (A) shows the coordination of the watermolecule that fills the cavity left by the removal of the
γ-hydroxyl group of Ser236. The newwatermolecule is coordinated by one of the nonbridging oxygen atoms of the terminal phosphoryl group of
magnesiumpyrophosphate, the carbonyl oxygenof Ser237, and the guanadiniumNηofArg238 (distances in Å). Thewatermolecule iswithin van
der Waals distance of the β-carbon of Ala236. (B) shows the superposition of the S236A 3MgPPi complex with the wild-type S1dC 3MgATP
complex (PDB accession code 1FMW (41)). The S236A 3MgPPi complex is depicted in color whereas the S1dC 3MgATP complex is shaded in
gray. This panel reveals the very close similarity between the structures of these complexes and demonstrates that the S236A mutation does not
introduce a large perturbation in the overall structure of the myosin motor domain. The new water molecule in the S236A 3MgPPi complex is
labeled “W” for clarity.As canbe seen, awatermolecule could not adopt this position in thewild-type structure since itwould clashwith the serine
hydroxyl (black dashed arrows). Introduction of the new water molecule displaces the primary waters observed in the wild-type S1dC 3MgATP
complex (red dashed arrows). The structures described in this figure and elsewhere were superimposed with the program uw_align (43). The
coordinates for the wild-type S1dC 3MgATP complex were obtained from PDB file 1FMW (41).
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second slow phase showed little concentration dependence and
had a maximum rate constant of 0.29 s-1. For the wild-type
preparation, the corresponding rate constants for the fast and
slow phases were 2 and 3 times larger, respectively (Figure 6). The
dissociation rate constant for the M* 3AMPPNP complex was
too small to bemeasured by stopped flow, where photobleaching
and drift due to back-diffusion over >1000 s made analysis
difficult. Displacement by manual addition of 4 mMPPi to wild-
typeM* 3AMPPNP (and using an excitation slit width of 0.5 nm
to minimize photobleaching) yielded a rate constant of about
0.001 s-1. For the S236A mutant, the reaction was more difficult
to analyze because PPi also gave an enhancement in tryptophan
fluorescence (see below), and the overall amplitude of the signal
on exchanging AMPPNP for PPi (8%) was 4 times smaller than
the change for wild type.However, the observed rate constant for
displacement appeared comparable to that for wild type. Overall,
we conclude that the interactions of AMPPNP with wild-type
S1dC and the S236A construct are similar, but the larger
fluorescence enhancement with S236A suggests that a larger
fraction exists in the closed state at equilibrium.

The wild-type and S236A mutant protein differed most
markedly in their binding of PPi (Figure 7). At 20 �C, wild-type
S1dC gave a 2.5% quench on binding PPi with a single
exponential profile and yielded an apparent second-order asso-
ciation rate constant of 3.7 � 104 M-1 s-1. On the other hand,
S236A showed a 22% enhancement with at least two phases. On
reducing the temperature to 5 �C, the fluorescence of the apo
S236A preparation increased by 14%, in line with the typical
temperature dependence of tryptophan (14), but the fluorescence
enhancement induced by PPi was reduced to 7%. Furthermore,
an additional small quench phase was observed between the two
enhancement phases. These results cannot be interpreted in terms
of interconversion between a single open and single closed state,
as modeled previously (7).However, the temperature dependence
is in line with the earlier finding that low temperature favors
an open state with low or no fluorescence enhancement (14).
The higher fluorescence enhancement amplitudes for PPi and
AMPPNP binding to S236A compared with wild-type S1dC
indicate that the mutation favors the closed state. This likely
accounts for the ability to crystallize the mutant protein in the

closed state with MgAMPPNP at low temperatures. As noted
earlier, blebbistatin is not required to obtain these crystals,
though it does improve their quality. Thus, the enhanced
propensity for the closed state reflects an intrinsic property of
the mutant protein.

The S236A construct formed a complex with actin whose
ATP-induced dissociation was monitored using light scattering.
The apparent second-order rate constant for ATP binding to
acto-S236A at low [ATP] was smaller (0.3 μM-1 s-1) than for the
wild-type construct (1.1 μM-1 s-1), but the observed rate
constant at 1 mM ATP was similar (170 s-1). However, while
the wild-type construct was close to saturation at 1 mMATP, the
S236A construct may show a higher maximum rate constant
(∼400 s-1) at saturating [ATP]. Changes in ionic strength at
higher [ATP] make experimental determination difficult. Never-
theless, at the typical [ATP] used for actin-activated steady-state
ATPase and in vitromotility assays (27), the rate constant for the
actindissociation stepwouldbe comparable. Previous studies (27)
indicated a 4-fold reduction in the Vmax of the steady-state actin-
activated ATPase and a 7-fold reduction in the velocity of actin
filament sliding for the S236A mutation. It therefore appears
the S236A mutant is compromised in steps following actin
dissociation.
Role of Ser236. The structure of the S236A 3MgADP 3VO4

