Johnston et al. BMIC Microbiology 2010, 10:240

http://www.biomedcentral.com/1471-2180/10/240
P BMC

Microbiology

RESEARCH ARTICLE Open Access

Sialic acid transport and catabolism are
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nontypeable Haemophilus influenzae
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Abstract

Background: The transport and catabolism of sialic acid, a critical virulence factor for nontypeable Haemophilus
influenzae, is regulated by two transcription factors, SiaR and CRP.

Results: Using a mutagenesis approach, glucosamine-6-phosphate (GIcN-6P) was identified as a co-activator for
SiaR. Evidence for the cooperative regulation of both the sialic acid catabolic and transport operons suggested that
cooperativity between SiaR and CRP is required for regulation. cCAMP was unable to influence the expression of the
catabolic operon in the absence of SiaR but was able to induce catabolic operon expression when both SiaR and
GIcN-6P were present. Alteration of helical phasing supported this observation by uncoupling SiaR and CRP
regulation. The insertion of one half-turn of DNA between the SiaR and CRP operators resulted in the loss of SiaR-
mediated repression of the transport operon while eliminating cAMP-dependent induction of the catabolic operon
when GIcN-6P was present. SiaR and CRP were found to bind to their respective operators simultaneously and
GIcN-6P altered the interaction of SiaR with its operator.

Conclusions: These results suggest multiple novel features for the regulation of these two adjacent operons. SiaR
functions as both a repressor and an activator and SiaR and CRP interact to regulate both operons from a single

set of operators.

Background
Sialic acid (5-N-acetylneuraminic acid, Neu5Ac) is used
by nontypeable Haemophilus influenzae (NTHI) to assist
in the evasion of the host innate immune response. Sia-
lic acid is used to decorate the cell surface, primarily as
the terminal non-reducing sugar on the lipooligosac-
charride (LOS) and the biofilm matrix [1,2]. The pre-
sence of sialic acid on the cell surface protects the cell
from complement-mediated killing, although the precise
mechanism of this protection is unknown and may even
vary among strains of NTHi [3-5]. Regardless, the acqui-
sition and utilization of sialic acid is a crucial factor in
the virulence of the majority of NTHi [3,4,6-8].

NTHi cannot synthesize sialic acid and therefore must
scavenge it from the host. NTHi possess a high-affinity
transporter for sialic acid, encoded by siaPT (also
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referred to as siaPQM) [6,9,10]. The SiaPT transporter is
a member of the TRAP transporter family, with SiaP
functioning as the solute-binding protein and SiaT func-
tioning as the transmembrane transporter protein. An
ortholog of the E. coli sialic acid mutarotase nanM is
found downstream of the siaPT operon (HI0148) [11],
although nanM does not appear to be co-transcribed
with siaPT in H. influenzae strain Rd [12]. The genes
required for the catabolism of sialic acid are found in the
adjacent, divergently transcribed nan operon (Figure 1A).
The genes of the nan operon encode all the enzymes
required to convert sialic acid to fructose-6-phosphate
(Figure 1B), which can then enter the glycolysis pathway
[13]. Prior to the decoration of the cell surface, sialic acid
must be activated by SiaB, the CMP-sialic acid synthe-
tase, forming the nucleotide sugar donor used by sialyl-
transferases [4]. Once transported into the cell, sialic acid
is either catabolized by the enzymes of the nan operon or
activated by SiaB. Thus, these two pathways compete for
the same substrate [13]. The organism must therefore
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Figure 1 The sialic acid catabolic and transport operons and pathway. A. Schematic diagram of the nan and siaPT operons. The nan
operon encodes for the entire catabolic pathway and the transcriptional regulator SiaR. The siaPT operon encodes for the sialic acid transporter
and YjhT, a sialic acid mutarotase. The accession numbers for the KW-20 Rd sequence are indicated below each gene. B. The sialic acid catabolic
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maintain a balance between these two pathways, ensuring
that a sufficient amount of sialic acid is available to dec-
orate the cell surface and adequately protect the cell
from the host immune response.

Also present in the nan operon is the transcriptional
regulator SiaR. SiaR is involved in the regulation of the
nan and siaPT operons [14]. SiaR was found to repress
the expression of both the siaPT and nan operons, thus
regulating both transport and catabolism. Binding of
SiaR to the intergenic region between these two operons
was demonstrated and the region of DNA protected by
SiaR was identified. As expected, it was found that inac-
tivation of siaR lead to a reduction in surface sialylation,
demonstrating the need to control the expression of sia-
lic acid catabolism. In addition to SiaR, the cAMP
receptor protein (CRP) was identified as a regulator of
the siaPT operon, however a role in the regulation of
the nan operon was not observed [12,14]. This is in part
consistent with the observation that sialic acid is a
cAMP-independent sugar [15]. In H. influenzae, CRP
has been shown to regulate utilization of galactose,
ribose, xylose, and fucose [15], in addition to regulating
the development of competence [16].

We now report on the role of intermediates in the
Neu5Ac catabolic pathway in SiaR-mediated regulation.
Also, the potential interaction between SiaR and CRP
was investigated. SiaR was found to utilize glucosamine-

6-phosphate (GIcN-6P) as a co-activator in the presence
of the CRP-cAMP complex. SiaR and CRP were found
to act in a cooperative manner to regulate the expres-
sion of the divergent transporter and catabolic operons.
Our results reveal a unique mechanism of regulation of
two divergent operons regulated by two transcription
factors from a single location.

