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Abstract
We propose a new set of test statistics to examine the association between two ordinal categorical
variables X and Y after adjusting for continuous and/or categorical covariates Z. Our approach first
fits multinomial (e.g., proportional odds) models of X and Y, separately, on Z. For each subject, we
then compute the conditional distributions of X and Y given Z. If there is no relationship between
X and Y after adjusting for Z, then these conditional distributions will be independent, and the
observed value of (X, Y) for a subject is expected to follow the product distribution of these conditional
distributions. We consider two simple ways of testing the null of conditional independence, both of
which treat X and Y equally, in the sense that they do not require specifying an outcome and a predictor
variable. The first approach adds these product distributions across all subjects to obtain the expected
distribution of (X, Y) under the null and then contrasts it with the observed unconditional distribution
of (X, Y). Our second approach computes “residuals” from the two multinomial models and then tests
for correlation between these residuals; we define a new individual-level residual for models with
ordinal outcomes. We present methods for computing p-values using either the empirical or
asymptotic distributions of our test statistics. Through simulations, we demonstrate that our test
statistics perform well in terms of power and Type I error rate when compared to proportional odds
models which treat X as either a continuous or categorical predictor. We apply our methods to data
from a study of visual impairment in children and to a study of cervical abnormalities in human
immunodeficiency virus (HIV)-infected women. Supplemental materials for the article are available
online.
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1. INTRODUCTION
Consider the situation where there are two ordinal categorical random variables X and Y, and
we want to examine the association between X and Y after adjusting for continuous and/or
categorical covariates Z. This is a common scenario in medical research and social sciences.
For example, a recent study collected data on stages of cervical squamous intraepithelial lesions
and condom use among human immunodeficiency virus (HIV)-infected women in Zambia
(Parham et al. 2006). Cervical dysplastic stage is an ordered categorical variable with four
levels according to the commonly used revised Bethesda system: normal, low-grade squamous
intraepithelial lesions, high-grade squamous intraepithelial lesions, and squamous cell
carcinoma. Condom use was categorized as never, rarely, almost always, and always.
Researchers are interested in testing the association between cervix health and condom use
after controlling for other variables such as age and CD4 count.

Proportional odds models (also known as ordinal logistic regression) (McCullagh 1980), other
cumulative link models (Aitchison and Silvey 1957; Farewell 1982), and continuation ratio
models (Läärä and Matthews 1985) are commonly used to examine the association between
an ordinal response variable and continuous or categorical predictors. These regression models
are useful because they account for the natural ordering of the outcome, but do not treat the
outcome as a continuous variable. However, when one of the predictors is ordered categorical,
all traditional regression approaches including these for ordered categorical outcomes have to
treat the ordinal predictor as either numerical or categorical. The former enforces a linearity
assumption and the latter ignores the order information.

When the ordinal predictor is treated as continuous, we assume the effect of moving from level
1 to level 2 is the same as that from level 2 to level 3. Often this assumption is unreasonable.
In the previous example, there is little reason to suppose that the effect difference on cervical
neoplastic stage between no condom use and rare condom use is the same as that between rare
and almost always use. Alternatively, one can assign numbers to the categories or transform
the predictor in some manner so that the assigned values reflect a linear relationship with the
appropriately transformed expected outcome. The problem with this approach is that such a
transformation of the predictor is difficult to choose and may lead to data dredging, ignoring
uncertainty in model selection. Splines, a special type of transformation (e.g., Ramsay 1988),
have other drawbacks: uncertainty in number and locations of knots, dependence of results on
how the categories are coded, nonmonotonic results when a monotonic relationship is expected,
and difficulty when there are only three categories.

When the ordinal predictor is treated as discrete, the order information is ignored. When there
are many categories, this approach may have low power due to high degrees of freedom. In
addition, the effect estimates may be nonmonotonic. Isotonic regression (Barlow et al. 1972)
addresses the latter problem by grouping adjacent categories if their relative effect is in reverse
of the general trend. However, the categorization is data driven and the results need appropriate
adjustment for this source of model selection variability. In addition, the degrees of freedom
may still be high, particularly if the original categories already manifest a monotonic
relationship.