complexmight suggest that the closed state in thismutant protein
would be less stable than the open state due to the creation of a
cavity in the γ-phosphoryl binding pocket. This hypothesis is not
supported by the kinetic studies which show that the S236A
mutation favors the closed state by a factor of about 4-fold. The
greater stability of the closed state for the S236A mutant protein
relative to the open state is also supported by the observation that
it can be crystallized in the closed state in the presence of
AMPPNP. There are two possible explanations for this apparent
dichotomy. First, the modifications in the water structure lead to
a stabilization of the closed state. Second, the mutation changes
the energy of the open state in a manner that favors the closed
state. This latter viewpoint recognizes that the stability of the
closed state is reflective of the difference in energy between
the open and closed states. Mutations can influence either or
both states.

FIGURE 3: Stereo comparisonof the S236A 3MgADP 3VO4 andwild-type S1dC 3MgADP 3VO4 complexes. The S236Amutant protein is depicted
in colors whereas the wild-type protein is colored in gray. This figure shows that the protein in both complexes adopts an essentially identical
conformation in the closed state.Likewise, the twowatermolecules associatedwith theγ-phosphoryl binding pocket occupy very similar locations
(arrows). Furthermore, the locations of the magnesium ion and its associated waters are the same within experimental error. This leaves a small
cavity in the S236A mutant protein active site associated with the removal of the serine γ-hydroxyl moiety. The coordinates for the wild-type
S1dC 3MgADP 3VO4 complex were obtained from PDB file 1VOM (23).
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These two explanations are not mutually exclusive. Careful
examination of the environment of Ser236 in the wild-type
structures shows that this residue participates in one or two
hydrogen-bonding interactions in the open state for Dd S1dC.
Likewise, in the structure of the rigor-like state seen in myosin V
(1OE9 (19)) the equivalent residue is partially coordinated. In
contrast, in the closed state Ser236 is approximately tetrahedrally
coordinated by the substrate, protein, and water molecules in the
active site. This again would suggest that the S236A mutant
protein would have a less stable closed state, because these
interactions would be removed. Comparison of the three struc-
tures for the S236A mutant shows that the water molecule that
takes the place of the γ-hydroxyl group of Ser236 is also highly
coordinated in both of the closed state structures, whereas it is
only bicoordinate in the open state. This provides an explanation
for why the mutation might not be destabilizing relative to the

wild-type structure, but it does not explain why the mutation
leads to a net stabilization of the closed state. One possible
solution lies in the putative location of the hydrolytic water
molecule in the wild-type enzyme.

At this time, no structure is available for MgATP in the closed
state. Consequently, the location of the true hydrolytic water
molecule, prior to its movement into the axial position, is not
known. As noted earlier, the new water molecule observed in the
S236A 3MgAMPPNP complex cannot occupy the same location
as the true hydrolytic water in the wild-type protein because its
location is too close to the γ-hydroxyl of Ser236 (2.1 Å). Indeed, it
seems likely that Ser236 in the wild-type protein serves to localize
a water molecule in the true axial position. It was proposed many
years ago that the conformation of the closed state stabilized a
water molecule in the axial position so that one of its lone pairs of
electrons would be collinear with the P-O bridging bond that

FIGURE 4: Stereo comparison of (A) S236A 3MgAMPPNP with S236A 3MgADP 3VO4 and (B) S236A 3MgAMPPNP with S236A 3
MgPPi. The bonds in the S236A 3MgAMPPNP are depicted in color, whereas the other complexes are shown in gray. In (A) the water structures
for the two closed complexes of the S236A mutant are compared. These mimic the ATP and transition state for the closed conformation. The
hydrogen-bonding network is shown for the water molecules in the S236A 3MgAMPPNP. For clarity the hydrogen bond distances have been
omitted; however, all of the distances lie within the range of 2.6-2.9 Å. The arrow indicates that the new water molecule (W) would only have to
move 1.5 Å to adopt an axial position relative to the γ-phosphoryl moiety. Regardless of whether this is the nucleophile, this water moleculemust
move in order to form the transition state for hydrolysis. (B) shows the superposition of the open and closed states of the S236Amutant protein as
represented by theMgPPi andMgAMPPNPcomplexes.This reveals that the newwatermolecule that takes the place of the serine hydroxyl adopts
the same location in the open and closed complexes.
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would be broken (23). Ser236 was proposed to play a key role in
the process. Energetically, this would be an unstable situation for
a water molecule since in this position it can only form three
hydrogen bonds. Nevertheless, myosin spends a considerable
amount of time with ATP in its active site when it is in the closed
state, since this state contains an equilibriummixture ofATP and
ADP 3Pi. This means that for a substantial fraction of the time
there will be a thermodynamically unstable water in the active
site. This would destabilize the closed state in the wild-type
enzyme. In contrast, in the S236A mutant the water molecule
appears to adopt a stable location prior to the transition state
(as modeled by ADP 3VO4), which would then favor the closed

state. This provides a satisfactory answer to the modest increase
in the stability of the closed state for the S236A mutant protein.