Results

Promoter structure of the nan and siaPT operons

The transcriptional start sites of the nan and siaPT
operons were identified using primer extension analysis.
Primers that bound in the nanE and siaP open reading
frames were used. Two major start sites were identified
for the nan operon, 104 (TS-1,,,) and 20 (TS-2,,,) bp
from the start codon of nanE (Figure 2A). The presence
of additional minor bands may be the result of addional
start sites or RNA degradation or processing. The analy-
sis identified a single transcriptional start site (TS-1,;,p7)
107 bp upstream of the start codon of siaP (Figure 2B).
This organization leaves 140 bp in between TS-1,,,, and
TS-1,pr. The putative CRP binding site is located at
-59 to -80 relative to TS-1,,pr and at -59 to -80 relative
to TS-1,,,, (Figure 2C). This organization suggests that
the siaPT promoter falls into the class I group of CRP-
dependent promoters [17]. A consensus -10 sequence
was identified for TS-1,,, and was found to partially
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Figure 2 Primer extension analysis of the nan and siaPT operons. Complement of sequence surrounding the transcriptional start sites
included with the sites indicated in bold and with asterisks. A. Primer extension analysis identified at least two major transcriptional start sites
for the nan operon. Two bands were present for TS-2,,,, as indicated. B. Primer extension identified one start site for the siaPT operon.
C. Schematic diagram of the nan and siaPT promoters. Binding sites for SiaR (red box) and CRP (blue box) are indicated as well as putative -10
boxes for TS-1,4, and TS-154p7 (yellow boxes).
J

overlap the SiaR binding site, consistent with the role
SiaR plays in repression of the nan operon. The relative
location of TS-1,,,, to the SiaR operator, in addition to
the identification of a consensus -10 box, suggests that
this start site would be primarily involved in SiaR-
mediated regulation, however, the relative contribution
of the two nan promoters will need to be examined in
more detail.

Glucosamine-6-phosphate is a co-activator for SiaR

Previous studies found limited activation of SiaR-regulated
operons by sialic acid [14]. The potential for intermediates
in the sialic acid catabolic pathway to influence regulation
by SiaR was explored. H. influenzae is unable to transport

any of the intermediate sugars or phosphosugars of the
sialic acid catabolic pathway [13,18], therefore a mutagen-
esis strategy was necessary. Each gene encoding an enzyme
in the catabolic pathway was deleted in an adenylate
cyclase (cyaA) mutant strain, resulting in a series of double
mutants. The AcyaA mutant strain was used to allow for
CRP to be activated only by the addition of cAMP in sub-
sequent experiments. In each mutant, sialic acid can be
catabolized, but the sugar or phosphosugar immediately
upstream of the inactivated enzyme should accumulate
(Figure 1B).

The mutants were grown to early exponential phase
and then either sialic acid, cAMP, or both were added.
Expression levels of nanE and siaP, the first genes of
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the catabolic and transport operons, respectively, were
compared using real time quantitative RT-PCR (qRT-
PCR). RNA from a culture that received neither sialic
acid nor cAMP served as a reference for each experi-
ment. When both sialic acid and cAMP were added to
cultures, expression of nanE was only moderately
affected in strains 2019AcyaA, 2019AcyaA Anank,
2019AcyaA AnanA, and 2019AcyaA AnagA (0.7- to 5-
fold change). The most striking change in nanE expres-
sion occurred in 2019AcyaA AnagB, with expression ele-
vated 83-fold (Fig, 3). This mutant would be unable to
convert GlcN-6P to fructose-6P, thus accumulating
GIcN-6P. These results suggest that GIcN-6P is a major
co-activator in SiaR-mediated regulation.

The regulation of siaP appears to be more complex.
Expression of siaP was elevated 30- to 52-fold in
strains 2019AcyaA AnanE, 2019AcyaA Anank,
2019AcyaA AnagB, and 2019AcyaA AnagA (Figure 3).
In contrast, increases of only 2- and 6-fold were
observed in 2019AcyaA and 2019AcyaA AnanA,
respectively (Figure 3). While SiaR can repress siaP
expression [14], transcription of the transporter operon
is more directly influenced by CRP. Despite this,
siaP expression was not as responsive to cAMP in
2019AcyaA and 2019AcyaA AnanA. These results indi-
cate that in these strains, SiaR is able to exert some
control over siaP expression, however the mechanism
in which this is accomplished is unclear.

SiaR and CRP interact to regulate the adjacent nan and
siaPT operons

Previous work demonstrated that in a siaR mutant, CRP
and cAMP are unable to influence nan operon expres-
sion [14]. Since the current studies were performed
using different mutant constructs, the experiments were
repeated with the double deletion mutant to confirm
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the previously observed phenotype. The 2019AcyaA
AsiaR mutant was examined by qRT-PCR (Figure 4)
and regardless of whether sialic acid or cAMP was
added, expression of nanE did not change relative to the
control. In the absence of SiaR, cAMP activated the
expression of the siaPT operon, while the nan operon
was unaffected.

Examination of the results obtained from 2019AcyaA
AnagB revealed a large change in the expression of
nanE that was cAMP-dependent (Figure 5B). The addi-
tion of sialic acid alone (which would be converted to
GIcN-6P) led to a 16-fold induction of nanE while the
addition of cAMP alone had no effect. The addition of
both sialic acid and cAMP resulted in an 83-fold induc-
tion of nanE, indicating that the combination of GIcN-
6P and cAMP significantly increase the induction of the
nan operon. These results provide evidence of cAMP-
dependent activation of both the nan and siaPT oper-
ons. Since cAMP does not induce nanE expression in a
siaR mutant, this suggests that cAMP-dependent activa-
tion of nanE requires SiaR. SiaR and CRP may physically
interact to activate nan operon expression.

To demonstrate that SiaR and CRP interact to regu-
late the nan and siaPT operons, alteration of helical
phasing was used. Alteration of helical phasing is
accomplished by the insertion of one half turn to the
helix between the SiaR and CRP operators. Briefly, 5 bp
was inserted between the SiaR and CRP binding sites in
strains 2019AcyaA and 2019AcyaA AnagB, resulting in
strains 2019AcyaA+5 and 2019AcyaA AnagB+5, respec-
tively. These strains were examined by qRT-PCR and
the results were compared with those obtained from the
parent strains.