Another, possibly Bayesian, option can be to perform an analysis using latent variables; the
ordinal variables X and Y can be thought of as some categorization of continuous latent
variables, say U and V. A test of the association between X and Y conditional on Z can then be
some test of the correlation between U and V conditional on Z. The primary problem we see
with latent variable approaches of this nature is that they require assuming a distribution for
the latent variable, which essentially forces one to assign a scale to the ordinal categorical
variables.
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Some approaches model X and Y jointly conditional on Z. Examples include log-linear,
especially linear-by-linear association, models (Goodman 1979; Agresti 2002) and generalized
Cochran–Mantel–Haenszel test (Mantel 1963). However, these methods require assigning
numeric values to the ordinal categories, and their implementation also requires grouping
continuous or multivariable Z into strata, generating arbitrary cutoffs on Z and losing
information.

Other approaches for measuring conditional associations of ordinal categorical data have built
on classic two-variable statistics such as Kendall’s concordance–discordance statistic tau,
Goodman and Kruskal’s gamma (Goodman and Kruskal 1954), and Spearman’s rank-based
correlation (Agresti 2002). Kendall’s partial tau (Kendall 1948) and an extension of Kendall’s
partial tau to multivariable Z (Hawkes 1971) are a few examples, although the usefulness of
these approaches is questionable given that the expectation of these statistics is generally not
zero under the null hypothesis that X and Y are independent conditional on Z (Goodman
1959; Agresti 1977; Schemper 1991). Other proposed methods involve stratifying data
according to Z and computing weighted averages of stratum-specific measures of association
between X and Y (Torgerson 1956; Davis 1967; Agresti 1977). Because these techniques need
multiple observations per stratum, these approaches again require collapsing continuous or
multivariable Z into strata.

Our method is motivated by the following observation. If X and Y are continuous variables, we
can carry out linear regression Y = β0 + β1X + γ1Z1 + ⋯ + γkZk + e, and test for significance of
the coefficient β1. Alternatively, we can carry out the following procedure: (a) fit a linear
regression of Y on the covariates Z and obtain the residual Yres for each subject, (b) fit a linear
regression of X on Z, and obtain the residual Xres for each subject, and (c) perform a simple
linear regression Yres = α0 + α1Xres + e, and test for significance of the coefficient α1. It is well
known that the coefficient estimates for β1 and α1 are the same (Rao 1973;Mosteller and Tukey
1977). Their corresponding significance levels are similar if the number of subjects is much
larger than the number of covariates. Note that for each subject, given the covariate values Z
= z, the linear regression in (a) will effectively yield a distribution of possible realizations of
Y|z for the subject and the regression in (b) will yield a distribution of possible realizations of
X|z for the subject. These two distributions are expected to be independent if there is no
association between Y and X after adjusting for Z.

Similar to the linear regression setting, our approach is to fit Y and X on Z separately using
multinomial models (e.g., proportional odds models), obtain the conditional distributions Y|
Z and Y|Z for each subject, and use this information to construct test statistics. In Sections 2
and 3 we describe our method. In Section 4 we investigate the performance of our method
through simulations. In Section 5 we apply our method to two datasets: one on the association
between anisometropia and amblyopia and the other on the association between cervical
neoplastic stage and condom use. We discuss our results in Section 6.

2. METHOD
Let Y and X be two ordinal variables with s and t categories, respectively. The categories are
denoted as 1Y, 2Y, …, sY, and 1X, 2X, …, tX. Note that the numbers (e.g., 1Y) are simply symbols
for categories and should not be interpreted as quantities. Without loss of generality, suppose
the order of categories are 1Y < 2Y < ⋯ < sY and 1X < 2X < ⋯ < tX. We will omit the superscript
when it is clear from the context which variable it belongs to. Our goal is to examine the
relationship between Y and X after adjusting for k covariates, Z = (Z1, …, Zk). We will test the
null hypothesis
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that is, conditional on Z, Y and X are independent.

As described in the Introduction, we first carry out a multinomial regression analysis of Y on
Z, and a multinomial regression analysis of X on Z. A commonly used multinomial regression
model for ordinal outcomes is the proportional odds model (McCullagh 1980). Other possible
models include cumulative link models (Aitchison and Silvey 1957; Farewell 1982) and
continuation ratio models for ordinal outcomes (Läärä and Matthews 1985), and multinomial
logit models for categorical outcomes (Mantel 1966). One can choose different multinomial
models for the two ordinal variables.

