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Abstract
Dynamic contrast-enhanced MRI (or DCE-MRI) is a useful tool for measuring blood flow and
perfusion, and it has found use in the study of pulmonary perfusion in animal models. However,
DCE-MRI experiments are difficult in small animals such as rats. A recently developed method
known as Interleaved Radial Imaging and Sliding window-keyhole (IRIS) addresses this problem by
using a data acquisition scheme that covers (k, t)-space with data acquired from multiple bolus
injections of a contrast agent. However, the temporal resolution of IRIS is limited by the effects of
temporal averaging inherent in the sliding window and keyhole operations. This paper describes a
new method to cover (k, t)-space based on the theory of partially separable functions (PSF).
Specifically, a sparse sampling of (k, t)-space is performed to acquire two data sets, one with high
temporal resolution and the other with extended k-space coverage. The high temporal resolution
training data are used to determine the temporal basis functions of the PSF model, while the other
data set is used to determine the spatial variations of the model. The proposed method was validated
by simulations and demonstrated by an experimental study. In this particular study, the proposed
method achieved a temporal resolution of 32 ms.
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INTRODUCTION
Dynamic contrast-enhanced MRI (or DCE-MRI) experiments often involve the acquisition of
a time series of images after the bolus injection of a contrast agent. These images are then used
to estimate perfusion metrics (such as time of peak contrast enhancement, wash-in rate, and
mean transit time) in tissues and blood vessels (1). Many respiratory diseases are known to
affect perfusion characteristics in the pulmonary arteries and veins (2–7), and the diagnostic
value of perfusion measurements in pulmonary blood vessels has been the topic of DCE-MRI
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research for many years using genetically bred rat models (2,5–8). However, imaging these
small animals places high demands on signal-to-noise ratio (SNR) and spatiotemporal
resolution. To address this problem for pulmonary perfusion imaging, Mistry, et al. proposed
a DCE-MRI technique, known as IRIS (Interleaved Radial Imaging combined with a Sliding
window-keyhole reconstruction) (8). IRIS collects data over multiple contrast injections (8)
acquired with carefully controlled experimental conditions such that the acquisition conditions
were repeatable. IRIS is able to achieve much of the needed SNR and spatial resolution for
pulmonary studies in rats; however, the temporal resolution is limited by the temporal
averaging effect of the sliding window operation. Improved temporal resolution may improve
the accuracy of the signal-intensity curves from the DCE-MRI data especially since pulmonary
perfusion data from rats contain frequencies as high as twice the heart rate or roughly 12 Hz
(see Figure 5a in Ref. (8)) implying a temporal Nyquist criterion of 24 Hz. Also, improved
temporal resolution may be traded for increased spatial resolution which could have value in
resolving the pulmonary blood vessels.

Improving the temporal resolution can be done by applying a number of imaging acceleration
techniques that have been shown to have success in DCE-MRI. Such methods include parallel
imaging (9,10), sparse projection acquisition methods (11,12), and dynamic imaging methods
(13,14). As an alternative, this paper proposes the application of a spatiotemporal model with
temporal eigenbasis functions to perform computationally efficient dynamic imaging. The use
of temporal eigenbasis functions for dynamic imaging was first proposed in 2001 (15) as a
generalization of DIME (Dynamic Imaging by Model Estimation) (16). The model is based on
the theory of partially separable functions (PSF) (17) and has been further investigated over
the last few years (18–23). This paper presents a demonstration of the technique for pulmonary
perfusion imaging using a non-Cartesian k-space trajectory.

THEORY
The proposed imaging method is based on the use of a specific model, known as partially
separable functions (PSF), of the spatiotemporal signal changes in dynamic perfusion imaging
(17). This model enables reconstruction of the dynamic images from very sparsely sampled
(k, t)-space data. The proposed sampling method is characterized by the acquisition of two
complementary data sets: (a) the training data with high temporal resolution but limited k-
space coverage and (b) the imaging data with extended k-space coverage but low temporal
resolution. The proposed reconstruction method uses the training data set to derive a set of
temporal basis vectors that are then fit to the imaging data set to determine the spatial basis
vectors of the model. The proposed method is described in detail in the remainder of this
section.