In the 2019AcyaA AnagB background, altered helical
phasing resulted in a steep reduction in nanE expression
(from 83-fold in 2019AcyaA AnagB to 13-fold in
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Figure 3 Impact of metabolic impairment on the expression of nanE and siaP. 2019AcyaA and derived double mutants were grown in
sRPMI. Sialic acid and cAMP were added 30 min prior to RNA extraction. Expression of nanE and siaP were measured by gRT-PCR. Results are
presented as fold change relative to a culture that received neither sialic acid nor cAMP.
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Figure 4 Expression of nanE and siaP in 2019AcyaA AsiaR.
Cultures grown with sialic acid (open bars), CAMP (gray bars), and
both sialic acid and cAMP (black bars) were compared to a
reference culture that received neither.
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2019AcyaA AnagB+5) in the presence of both sialic acid
and cAMP (Figures 5B and 5D). The induction level of
nanE in the presence of sialic acid and cAMP was simi-
lar to the expression observed when sialic acid alone
was added. The 5 bp insertion eliminated the cAMP-
dependent activation of nanE that was observed in the
2019AcyaA AnagB strain.

In both the 2019AcyaA and 2019AcyaA AnagB back-
grounds, altered helical phasing also resulted in the
induction of siaP when cAMP was added (Figures 5A
and 5C). In the 2019AcyaA+5 strain, the 5 bp insertion
led to a 43-fold increase in siaP expression in the
presence of cAMP (from 6-fold in 2019AcyaA) and a
29-fold increase (from 2-fold in 2019AcyaA) when both
cAMP and sialic acid were present.

Taken together, these results indicate that altering the
helical phasing succeeded in uncoupling SiaR- and CRP-
mediated regulation of the nan and siaPT operons.
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Figure 5 Expression of nanE and siaP is altered by helical phasing. Expression of nanf and siaP in 2019AcyaA (A), 2019AcyaA AnagB (B),
2019AcyaA+5 bp (C), and 2019AcyaA AnagB+5 bp (D). Cultures grown with sialic acid (open bars), cCAMP (gray bars), and both sialic acid and
cAMP (black bars) were compared to a reference culture that received neither.
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It resulted in nanE expression becoming unresponsive
to cAMP, much like it is in the 2019AcyaA AsiaR
mutant. Altered helical phasing also prevented SiaR
from exerting a negative influence on the expression of
siaP. We conclude that the insertion eliminated the abil-
ity of SiaR and CRP to interact to regulate both the nan
and siaPT operons.

SiaR and CRP bind to their respective operators
simultaneously

Binding of SiaR to an operator in the intergenic region
between nanE and siaP was demonstrated previously
[14]. The putative operator of CRP was identified
in silico and was found to overlap the region protected
by SiaR in a DNase I protection assay by three base
pairs. The ability of both proteins to bind to their opera-
tors was examined using the electrophoretic mobility
shift assay (EMSA). Both proteins were able to bind to a
probe comprising the region between the two operons
and CRP binding was dependent on the addition of
cAMP (Figure 6A). When both proteins were included
in the binding reaction, the DNA probe was shifted
slightly higher than the SiaR-bound probe. This indi-
cates that both proteins bind to their operators simulta-
neously, further supporting the hypothesis that the two
regulators interact to regulate the adjacent nan and
siaPT operons.

GIcN-6P alters binding of SiaR to its operator

Many transcriptional regulators exhibit altered binding
affinity for their operator sequences when a co-regulator
is bound. To determine the effect of GIcN-6P on SiaR
binding, EMSA was used. Serial dilutions of SiaR were
incubated with DNA probes in the absence and
presence of GlcN-6P (Figure 6B). In the presence of
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GlcN-6P, SiaR bound the probe and GIcN-6P slightly
increased the binding affinity. While the presence of
GIcN-6P did not result in a major change in the binding
affinity of SiaR, the change in the shift does suggest that
GIcN-6P is interacting with SiaR and impacting its abil-
ity to bind to its operator. Other phosphosugars of the
sialic acid catabolic pathway (sialic acid, ManNAc, and
GlcNACc-6P) nor GIcN-1P altered SiaR-binding (unpub-
lished data) [14]. Taken together with the expression
data, this demonstrates that GIcN-6P interacts with SiaR
and has an effect on its DNA-binding properties. SiaR is
not displaced from the DNA, but instead functions as
an activator with GIcN-6P as a co-activator.

As in our previous studies [14], the binding of SiaR to
the EMSA probe resulted in the appearance of two
shifted bands (Figure 6). This was even more apparent
when lower concentrations of SiaR were present in the
binding reaction. The double shift is possibly caused by
the binding of multiple SiaR proteins to the probe. This
is a likely explanation, considering that the region pro-
tected by SiaR is large (53 bp) [14]. Further work will be
necessary to determine the exact cause for the double
shift.

GIcN-6P accumulates in a nagB mutant

To confirm that Neu5Ac was transported and catabo-
lized in the 2019AcyaA AnagB mutant strain, >'P NMR
spectroscopy of intact cells was used. Cultures of wild-
type 2019 and 2019AcyaA AnagB were grown to early
exponential phase and cAMP and/or Neu5Ac were
added and the *'P spectrum was obtained (Figure 7).
A peak was detected near 5 ppm when cAMP was
added to either strain. When Neu5Ac was added, a peak
was detected near 7 ppm in the 2019AcyaA AnagB
mutant that was absent in the wild-type strain. This
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Figure 6 Electrophoretic mobility shift assay. A. Binding of both SiaR and CRP to the nan-siaPT intergenic region. Both SiaR and CRP bind to
the probe individually and CRP binding is dependent on the presence of cAMP. Both proteins bind the probe simultaneously as indicated by
the higher shift of the probe when both proteins are added. B. GIcN-6P enhances binding of SiaR. Two-fold serial dilutions of SiaR were added
to binding reactions in the absence and presence of 100 uM GIcN-6P. More probe was shifted when GIcN-6P was present.
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Figure 7 Detection of intracellular GIcN-6P by 3'P NMR
spectroscopy. >'P NMR spectra were obtained following the
growth of cells in the presence of exogenous cAMP and/or Neu5Ac.
A. 2019AcyaA AnagB with Neu5Ac and cAMP. B. 2019 wild-type with
Neu5Ac and cAMP. C. 2019AcyaA AnagB with cAMP. D. 2019 wild-
type with cAMP. E. 2019 wild-type without supplement.