For each subject, the regression analyses of Y and X on Z will provide conditional distributions
of Y and X given Z. If there is no relationship between Y and X after adjusting for the covariates
(i.e., under the null), these two conditional distributions will be independent, and the observed
value of (Y, X) for the subject is expected to follow the product distribution of these two
conditional distributions. We consider two ways of testing the null. The first approach adds
these product distributions across all subjects to obtain the expected marginal distribution of
(Y, X) under the null of conditional independence and then contrasts this distribution with the
observed marginal distribution for (Y, X) (i.e., not conditional on Z). Our second approach
computes “residuals” from the two multinomial regression models and then tests for correlation
between these residuals. We define a new individual-level residual for models with ordinal
outcomes. We will describe these two approaches separately.

2.1 Observed versus Expected Distributions
In this approach, we compare the observed joint distribution between Y and X with their
expected distribution under the null. In general, the joint distribution between Y and X, P = P
(Y, X) ={πjl}, can be written as

(1)

Under the null of conditional independence, the joint distribution between Y and X can also be
written as

(2)

Let . Then under the null, P = P0.

Assume (Xi, Yi, Zi), i = 1, …, n, are iid copies from the random vector (X, Y, Z). [Note that
although we assume (Xi, Yi, Zi) are iid, our methods hold if Zi is set to specific levels.] For

subject i (i = 1, …, n), let  for j = 1, …, s, and  for l = 1, …,

t. Let ; for convenience, let  and . Then . The
probabilities  can be similarly written as differences between cumulative probabilities.

To estimate P0, we fit separate multinomial models for P(Y|Z) and P(X|Z) to estimate the

probabilities  and , denoted as  and . The distribution of Z is estimated by its empirical

distribution. Plugging these estimates into Equation (2), we obtain the estimate , where
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. Without assuming the null hypothesis, P can be estimated empirically as

, where  and njl is the number of subjects with Y = j and X = l.

We then summarize the observed and expected distributions separately. This can be achieved
by calculating Goodman and Kruskal’s gamma (Goodman and Kruskal 1954), which for a two-

way probability distribution P ={πjl} is , where C = ∑j1<j2,l1<l2 πj1l1 πj2l2 and D

= ∑j1<j2,l1>l2 πj1l1 × πj2l2. Let  and  be the gamma for the observed and
expected distributions for (Y, X). Our test statistic will be T1 = Τ1 − Τ0. When the multinomial
models are correct, under the null,  and  as n → ∞, and thus

.

Note that our test statistic accounts for the order information in Y and X, whereas a direct
goodness-of-fit approach comparing the observed and expected counts using a statistic in the
form of ∑j,l(Observed − Expected)2/Expected, ignores the order information in Y and X.

2.2 Residual-Based Test Statistics
Another way of constructing test statistics is to mimic the residual-based linear regression
analysis described in the Introduction. We wish to calculate “residuals” for multinomial models
of ordinal outcomes and test if they correlate. For ordered categorical outcome variables,
however, we are not aware of a standard way of calculating individual-level residuals. We first
define individual-level residuals for ordinal outcome variables and then present test statistics
that are based on these residuals.

In linear regression, to calculate the residual for a subject with outcome Y = y and input Z =
z, we first obtain the fitted value of the outcome variable given z, , and then calculate
the residual as . However, for an ordered categorical outcome variable, we cannot
calculate its “fitted” value and need to re-think the derivation of residuals. It should be noted
that in addition to providing the fitted value described previously, a linear regression model
also gives an estimated distribution of possible outcome values given z, say Yfit ~ Y|z. The

residual can be written as . In other words, we may think of a
random variable y − Yfit, which is the difference between the observed outcome value y and a
random outcome value under the model given z; the residual is the expectation of this random
variable. This motivates us to define residuals for ordered categorical outcome variables.

Assume a multinomial model for P(Y|Z) with model parameters θY. Let Yi = yi be the observed
outcome level for subject i. The corresponding distribution of possible outcome levels Yi,fit ~

Yi|zi given covariate zi is multinomial with probability distribution . Since the outcome
variable is ordered categorical, we cannot calculate the difference between yi and Yi,fit, but we
can compare them with respect to whether yi is at a higher or lower level than Yi,fit. The

probability for yi to be higher than Yi,fit is , where 
as defined earlier; similarly, the probability for yi to be lower than Yi,fit is

; the probability for yi to tie with Yi,fit is . We then
assign scores to these three types of events: 1, −1, and 0, corresponding to higher, lower, and
tie, respectively. The expected score pi,high − pi,low is denoted as Yi,res, which is a function of
data (Yi, Zi) and model parameters θY. For a fitted model with parameter estimates , the
residual for subject i is defined as . For multinomial models for P(X|Z), the
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probabilities qi,high and qi,low can be similarly defined and so are Xi,res = qi,high − qi,low and
xi,res.