Following conventions (24), the acquired data s(k, t) and the desired image function ρ(x, t) are
expressed as

[1]

We model s(k, t) using the PSF model as

[2]

where L is the model order (or separation rank) of the (k, t)-space signal (17). When L is small,
such as when many spatial locations share similar temporal characteristics, sparse sampling of
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(k, t)-space is possible. For example, when L = 1, spsf(k, t) = c(k)φ(t), so spsf(k, t) can be
recovered from samples along two perpendicular lines such as s(k, t0) and s(k0, t) for some
constants t0 and k0 when s(k0, t0) ≠ 0 (see Figure 1 (a)). In practice, L > 1 and we need to
collect sufficient data to determine {φℓ(t)} and {cℓ(k)}. One strategy is to collect a training
data set s1(k, t) with high temporal resolution to determine {φℓ(t)} and the regular imaging
data s2(k, t) with extended k-space coverage (thus high spatial resolution) to determine
{cℓ(k)}. One such scheme is shown in Figure 1 (b). We tailor this scheme for dynamic perfusion
imaging with radial k-space coverage. Details of this adaptation are giving in the Methods
section.

In general, image reconstruction using Eq. [2] is performed in a four step process: (a)
determining the temporal basis functions {φℓ(t)} from the training data, (b) fitting these basis
functions to the imaging data to find {cℓ(k)}, (c) computing the full (k, t)-space signal, spsf
(k, t), using Eq. [2], and (d) applying an inverse Fourier transform over the k-space. The first
step is accomplished by constructing a matrix, C, from the training data as follows:

[3]

where each of the N points in k-space has been measured M times. Singular Value
Decomposition (SVD) (25) is then used to identify the dominant column subspace for use as
{φℓ(t)}. The SVD of C can be expressed as:

[4]

where the {σℓ} are the singular values of C arranged in descending order, {uℓ} and {vℓ} are
the left and right singular vectors, respectively. Then {φℓ(t)} are set equal to the L most
significant left singular vectors such that

[5]

for ℓ = 1, 2, …,L.

The second step in the method is to determine {cℓ(k)} by fitting {φℓ(t)} to the imaging data,
s2(k, t). s2(k, t) is measured at a series of (k, t)-space locations {(kq, t1,q), (kq, t2,q), …, (kq,
tp,q), …, (kq, tP,q)} for q = 1, 2, …, Q and p = 1, 2, …, P. The fitting is accomplished by solving
a linear system of equations for each kq from Eq. [2] as follows

[6]

(or Φqcq = sq for short). Furthermore, the solution can be stabilized by solving Eq. [6] in the
least-squares sense with regularization (26). Regularization helps to avoid the adverse effects
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of ill-conditioning of the Φq matrix caused by the sparse sampling process. Also, the imaging
data are acquired such that P > L which makes Eq. [6] overdetermined and helps with the
conditioning of Φq.

The third step in the general reconstruction procedure is to use Eq. [2] to compute spsf(k, t)
over the full (k, t)-space. This model based reconstruction can be taken as the final estimate
of the (k, t)-space signal, s(k, t), or data replacement can be performed such that

[7]

Data replacement ensures that the region of (k, t)-space covered by the sampling pattern is
accurately represented, while the main disadvantage of data replacement is a loss of SNR since
the SVD truncation operation results in some denoising of the data. The fourth and final step
in the general image reconstruction procedure is to apply an inverse spatial Fourier transform
to spsf(k, t) or ŝ(k, t) to produce an estimate of ρ(x, t). This result can be taken as the final
reconstruction for ρ(x, t), or alternatively, ρpsf can be used to regularize the final reconstruction
(27) such that

[8]

where λ2 is the regularization parameter, and W is a weighting function. (ℱ is a Fourier
transform from x to k.) In this paper, ρpsf(x, t) is used as the final reconstruction.