peak was also absent in either strain when Neu5Ac was
omitted. This indicated the accumulation of a significant
amount of a phosphorylated compound in the mutant
strain when exogenous Neu5Ac was present. Since the
Neu5Ac catabolic pathway is blocked at NagB in the
mutant strain, Neu5Ac would be converted to GIcN-6P,
but not Fru-6P. Taken together with the interaction of
GIcN-6P with purified SiaR, this indicates that GIcN-6P
is accumulating in the 2019AcyaA AnagB mutant and is
responsible for the activation of the nan operon.

Discussion

The importance of sialic acid in the protection of NTHi
from the host immune response requires that most of the
sialic acid transported into the cell is activated by SiaB
and utilized for the decoration of the LOS and biofilm
matrix. Therefore, it is important that the catabolism of
sialic acid be tightly regulated. We previously identified
SiaR as a repressor for these two operons, in addition to
the role of CRP in activating the expression of the trans-
porter [14]. In this study, we present data that expands
on our previous work, providing key details about the
unique regulation of these adjacent operons. The two
operons required for the transport and catabolism of
sialic acid were found to be simultaneously regulated by
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SiaR and CRP in a novel mechanism for cooperative reg-
ulation. SiaR functions as both a repressor and activator,
utilizes GIcN-6P as a co-activator, and interacts with
CRP to regulate two adjacent and divergently transcribed
promoters.

Since H. influenzae cannot transport the intermediates
of the sialic acid catabolic pathway [13,18], mutants in
each gene of the pathway were used to examine the role
of the sugar and phosphosugar intermediates in the
expression of the SiaR-regulated operons. Increased
expression of the nan operon in the 2019AcyaA AnagB
double mutant suggested that GIcN-6P functions as a
co-activator. This is unusual because catabolic pathways
are typically regulated by the presence of the substrate.
SiaR likely uses GIcN-6P as a co-activator because sialic
acid is utilized rapidly after transport by H. influenzae,
either by activation with SiaB or catabolism beginning
with NanA. Thus, sialic acid never accumulates to levels
that would allow for sufficient expression of the trans-
porter. In contrast, using GlcN-6P allows for moderate
activation of siaPT to provide for transport of sialic
acid. Since GIcN-6P can also be synthesized by the cell,
expression of the transporter is not reliant on the pre-
sence of high levels of sialic acid, while increased sialic
acid and catabolism will elevate levels of GIcN-6P and
increase expression of the nan and siaPT operons. Even
though GIcN-6P is not an endpoint in the catabolic
pathway, transient levels of the phosphosugar likely
allow for sufficient expression of the two operons.

In addition to identifying GIcN-6P as a co-activator,
we found that SiaR and CRP interact to regulate both
the nan and siaPT operons. Both regulators were able
to bind to their operators simultaneously, demonstrating
that binding of one protein does not prevent the binding
of the other. cAMP-dependent activation of nanE
requires SiaR. Furthermore, regulation of the two oper-
ons was uncoupled by the insertion of one half-turn of
DNA between the SiaR and CRP operators. This inser-
tion resulted in the loss of SiaR influence on siaPT
expression and the loss of nan induction by cAMP.
Based on this data and the proximity of the two opera-
tors, it can be concluded that SiaR and CRP interact to
impact the expression of the two operons. This interac-
tion may be the result of direct contacts between the
two regulators or cooperative effects on DNA topogra-
phy, however we cannot make any conclusions on the
mechanism at this time. Our results have led to the
description of a novel regulatory mechanism for two
regulators of adjacent operons. This model, in the con-
text of the experiments carried out in this study, is dis-
played in Figure 8. SiaR by itself functions as a repressor
of both the nan and siaPT operons (Figure 8A). When
cAMP levels are elevated, the CRP-cAMP complex can
bind to its operator and partially activate expression of
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Figure 8 Model of SiaR and CRP regulation of the nan and
siaPT operons. A. In the absence of sialic acid and cAMP, SiaR is
bound to its operator and expression of the nan and siaPT operons
is repressed. B. When cAMP is present, CRP binds to its operator
and is able to activate the siaPT operon, but not the nan operon. C.
When both GIcN-6P and cAMP are present, SiaR and CRP are active
and interact to form a complex that activates both the nan and
siaPT operons. D. In helical phasing experiments, insertion of one
half-turn in between the SiaR and CRP operators prevents the
regulators from interacting and thus maximal activation of the nan
operon is not achieved.

the transport operon, but not the catabolic operon
(Figure 8B). When both GlcN-6P and CRP-cAMP are
present, an activating complex is formed with SiaR that
induces expression of the two adjacent operons (Figure
8C). When the helical phase of the two operators is
altered, SiaR can only regulate the nan operon while
CRP can only regulate the siaPT operon (Figure 8D).
Interaction between SiaR and CRP is necessary for
regulation.