When the models for P(Y|Z) and P(X|Z) are correct, we have

, and similarly

. Therefore, E(Yi,res|Zi) = E(pi,high − pi,low|Zi) = 0 and E(Yi,res) = E
[E(Yi,res|Zi)] = 0. Similarly, E(Xi,res|Zi) = 0 and E(Xi,res) = 0. Under the null, since

we have cov(Yi,res, Xi,res) = E(Yi,resXi,res) − E(Yi,res) × E(Xi,res) = 0, and thus the correlation
between Yi,res and Xi,res is zero.

Once the residuals for models for P(Y|Z) and P(X|Z) are calculated, the sample correlation
coefficent between Yi,res and Xi,res across all subjects, T2, can be used as a test statistic. Under
the null, T2 converges to zero as n → ∞.

A variation of the previous approach is to compare the observed value of (Yi, Xi) for subject
i with the distribution of possible values of (Y, X) given covariate zi. Under the null, subject

i’s observed value (Yi, Xi) should follow the product distribution . Consider drawing a

random value from the subject’s product distribution, , and comparing it with the

observed value (Yi, Xi). If  and  (or  and ), that is, both variables are in
the same direction, then we record “concordance”; if the two variables are in opposite
directions, then we record “discordance”; otherwise we record a tie. Under the null, since both

 and (Yi, Xi) follow the same product distribution, the probability of concordance is

equal to the probability of discordance. In fact, there is no need to draw , as under the
null, we can derive the probability of concordance as Ci = pi,highqi,high + pi,lowqi,low, and the
probability of discordance as Di = pi,highqi,low + pi,lowqi,high. Since Ci − Di = (pi,high − pi,low)
(qi,high − qi,low) = Yi,resXi,res, we have E(Ci − Di) = E(Yi,resXi,res) = 0. Our third test statistic
will, therefore, be the average difference of these probabilities across all subjects,

.

3. DISTRIBUTION OF TEST STATISTICS UNDER THE NULL
We present two approaches to obtaining p-values for our test statistics. One is based on
empirical distributions generated under the null, the other is based on asymptotic distributions
derived from estimating equations.

3.1 Empirical Distribution
Let T be one of the three test statistics described in the last section. To generate an empirical
distribution of T, we simulate replicate datasets under the null. To simulate a replicate dataset,

we randomly generate one observation from the product distribution ; this is done for
i = 1,…, n. Then we carry out the entire estimating procedure for the replicate dataset to obtain
the corresponding statistic, denoted as T* (i.e., fit separate multinomial models, obtain
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predicted probabilities, and calculate test statistic). This is then repeated many, say Nemp, times,
to get an empirical distribution of T under the null. The two-sided p-value is then computed as
either

or

From our simulations the results are almost the same for these two p-values, so we will present
only the first. This procedure is essentially a parametric bootstrap procedure (Efron and
Tibshirani 1993).

3.2 Asymptotic Distribution
An alternative approach to computing the p-value is to use the asymptotic distributions of our
test statistics under the null hypothesis. In general, we define a vector of parameters θ of length

p, whose estimate  can be obtained by solving the equation , where Ψi(θ) = Ψ
(Yi, Xi, Zi; θ) is a p-variate function that does not depend on i or n and satisfies Eθ[Ψi(θ)] =
0. From M-estimation theory (Stefanski and Boos 2002), if Ψ is suitably smooth, then as n →
∞,

where V(θ) = A(θ)−1B(θ)[A(θ)−1]′,  and B(θ) = E[Ψi(θ)Ψi(θ)′]. If a test

statistic T is smooth function of , , then from the delta method,

where . To estimate σ2, we estimate A(θ) as ,

B(θ) as , and  as . If g(θ) = 0 under the null, then the p-value

can be computed approximately as , where Φ is the cumulative distribution function
of the standard normal distribution.