The fact that the S236A mutant hydrolyzes ATP does not
mean that Ser236 is unimportant in the hydrolytic mechanism of
wild-type myosin, because the S236A mutant protein probably
proceeds via a different mechanism than the wild type. The
mutation introduces a new water molecule into the active site
which probably creates an alternative route by which ATP is
hydrolyzed. In the case of the mutant protein, the new water
molecule either must function as the nucleophile or must move
away to allow another water molecule to enter the γ-phosphate
binding pocket. It seems likely that the water molecule that takes
the place of the serine hydroxyl serves as the nucleophile, since it
is observed in both the open and closed conformations and is only
located ∼1.5 Å from the axial water molecule of the vanadate
complex (Figure 4A). It is already hydrogen-bonded to a terminal
oxygen of the γ-phosphoryl group, whichmeans that a four-center
proton transfer from the attacking water to the γ-phosphate
would be more favorable from proximity arguments. It also
means that from entropic considerations fewer changes are
necessary to bring the water into position for nucleophilic attack,
so that even if the four-center proton transfer is unfavorable, the
proximity of the water will counterbalance this cost. The new
water molecule is functionally different from the serine γ-hydroxyl
group and hence demands a different structural mechanism
since there is no longer an adjacent hydroxyl group to facilitate
orientation of the nucleophile or proton transfer.

This study explains why the S236A mutation retains function,
but it still does not account for the conservation of serine in this

FIGURE 5: Single turnover of 1 μMATPby 2 μMS1dCasmonitored
by tryptophan fluorescence: (A) wild-type; (B) S236A mutant. The
reaction was measured in 40 mM NaCl, 10 mM Hepes, and 2 mM
MgCl2 at pH7.5 and 20 �C.The signalswere normalized such that the
fluorescenceof the apo statewas equal to 1. Superposed fits to a single
exponential yield rate constants of 0.02 and 0.0058 s-1, respectively.

FIGURE 6: Enhancement on tryptophan fluorescence on binding
60 μM AMPPNP to 2 μM S1dC: wt (blue trace); S236A mutant
(black trace). Conditions were as in Figure 5. Fitting a biexponential
to the data between 0.1 and 10 s yielded rate constants of 3.4 s-1

(amplitude = 0.17) and 0.24 s-1 (amplitude = 0.14) for the S236A
construct. For the wild-type construct values were 5.4 s-1 (amplitude=
0.085) and 0.92 s-1 (amplitude = 0.081). The fluorescence signal was
normalized to 1 for the apo state, so that the total fluorescence
enhancement in these records was 31% for the S236A construct and
16.6% for the wild type.

FIGURE 7: (A) Stopped-flow records showing the change in trypto-
phan fluorescence on binding 50 μM PPi to 2 μM S1dC (wild-type
showing quench in fluorescence (blue trace) and S236A (black trace)
showing an enhancement). (B) The fluorescence enhancement on
binding 500μMPPi to 2μMS236Aat 20 �C (black) or 5 �C(blue). The
records are normalized to the fluorescence of the apo state at 20 �C.
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position in the myosin superfamily. Interestingly, there is a
conserved serine in the kinesin superfamily of molecular motors
that lies in approximately the same location as Ser236, but its role
in the ATPase cycle is not well characterized. In contrast, the
corresponding amino acid in the G-proteins, which have a very
similar P-loop and analogous switch 1 and 2, is a proline residue.
This establishes a precedent that a hydroxyl group coordinated
directly to the γ-phosphoryl moiety is not necessary for hydro-
lysis, which is consistent with these studies of the S236A muta-
tion. Furthermore, this comparison emphasizes that, although
motor or signaling proteins might utilize a similar mechanism
for nucleotide hydrolysis, the biological function is tightly coupled
to the kinetics of product release (myosin and kinesin) and
activation (G-proteins) which differ among proteins that exhibit
a strikingly similar nucleotide binding motif. Clearly, an alanine
residue in myosin would have been sampled during evolution
since it is only one base removed from serine in the genetic code.
So, obviously, there must be a functional advantage to retaining
a serine. The myosin superfamily of proteins exhibits a wide
range of rate constants that encompass the differences in enzy-
matic function observed between the wild-type and S236A
mutant protein. Thus, the reason for the conservation of
Ser236 still remains unclear, though the explanation for its
retention of function after replacement with alanine is now better
understood.
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SUPPORTING INFORMATION AVAILABLE

Stereoviews of the electron density for (a) MgADP 3VO4 and
(b) MgPPi in the S236A mutant protein complexes both at 2.0 Å
resolution (Figure S1) and determination of the ATP turnover
rate constant by displacement with PPi and the dependence of the
observed rate constant for tyrptophan enhancement on [ATP]
(Figure S2). This material is available free of charge via the
Internet at http://pubs.acs.org.
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