The interaction of CRP with another transcriptional
regulator is not an unusual phenomenon, however the
regulation of the adjacent nan and siaPT operons by
CRP and SiaR appears to operate via a novel regulatory
mechanism. What makes this regulatory region unique
is that it appears that the two operons are regulated by
one set of operators. Other examples of divergent oper-
ons regulated by CRP and additional regulators operate
by distinctly different mechanisms. The most common
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mechanism is the formation of a repression loop. An
example of this is in the glp regulon of E. coli [19]. As
with the siaPT operon of NTHi, only one of the diver-
gent glp operons is induced by CRP [19]. The difference
between these two systems is that the repressor GlpR
binds to four operators in the intergenic region and
forms a repression loop [19]. The two divergent operons
of the L-rhamnose catabolic regulon of E. coli utilize yet
another mechanism. In addition to having multiple CRP
binding sites, the two rha operons are regulated by
separate transcriptional regulators, RhaR and Rha$ [20].
RhaR and CRP interact to regulate the rhaSR operon
while Rha$S and CRP interact to regulate the rhaBAD
operon [20,21].

SiaR shares functional similarity to NagC, the regula-
tor of N-acetylglucosamine catabolism in E. coli. Like
SiaR, NagC regulates the expression of nagA and nagB,
as well as a number of additional genes. Also, SiaR and
NagC both regulate divergently transcribed operons and
CRP is involved in regulation [22,23]. There are a num-
ber of striking differences as well. GIcNAc-6P is the
inducer of the NagC regulon. Just as inactivation of
nagB causes induction of SiaR-regulated genes, the inac-
tivation of nagA, and the subsequent accumulation of
GlcNAc-6P, induces NagC-related genes [22]. NagC is
displaced from its binding site in the presence of
GlcNAc-6P [22] while SiaR appears to always be bound
to its operator. In E. coli, the alteration of phasing
between NagC operator sequences results in derepres-
sion of both divergently transcribed operons. This is due
to the inability of NagC to form a repression loop that
is required for NagC-mediated repression [24]. This dif-
fers significantly with what we observed in SiaR regula-
tion. In our studies, the alteration of phasing did not
result in derepression, but instead uncoupled SiaR- and
CRP-mediated regulation of the nanE and siaP genes.
The differences between SiaR and NagC suggest that,
while some functional similarity exists between the two
regulators, they both employ different mechanisms.

Given the nature of regulation by SiaR and CRP, the
nan and siaPT operons will never be maximally
expressed when H. influenzae is in its natural environ-
ment. This is due to a number of factors, including the
low abundance of sialic acid in the host and the rapid
utilization of intracellular sialic acid. Instead, regulation
acts to subtly modulate expression of the operons, keep-
ing expression under constant control so that catabolism
does not outpace utilization and the expression of the
transporter is appropriate for the availability of the
ligand. These requirements are also in balance with the
need to prevent the accumulation of inhibitory amounts
of sialic acid, however, this need is likely minimal con-
sidering the factors of sialic acid availablity and utiliza-
tion discussed above.



Johnston et al. BMIC Microbiology 2010, 10:240
http://www.biomedcentral.com/1471-2180/10/240

The role of CRP in the regulation of sialic acid trans-
port and catabolism suggests that sialic acid is utilized
as an emergency carbon source in the host. H. influen-
zae can use sialic acid as a sole carbon source as effi-
ciently as glucose [10]. Sialic acid catabolism is not
required for virulence as a namnA mutant exhibits
increased fitness in multiple infection models [13]. How-
ever, the fact that catabolism is present and conserved
among H. influenzae strains suggests that it provides
some advantage to the organism. The previous study
examining virulence of a nanA mutant was performed
using an encapsulated, invasive type B strain rather than
a non-typeable strain and did not test all possible envir-
onments within the host [13]. Additionally, intranasal
mixed-challenge experiments did not reveal an advan-
tage for either the wild-type or nanA mutant strain [13].
Therefore, it is possible that sialic acid catabolism is
advantageous in certain conditions or has increased
importance for non-typeable strains. The need for cell
surface sialylation has been well established in multiple
infection models for NTHi, but it is unclear at this time
if and when catabolism is required.

Conclusions

GIlcN-6P, an intermediate in the catabolism of sialic
acid, was found to function as a co-activator of SiaR in
the regulation of the catabolic and transport operons for
sialic acid in NTHi. SiaR functions as both a repressor
and an activator, depending on conditions, and is
required for CRP-dependent activation of the catabolic
operon. Direct interactions between SiaR and CRP are
likely involved in regulation.

Methods

Bacterial strains, media and growth

The strains used in this study are listed in Table 1.
E. coli was grown at 37°C in Luria-Bertani (LB) medium
with or without agar (2%) and supplemented with anti-
biotics as needed. NTHi strain 2019 [25] and derivatives
thereof were used in this study. H. influenzae was grown
at 37°C in the presence of 5% CO, on brain heart infu-
sion agar (Difco Laboratories, Detroit, MI) supplemen-
ted with 10 pg/ml hemin and 10 pug/ml B-NAD (sBHI).
Kanamycin-resistant H. influenzae were selected on
sBHI agar containing 15 pg/ml ribostamycin in the
absence of additional CO,. Spectinomycin was added to
sBHI at a concentration of 25 pg/ml. RPMI 1640 media
(Sigma-Aldrich, Saint Louis, MO) was used as a sialic
acid-free chemically defined media. Supplemented RPMI
(sRPMI) was prepared with protoporphyrin IX (1 pg/
ml), hypoxanthine (0.1 mg/ml), uracil (0.1 mg/ml), B-
NAD (10 pg/ml), and sodium pyruvate (0.8 mM).
Neu5Ac (100 uM) and cAMP (1 mM) were added as
indicated.
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Construction of mutants

Genetic manipulations were performed using established
techniques. Restriction enzymes, Antarctic Phosphatase,
and T4 polymerase were obtained from New England
Biolabs (Beverly, MA) and were used following estab-
lished protocols. The Expand High Fidelity PCR System
(Roche Applied Science, Indianapolis, IN) was used for
PCR reactions. Oligonucleotide primers were designed
and ordered from Integrated DNA Technologies (Coral-
ville, IA) and are listed in Table 2. Plasmids were trans-
formed and maintained in MAX Efficiency DH5a
Chemically Competent cells (Invitrogen). Competent
H. influenzae cells were prepared using the M-IV
method and transformed as described previously [26].
cAMP (1 mM final concentration) was added to cyaA
mutant strains 30 minutes prior to the addition of DNA
to aid in the development of competence.