We now define θ, Ψi(θ), and g(θ) for the three test statistics introduced in Section 2. For all
three statistics, the parameter vector will have the form θ = (θY, θX, θT), where θT is different
for each statistic. The corresponding estimating function Ψi(θ) will have the form
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where lY and lX are the log-likelihood functions of the multinomial models that are used to
model P(Y|Z) and P(X|Z), with parameters θY and θX, respectively. They are score functions

and thus  and . The function ψ(Yi, Xi, Zi; θ) will
be different for each statistic.

For , we define θT = (π11, …, π1t, π21, …, π2t, …, πs1, …, πs,t−1), where πjl
= P(Y = j, X = l) is not conditional on any covariates. Note that θT does not contain πst, which
is not an independent parameter because ∑j,l πjl = 1. The corresponding function ψ only depends
on θT:

where Ia is the indicator function of event a. By definition, E[ψ(Yi, Xi, Zi; θT)] = 0. Let g(θ) =

Γ(P) − Γ(P0). Then g(θ) = 0 under the null, and .

For T2, the sample correlation between residuals, θT = (w1, w2, w3, w4, w5), where w1 = E

(Yi,res), w2 = E(Xi,res), w3 = E(Yi,resXi,res), , and . The corresponding
function ψ is

By definition, E[ψ(Yi, Xi, Zi; θ)] = 0. Solving the equation ∑i Ψ(Yi, Xi, Zi; θ) = 0, we have

, , , , and . Let

. Then g(θ)= 0 under the null, and

.

For , θT is a single parameter θT = E(Ci − Di), which is zero under the null.
The corresponding function ψ is

By definition, E[ψ(Yi, Xi, Zi; θ)] = 0. Let g(θ) = θT. Then g(θ) = 0 under the null, and

. Infact, the delta method is not needed here as  is simply the last element of the
diagonal of .
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4.SIMULATIONS
We carried out simulations to investigate the performance of our method and to compare it
with four other approaches: (a) proportional odds model with X coded as a continuous variable,

and testing if η = 0; (b) proportional odds model with X coded as a categorical variable (using
dummy variables),

and testing if η2 = ⋯ = ηt =0; (c) isotonic proportional odds which X was treated as a categorical
variable and adjacent categories were combined to enforce monotonicity if necessary; and (d)
proportional odds model with X transformed using restricted cubic splines with three
preselected knots. For our method, we computed the p-value using both the empirical and
asymptotic distribution approaches.

We investigated the performance of these approaches under multiple simulation scenarios. The
first scenario was under the null to investigate Type I error rate. Next, we constructed various
alternatives in manners so that different modeling assumptions would be favored. In our first
alternative scenario, we generated data such that the effect of the ordinal categories (1X, …,
tX) was linear, in the sense that had we simply done an analysis treating X as a continuous
variable we would have gotten the correct answer. For the second alternative scenario, we
generated data such that the effect of the levels of X was monotonic in a nonlinear fashion.
Finally, we considered a simulation scenario with a nonmonotonic relationship between Y and
X, a scenario that favors modeling X as categorical.

The specifics of our four data generating scenarios are as follows: We first generated a covariate
Z using the standard normal distribution. Then we generated X with five categories using the
proportional odds model

with  and βX = 1. The outcome variable Y was generated with
four levels using the proportional odds model

with , βY = −0.5, and η = (η1, …, η5) specified as

1. η = (0, 0, 0, 0, 0) (the null).

2. η = (−0.4, −0.2, 0, 0.2, 0.4) (linear effect).

3. η = (−0.30, 0.18, 0.20, 0.22, 0.24) (monotonic nonlinear effect).

4. η = (−0.2, 0, 0.2, 0, −0.2) (nonmonotonic effect).
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For each simulation scenario, we generated 10,000 datasets, each consisting of 500 subjects.
To obtain p-values using the empirical distribution of our test statistics, for each dataset we
generated 1000 replicates. For all simulation scenarios, the null was rejected if the two-sided
p-value was less than 0.05.

Simulation results are summarized in Table 1. Under the null hypothesis, the Type I error rate
was at the nominal 5% level for all analysis methods except isotonic regression; to achieve the
nominal level using isotonic regression we would need to account for model-selection using
some sort of re-sampling procedure. Under the linear scenario, the highest power was obtained
under the properly specified model with X treated as a continuous variable. Also as expected,
power was lower when X was treated as a continuous variable using splines, or as a categorical
variable with or without isotonic regression; this lower power was expected because of the
additional degrees of freedom employed by each of these methods. Somewhat surprising was
the minimal loss in power seen using any of our new test statistics, ranging around 85%–86%,
just below the 87% power seen in the properly specified model.

Under the nonlinear monotonic simulations, our methods had better power than simple analyses
treating X as continuous or categorical. The most powerful approach expanded X using
restricted cubic splines; power was similar between our method and isotonic regression
(although isotonic regression had inflated Type I error rate, so presumably its power would be
smaller had we accounted for model-selection uncertainty). Finally, when the true relationship
between X and Y conditional on Z was nonmonotonic, our test statistics had poor power. This
was expected, as our methods assume monotonicity. Splines and treating X as categorical had
higher power under this simulation scenario. Isotonic regression also had inflated power,
although given that isotonic regression assumes monotonicity and the U-shaped effect of our
simulation scenario, we believe many of these are false positives.

It is worth noting that power was comparable between all of our test statistics (T1, T2, and
T3) regardless of how we computed the p-value (empirically or asymptotically). Figure 1 shows
the distribution of asymptotic p-values under the null for T1, T2, and T3; all three are highly
correlated, the residual-based test-statistics (T2 and T3) particularly so.

We also evaluated the Type I error rate of our method at smaller sample sizes (n = 50, 100).
As expected, empirical-based p-values were more accurate than their asymptotic counterparts,
although both approaches yielded Type I error rates close to the nominal 5% level (Table 2).

We also performed a simulation where the model for P(X|Z) was incorrectly specified.
Specifically, we generated data as before (n = 500) except that X was generated with βX = 0,
1, 2, 3 for l = 1, 2, 3, 4, respectively. We then performed the analyses assuming a proportional
odds model (i.e., constant βX) for P(X|Z). The Type I error rates were under control (Table 2),
and the power under the alternative simulation scenarios was also similar to that reported in
Table 1 (data not shown).

Finally, we also performed additional simulations with different numbers of categories for Y
and X, and saw results similar to those reported here.

5. EXAMPLES
5.1 Anisometropic Amblyopia

Amblyopia is a leading cause of acquired monocular visual impairment. Anisometropic
amblyopia typically presents later than other types of amblyopia. Because improvement in
visual acuity with amblyopia treatment depends on the age at which treatment begins, earlier
detection of children with anisometropic amblyopia is desired. In a photoscreening program
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of preschool children, anisometropia (≥1D difference in refractive power between the eyes in
any meridian) was detected on 974 preschool children (Leon et al. 2008). Anisometropia
magnitude (difference in spherical equivalent <1D, 1 to <2D, 2to <4D, and ≥4D) was measured
along with age and visual acuity, which is used to define amblyopia levels (severe, moderate,
mild, and no amblyopia). There is interest in testing the association between anisometropia
and amblyopia while adjusting for the effect of age.

Investigators carried out ordinal logistic regression with amblyopia as outcome (Y) and
anisometropia (X) and age (Z) as continuous input variables (Leon et al. 2008) and found highly
significant association between amblyopia and anisometropia after adjustment for age (p <
10−20). Applying the methods described in this article with ordinal logistic regression as models
for P(Y|Z) and P(X|Z) led to an even smaller p-value. However, p-value comparisons at this
magnitude are essentially meaningless as they lead to the same conclusion. Such significant
results are partly due to the large sample size of the study. The comparison between statistical
methods will be more meaningful if the sample size was smaller. Thus, we generated 50 datasets
of 50 subjects randomly selected from the 974 children, and compared the results of our method
and the method used by the investigators (Figure 2). Computing p-values based on the
asymptotic distribution of the test statistic, T1 yielded smaller p-values than the method used
in the original study analysis. However, when p-values were calculated based on empirical
distributions, they were similar to the p-values of the method used in the original analysis. This
is consistent with our simulation results with n = 50 where the asymptotic p-values for T1 had
slightly inflated Type I error rates. Results were similar for T2. In contrast, p-values based on
the asymptotic distribution of T3 tended to be slightly larger than their empirical counterparts,
also consistent with our simulation results for n = 50 (Table 2).

The residuals of our method using all subjects are plotted in Figure 3. Note that the four levels
of anisometropia are still well separated in the residual plot, while the four levels of amblyopia
are overlapping. This indicates that age has a relatively weaker association with anisometropia
than with amblyopia.