All mutants used in this study were constructed as
non-polar deletions using a counter-selectable cassette.
The cassette used was a variation of sacB cassettes that
have been described previously [27,28]. In this cassette,
which is described in more detail in work to be sub-
mitted elsewhere, sacB is under the control of the tetra-
cycline promoter and Tet repressor. The cassette also
contains genes for the repressor, tetR, and nptll, a kana-
mycin resistance marker. This allows for inducible
expression of sacB in the presence of the tetracycline
analog chlortetracycline. Constructs for mutagenesis
were prepared for each gene using the design detailed as
follows. Regions flanking the target gene were amplified
by PCR using primers that had restriction sites added to
the 5’-end. These primers were designed to contain the
start codon for the upstream fragment and stop codon
for the downstream fragment. These products were
cloned into pGEM-T (Promega, Madison, WI) and
sequentially subcloned into pUC19 using the primer-
encoded restriction sites. The resulting plasmid con-
tained the flanking regions ligated to form an open
reading frame consisting of a start codon, Smal site, and
stop codon. This plasmid would serve as the deletion
construct. Smal was then used to open the plasmid and
the sacB-Kan® cassette was inserted. The resulting plas-
mid was transformed into the desired NTHi strain,
selecting for resistance to ribostamycin. A Rib%, Suc®
isolate was then transformed with the deletion construct
and transformants were selected on LB agar supplemen-
ted with 5% sucrose, chlortetracycline (1 pg/ml), hemin,
and NAD. Deletions were confirmed by PCR. Confirmed
mutants were then able to be transformed with the
sacB-Kan® cassette to delete additional genes.

PCR SOEing and mutagenesis
PCR splicing by overlap extension (PCR SOEing) was
used to insert 5 bp between SiaR and CRP operators.
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Table 1 Strains and plasmids
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Strain or plasmid

Genotype, relevant phenotype or selection marker

Source or reference

Strains

E. coli DH5a Invitrogen
E. coli BL21 Star Invitrogen
NTHi 2019 Clinical respiratory isolate [25]
JWJ091 NTHi 2019AcyaA mutant This study
JWJ093 NTHi 2019AcyaA AsiaR mutant, kanamycin resistant This study
W12 NTHi 2019AcyaA AnanA mutant This study
JWI114 NTHi 2019AcyaA AnagA mutant This study
JWJi16 NTHi 2019AcyaA AnagB mutant This study
JWJI118 NTHi 2019AcyaA AnanK mutant This study
JWJ120 NTHi 2019AcyaA AnanE mutant This study
JWJ159 NTHi 2019AcyaA mutant with 5 bp insertion between SiaR and Crp operators This study
JWJ160 NTHi 2019AcyaA AnagB mutant with 5 bp insertion between SiaR and Crp operators This study
Plasmids

pGEM-T Easy PCR-cloning vector Promega
pGEM-T PCR-cloning vector Promega
pCR2.1 PCR-cloning vector Invitrogen
pCR2.1_443 pCR2.1 with PCR fragment spanning This study
pUC19 General cloning vector New England Biolabs
pET-24(+) Expression vector Novagen
pUC19-142del nanA deletion construct This study
pUC19-142sacB nanA:tetR-sacB/kan” This study
pJJ150 siaR knockout vector [14]
pJJ185 C-terminal his-tagged SiaR expression vector [14]
pJJ260 tetR-sacB/kan” cassette

pJJ276 C-terminal his-tagged CRP expression vector This study
pJJ279 cyaA deletion construct This study
pJJ290 cyaA:tetR-sacB/kan” This study
pJJ308 nagA deletion construct This study
pJJ309 nagB deletion construct This study
pJJ310 nank deletion construct This study
pJJ311 nank deletion construct This study
pJJ313 nagA:tetR-sacB/kan” This study
pJJ314 nagB:tetR-sacB/kan® This study
pJJ315 nanK:tetR-sacB/kan® This study
pJJ316 nank:tetR-sacB/kan” This study
pJJ321 pCR2.1_443 with 5 bp deletion This study
pJJ331 pJJ321 with tetR-sacB/kan® This study

Primers were designed to insert 5 bp between the opera-
tors of SiaR and CRP while conserving the 3 bp that are
shared between the two (Table 2). The junction primers
contained a 24 bp overlap to allow for splicing. Frag-
ments were amplified by PCR with primer pairs 145R8/
145M2 and 145M3/146R2 and products were purified
using the QiaQuick PCR Clean Up Kit (Qiagen). PCR
products were quantified with NanoDrop and mixed to
yield a final concentration of 5 ng/ul of each and this
mixture was used as the template in the SOEing reac-
tion with primers 145R8 and 146R2. The product from

the splicing reaction was cleaned up and used for
transformation.