5.2 Cervical Neoplastic Stage and Condom Use
Cervical specimens for 150 nonpregnant HIV-infected women in Lusaka, Zambia were
collected (Parham et al. 2006). Based on cytological analysis, 36 specimens were categorized
as normal, 35 as low-grade squamous intraepithelial lesions, 49 as high-grade squamous
intraepithelial lesions, and 30 as squamous cell carcinoma. The women also reported condom
use: 53 women reported never using condoms, 60 rarely, 13 almost always, and 24 always.
Researchers were interested in testing for an association between cervical stage and condom
use. Kendall’s rank correlation tau was estimated as 0.03 (using R function cor.test with
argument method = “kendall”), which was not statistically different from zero (p-value = 0.64).
However, CD4 T-cell count, age, education, and marital status have been linked to cervical
abnormalities and may be associated with condom use, so researchers wanted to test for an
association between cervical stage and reported condom use after adjusting for these variables.
Our method was applied resulting in p-values ranging from 0.76 to 0.91, depending on the test
statistic employed, indicating that there was insufficient evidence to conclude that cytological
abnormalities were associated with condom use after adjusting for CD4 T-cell count, age,
education, and marital status. For the sake of comparison, treating condom use as a continuous
variable (1, 2, 3, or 4) and putting it in an ordinal logistic model assuming linearity and
expanding using restricted cubic splines with 3 knots yielded p-values of 0.52 and 0.48,
respectively. When condom use was treated as a categorical variable, the p-value was 0.66.
The residuals of our method are plotted in Figure 3.
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6. DISCUSSION
We have developed a new method for testing for associations between two ordinal categorical
variables while adjusting for other continuous or categorical variables. In our approach, we
separately fit the two ordinal variables on the other covariates using multinomial models such
as ordinal logistic regression and then built test statistics based on the predicted probability
distributions for these two variables. For our three test statistics, we described approaches to
calculate p-values based on either empirical or asymptotic distributions. Our methods are
simple to implement and simulations showed our new tests are powerful to detect monotonic
associations between two ordinal variables while appropriately adjusting for the effects of other
covariates.

In the process of constructing test statistics, we defined a new concept of residual for ordinal
outcome variables. This residual can be calculated for any multinomial regression model as
long as the outcome variable is ordinal. In our definition of residuals, we assigned scores +1,
−1, and 0, reflecting the direction of comparison between the observed and expected outcomes;
positive (negative) residuals imply the observed level is higher (lower) than the expected. Our
residuals are consistent with concordance–discordance statistics such as Kendall’s tau and
Goodman and Kruskal’s gamma, which similarly compare the direction between observations,
but make no assumption regarding the magnitude of the distance between ordered categories.
Our definition results in one residual per subject, which is, therefore, useful for constructing
test statistics. Our residuals may also be useful in other ways (e.g., diagnostics), which we are
currently studying.

Other types of residuals, such as deviance and Pearson residuals, were defined for logistic
regression (Agresti 2002), and they can be extended to multinomial outcomes. However,
deviance residuals ignore the order information, and Pearson residuals result in multiple values
for each subject when there are more than two levels. Hence, the utility of these residuals for
our purposes is not readily apparent. For proportional odds models, McCullagh (1980)
described a different concept of residual. However, this residual is defined for each level of
the multinomial outcome variable and is “always positive and thus does not indicate the
direction of departure of the observed values from the fitted values.”

Our method has some features which may be undesirable in certain scenarios. First, if one of
the two ordinal variables can be designated as the outcome variable, a traditional regression
analysis with the other variable as a predictor can model interactive effects between the
predictor variable and the covariates. In our method, both ordinal variables are treated equally,
avoiding the need to pick one as the outcome, but we therefore assume no interaction effects
exist between the predictor and other covariates. Second, our method requires explicit modeling
of the relationship between Y and Z and between X and Z. The consistency of our results,
therefore, depends on correct specification of these models. It should be recognized that our
method is applicable for any (even different) multinomial regression models of Y on Z and X
on Z. And our limited simulations suggest results are fairly robust to misspecifications of these
models, although this warrants further investigation. Note that a single regression analysis of
Y on X and Z does not require modeling the relationship between X and Z, but requires explicit
specification of the pattern of effects of X and Z on Y. Third, our approach is designed for
testing the relationship between two ordinal variables while adjusting for other covariates.
When the primary interest is the relationship between an ordinal outcome and a continous or
categorical variable while adjusting for an ordinal covariate, our methods may not be useful.

Although our presentation focused on hypothesis testing, our test statistics are to some extent
interpretable and thus may be used to measure the magnitude of association between Y and X
conditional on Z. The test statistic T1 captures the discrepancy in gamma (the difference in
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probability of concordant and discordant random pairs) between the observed distribution for
(Y, X) and the expected distribution under the null. The test statistic T2 is the correlation
coefficient between the residuals of models Y|Z and X|Z.

When an ordinal variable has only two levels, it is a binary variable. For a binary outcome
variable, logistic regression is often used for association testing. For a binary input variable,
treating it as continuous or categorical will result in the same model. It is interesting to evaluate
how our method performs when Y or X or both are binary variables. If X is binary, our
simulations showed that our approach yields similar results to ordinal logistic regression with
X treated as a categorical variable (data not shown). If Y is binary, our approach yields results
consistent with ordinal logistic regression treating X as the outcome variable and Y as a
categorical predictor. Finally, if both Y and X are binary, our approach yields results consistent
with logistic regression with X as a dichotomous predictor.

Another possible direction of research is to extend the weighted average of stratum-specific
association measures described in the Introduction to continuous or multivariable Z. The
weighted average approach currently requires grouping a continuous or multivariable Z into
discrete categories, and computing concordance and discordance only for subject pairs falling
in the same category. An alternative is to score concordance and discordance for all subject
pairs, but to weight the scores according to the similarity in Z between subjects. We are working
to evaluate the performance of this approach.

Finally, our methods suggest a potential solution to the general problem in regression when
the input variable of interest is ordinal. As we stated in the Introduction, in any regression
analysis, ordinal predictor variables have to be treated as continuous or categorical variables,
imposing a linearity assumption in the former and ignoring order information in the latter. We
defined individual-level residuals for ordinal variables and developed a residual-based method
for testing correlation between ordinal Y and X. We believe a similar approach can be developed
when Y is another type of variable as long as its individual-level residuals can be calculated.
We are also working to evaluate this approach for various variable types for Y.

Regression analysis with ordinal input variables has been difficult to deal with appropriately.
Our method will be useful for testing for association between two ordinal variables while
adjusting for other covariates. Our simulation and data analysis code is available as
supplemental materials and also at http://biostat.mc.vanderbilt.edu/OrdinalRegression.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of p-values of T1, T2, and T3 under the null. Top row are all p-values on log-scale.
Bottom row contains p-values between 0 and 0.1. Sample size is 500.
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Figure 2.
Results of amblyopia data analysis. The x-axis is the p-value based on ordinal logistic
regression with anisometropia treated as a continuous variable. The y-axisisthe p-value using
T1. The left and right plots contain p-values based on the asymptotic and empirical distributions
of T1, respectively. Each point represents results using a random sample of 50 children.
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Figure 3.
Residuals for the two datasets. The lines are fitted linear regression lines. Some jittering is
applied so that the dots are not on top of others. Note the correlation between residuals in the
amblyopia example and the lack of correlation in the cervical lesions example.
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Table 1

Type I error rate and power (%)

Simulation scenarios

Analysis method Null Linear Nonlinear Nonmonotonic

T1 empirical 5.0 86.0 57.5 7.4

T1 asymptotic 4.8 85.4 56.4 7.0

T2 empirical 5.0 85.8 57.7 6.9

T2 asymptotic 4.6 85.9 57.8 7.0

T3 empirical 5.0 85.9 58.0 7.0

T3 asymptotic 4.9 85.2 57.0 6.6

X linear 4.9 87.4 52.4 5.7

X categorical 5.1 70.3 52.5 28.5

Isotonic 7.1 77.5 57.4 21.9

Splines 4.8 79.9 60.0 34.8

NOTE: n = 500.
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Table 2

Type I error rate for small sample sizes and violation of model assumptions (%)

Analysis method n = 50 n = 100 Misspecified P(X|Z)

T1 empirical 4.7 4.4 5.2

T1 asymptotic 6.0 4.8 4.9

T2 empirical 5.1 4.7 5.2

T2 asymptotic 7.0 5.6 5.3

T3 empirical 5.6 5.0 5.0

T3 asymptotic 4.0 4.1 5.2

X linear 5.3 4.8 5.1

X categorical 4.2 4.5 5.2

Isotonic 7.1 7.0 7.1

Splines 5.2 4.6 5.2
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