Transformation of NTHi strains was performed as
detailed above. JWJ091 and JWJ116 were transformed
with the plasmid pJJ331, a construct that spans from
within the nan operon and into the siaPT operon and has
the sacB-Kan® cassette inserted near the insertion target.
pJJ331 had an unintentional mutation in the CRP binding
site that allowed for the plasmid to be maintained in
E. coli. Kan®, Suc® transformants were then transformed
with the PCR SOEing product and selected for growth on
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Table 2 Oligonucleotide primers
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Oligonucleotide primer

Sequence'

Use

140F3

gaa ttc CTG CTT CTT CAT TAA GTT CTC GC

140R5 ccc ggg CAT ATT CTG TTC CTA ATA TCA ACA TCA GTT

140F6 ccc ggg TAA TAG TAA ACA CTT AAA TAG TTA ATT GAT TTA AAA ATC
140R6 gca tgc TCA AAA ACA GCA ACA CGG TGC

141F1 gaa ttc CAT CAT CGC TGA AAC AGG C

141R3 ccc ggg CAT ATT AGC CTT CCT TTA TTA TTG ACC G

141F3 ccc ggg TAG AGA TCT ATT CTT CAT CTT TAT GTA GGG

141R4 gca tgc GGT TTC AAC GCT AGT TTG GTC G

144F1 gaa ttc CCG TCC TTT TGT GAA TGT CC

144F3 ccc ggg CAT AAC TTA TCC TTA TAG TGT AAA GTC TTT TCT CAC
144F2 ccc ggg AAG CCT GAA GGA ACA ATT TAT GGC TAA

144R2 gca tgc GCC GTT TCA GCA GAA TAA CCA G

145F5 gaa ttc CGC TCC TGT GTG AAC TTA TG

145R5 ccc ggg CAT ATA ACA CCC CTC ATT TAA ATC TGA AT

145F6 ccc ggg TAG TCG TAA GAC GTG TGA GAA AAG ACT T

145R6 gca tgc CGA ACG CAA AAT CGT ATC GGC

604F1 gag ctc CAT TTT GCT GAC GAG GAA CTG

604R1 ccc ggg CAT TAC ATA AAC ACC TAA AAT TGG TGG

604F2 ccc ggg TAA TAT TTT CCT GTG GTT GAT AGG TTA CC

604R2 aag ctt AAA GCA ATG GAG TGG ACC ACA ATT

145R8 CCG CAG CAATTT TTG TCC

145M2 TTT ATG AAA AAA CAC TTC AAA AAT

145M3 ATT TTT GAA GTG TTT TTT CAT AAA TTA AAT GTG ATC AAC TTC TC
146R2 CCA TTA CGG CAC ACT AAA GAG G

957F2 aag ctt AAT AAA ACG GAA TTT TTG AAA CAG G

957R2 ctc gag TCT TGC GCC ATA TAC AAC GAT TGT

P146F1 ACA CCC CTC ATT TAA ATC TGA ATA AAT CAC

P146R4 CCC CCA AAA TAG GAT TCG

145R7 CGA CAG GTT GGC AAG AAG AAA TAA GAC C

145R1 ATC AGC GGC AAG AAC AGC AG

nagA upstream
nagA upstream
nagA downstream
nagA downstream
nagB upstream
nagB upstream
nagB downstream
nagB downstream
nanK upstream
nank upstream
nanK downstream
nanK downstream
nanE upstream
nankE upstream
nanE downstream
nankE downstream
CyaA upstream
cyaA upstream
cyaA downstream
cyaA downstream
PCR SOEing

PCR SOEing

PCR SOEing

PCR SOEing

CRP expression
CRP expression
EMSA

EMSA

Primer extension
Primer extension

'Restriction sites added to aid in subcloning are indicated by lowercase letters. Bases added for 5 bp insertion are italicized.

sucrose. Transformants were then screened by PCR and
sequenced to confirm the presence of the 5 bp insertion
and the absence of additional mutations. The resultant
strains, JWJ159 (2019¢yaA+5 bp) and JWJ160 (2019¢cyaA-
nagB+5 bp) were used for subsequent analysis.

RNA extraction and transcriptional analysis

RNA was extracted using the hot acid phenol method as
described previously [29]. DNA was removed from
extracted RNA by digestion with DNase I (New England
Biolabs) and cleaned up with the RNeasy Mini Kit
(Qiagen, Valencia, CA). RNA quality was assessed with an
Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA) and
the concentration was determined using a NanoDrop
ND-1000 Spectrophotometer (NanoDrop Technologies,
Wilmington, DE). For real time RT-PCR analysis, primer/
probe sets were obtained using the Custom TaqgMan Gene
Expression Service (Applied Biosystems, Foster City, CA).
Primer/probe sets were designed using the sequence of

HI0145 and HI0146 from H. influenzae 2019. A primer/
probe set for the 16S rRNA of H. influenzae was designed
and used as a control. The TagMan RNA-To-Cy I-Step
Kit (Applied Biosystems) was used following the manufac-
turer’s protocol. Reactions were set up in triplicate using
20 ng of RNA. Reactions were carried out using the
StepOnePlus Real Time PCR System (Applied Biosystems)
with StepOne analysis software. Results were calculated
using the comparative Cr method to determine the rela-
tive expression ratio between RNA samples. The primer
and probe set for HI16S rRNA was used as the endogen-
ous reference to normalize the results. Two independent
sets of RNA samples were used for each experiment and
the mean fold change is reported. Data are expressed as
mean +/- SD.

Protein expression and purification
SiaR was expressed and purified as described previously
[14], with modified buffers to enhance stability of the
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purified protein and an additional purification step. Cells
were resuspended in the SiaR lysis and equilibration
buffer (10 mM Tris, pH 8.0, 300 mM NaCl, 0.1%
CHAPS) prior to lysis by French press. After protein
binding, the resin was washed with the SiaR wash buffer
(10 mM Tris, pH 8.0, 1,150 mM NaCl, 10% glycerol,
0.1% CHAPS, 5 mM imidazole) and protein was eluted
with the SiaR elution buffer (10 mM Tris, pH 8.0, 150
mM NaCl, 10% glycerol, 0.1% CHAPS, 500 mM imida-
zole). The purified protein was concentrated using an
Amicon Ultra centrifugation filter (Millipore, Billerica,
MA) with a 10 kDa molecular weight cutoff. The pro-
tein sample was then desalted into the SiaR storage buf-
fer (10 mM Tris, pH 8.0, 150 mM NacCl, 10% glycerol,
0.1% CHAPS) using FPLC through a 10 ml (2-5 ml)
HiTrap Desalting Column (GE Healthcare, Piscataway,
NJ). Protein concentration was determined using the
NanoDrop ND-1000 Spectrophotometer and an extinc-
tion coefficient of 7,575 M cm™. Aliquots of the puri-
fied protein were frozen in liquid nitrogen and stored at
-80°C until needed.

CRP was expressed and purified in a similar manner.
Primers were used to amplify crp with the restriction
sites HindIII and Xhol on the 5’ and 3’ ends, respec-
tively (Table 2). The 41 bases immediately upstream of
crp were included to ensure that the native bacterial
translation signals were present. The downstream pri-
mer included the last codon of the crp open reading
frame, excluding the stop codon, to allow for the fusion
of a multiple-histidine tag. The PCR product was cloned
into pGEM-T and subsequently subcloned into pET-24
(+) (Novagen, Madison, W1I) using the HindIII and Xhol
sites. The resulting plasmid, pJJ276, was expected to
express CRP with a carboxy-terminal HiseTag.

Protein expression was induced using the Overnight
Express Autoinduction System 1 (Novagen) grown at
37°C overnight. Expressed protein was purified using the
BD TALON Metal Affinity Resin (BD Biosciences, Palo
Alto, CA). Purification was performed in native condi-
tions following the manufacturer’s protocol and using
the suggested TALON bulffers. Eluted fractions were
examined by SDS-PAGE and fractions containing CRP
were pooled. Protein was concentrated using an Amicon
Ultra centrifugation filter and desalted as described
above. The protein concentration was determined using
the NanoDrop ND-1000 Spectrophotometer and an
extinction coefficient of 21,555 M™' cm™. Purified pro-
tein was stored at 4°C.

Electrophoretic mobility shift assay

Electrophoretic mobility shift assay (EMSA) was used to
study the binding of SiaR and CRP to potential promo-
ter sequences as done previously [14]. The probe for
EMSA was amplified by PCR using primer pairs P146F1

Page 12 of 14

and P146R4 (Table 2), resulting in a probe that spans
the region from the nanE start codon to +18 of the
siaPT transcript. Binding reactions were prepared using
the EMSA Kit (Molecular Probes, Eugene, OR) following
the manufacturer’s directions with some modifications.
Binding reactions consisted of the binding buffer
(150 mM KCl, 0.1 mM DTT, 0.1 mM EDTA, 10 mM
Tris, pH 7.4), the DNA probe (15 nM), and 1 pM SiaR
and/or CRP. Control reactions without protein were set
up for each probe. Reactions were incubated at room
temperature for 20 minutes. After incubation, 6x EMSA
gel-loading solution was added and reactions were
loaded onto a 6% DNA Retardation Gel (Invitrogen)
with prechilled 0.5x TBE buffer and run at 200 V for
60 minutes. After electrophoresis, the gel was stained
with SYBR Green EMSA gel stain and bands were visua-
lized by UV transillumination. Images were captured
using a Kodak EDAS 120 camera with an EDAS
590 mm filter (Eastman Kodak Company, Rochester,
NY). cAMP was added to reactions when indicated to a
final concentration of 100 uM.

Primer extension analysis

Primer extension analysis was used to identify the tran-
scriptional start sites for both nan and siaPT operons.
Primers 145R7 (nan) and 146R1 (siaPT) were labeled
with **P using T4 polynucleotide kinase (New England
Biolabs) and y-[*?P]-ATP (GE Healthcare). Illustra
Microspin G-25 columns (GE Healthcare) were used to
remove unincorporated **P. The primer extension reac-
tion was performed using SuperScript III First-Strand
Synthesis SuperMix (Invitrogen) following the supplied
protocol. After first-strand synthesis RNA was degraded
by incubation with RNase A (New England Biolabs) at
37°C for 15 min. Nucleic acids were precipitated by the
addition of 300 pl of chilled ethanol, incubation in a dry
ice bath for 15 min, and centrifugation at 4°C. Dried
samples were dissolved in loading buffer (98% deionized
formamide, 10 mM EDTA, 0.025% xylene cyanol FF,
0.025% bromophenol blue) prior to loading on sequen-
cing gel. Sequencing reactions were set up for each
labeled primer using the SequiTherm EXCEL II DNA
Sequencing Kit (Epicentre Technologies, Madison, WI).
A PCR fragment amplified with the primers 145R7 and
146R1 was used as a template. Sequencing and primer
extension reactions were loaded onto an 8% sequencing
gel. After electrophoresis, the gel was dried and exposed
to film at -80°C.

NMR spectroscopy

Strains 2019 wild-type and the 2019AcyaA AnagB
mutant were grown in 100 ml cultures of sSRPMI with-
out Neu5Ac to early exponential phase. Neu5Ac, cAMP,
or both were added and cultures were incubated for
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20 min. Cells were pelleted and resuspended in 0.5 ml
of MOPS buffer (40 mM MOPS, pH 7.3, with 50 ul
D,0). Phosphorus NMR spectra were acquired at
162 MHz on a 400 MHz Varian Inova spectrometer in a
5 mm probe. Spectra were obtained upon excitation
with at 45° pulse and digitization of 0.8 s followed by a
delay of 1.7 s for recovery between scans. Spectra
20 kHz wide were collected and processed with gaussian
line-broadening of 0.1 s prior to Fourier transformation.
Samples were maintained at 15°C, 2048 transients were
averaged in an experiment lasting 1.5 hours. For each
sample, two such spectra were collected one after the
other. These were not significantly different, indicating
that relatively minor changes take place on the time
scale of data collection. However a third spectrum col-
lected some 13 hours later indicated significant change
in some cases. Chemical shifts were referenced relative
to external 85% phosphoric acid at 0 ppm.
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