METHODS
Animal Model

A total of 5 DCE-MRI experiments were carried out using a total of 3 rats (2 were examined
twice with 1.5 h between scans) using an experimental protocol approved by the Duke
Institutional Animal Care and Use Committee. All the rats were healthy female Fischer 344
rats (Charles River Laboratories, Wilmington, MA) weighing 190–225 g. Catheters (3 French)
were placed in their right jugular veins, and the animals were intubated and mechanically
ventilated at 60 breaths/min (2.0–2.2 ml tidal volume). Anesthesia was administered via 0.05
ml injections of Nembutal every 45 minutes, and body temperature was controlled using a heat
source with feedback from a rectal thermistor. Electrodes on the footpads were used to acquire
the electrocardiogram (ECG) signal. Physiological signals were continuously collected
(Coulbourn Instruments, Allentown, PA) and displayed using LabView software (National
Instruments, Austin, TX). These signals were used to trigger the imaging sequences. After the
studies were completed, the animals were euthanized with an overdose of anesthesia.

Simulation
The imaging method was validated using a pulmonary perfusion phantom that was created
from a denoised experimental image. Compartments within the image were defined to represent
the pulmonary artery, left lung parenchyma, right lung parenchyma, pulmonary vein, and
descending aorta. Temporal signal changes for each compartment were created by adding a
gamma variate curve

[9]
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to model the pre-contrast value of each compartment for t ≥ T0 (1,28). In Eq. [9], a, and b are
shaping parameters. While C0 is the normalized peak concentration, and T0 is the time of arrival
of the contrast bolus. Typical parameters for rats were used to create the phantom (for example,
a = 14 and b = 0.1 s for the descending aorta) (8). The component of the signal caused by
cardiac pulsation was modeled by two additive sinusoids with frequencies of 6 Hz and 12 Hz.
The cardiac pulsation was added to the gamma variate curve for the descending aorta
compartment, while the signal-intensity curves for the other compartments remained
unchanged. (k, t)-space data were generated from the phantom with parameters identical to the
experiment, and ρ̂(x, t) was reconstructed using both the proposed imaging method and the
sliding window based method.

Experimental Procedures
All experimental data were acquired using a GE EXCITE console running version 12M4 (GE
Healthcare, Milwaukee, WI) with a 2.0 T horizontal bore Oxford magnet, and a birdcage coil
(7 cm diameter, 5.5 cm length) was used for all of the data acquisitions. A single slice containing
the pulmonary arteries and veins with a 50 mm field of view and 3 mm thickness was imaged
using the radial data acquisition scheme depicted in Figure 2. The readouts were performed
with TR = 4 ms, TE = 1 ms, 40° flip angle, 62.5 kHz bandwidth, and 256 points. The ECG and
respiratory signals were used to trigger each of the 5 contrast injections within a given DCE-
MRI experiment with a separation of approximately 15 s. Each injection was triggered by the
first ECG R wave identified after suspending the ventilation during end-expiration, and each
20 µl, 50 ms injection delivered 0.05 mmol/(kg of body mass) of Magnevist (Gd-DTPA, Berlex,
Montville, NJ) 800 ms after the start of the data acquisition (8). Also, the dosages of Gd-DTPA
used in this study have been shown to result in a strongly linear relationship between
concentration and signal-intensity (8).

The data acquisition scheme illustrated in Figure 2 was designed based on the constraints of
the application and the needs of the general dynamic imaging method described in the Theory
section that uses the PSF model in Eq. 2 to represent the (k, t)-space signal. For this particular
application, the radial k-space trajectory is a good choice since its short TE helps to overcome
the fast signal decay caused by the short  in the lung region. The proposed dynamic imaging
method requires training data and imaging data, and the training data were designed to satisfy
the temporal Nyquist criterion by covering 8 angles in the following order: 0°, 45°, 90°, 135°,
180°, 225°, 270°, 315°. The temporal resolution is then 8TR or 32 ms (which is better than the
desired 42 ms based on the rate of the cardiac pulsation). The imaging data acquisition was
designed such that the number of measurements for each k-space location would be P = 12
since the model order was L = 5 so that P > L would be satisfied. A total of 720 distinct radials
were acquired for the imaging data which resulted in an undersampling factor of 2.2 at the
outermost region of k-space. The imaging data’s 720 radials were split into 4 unique groups
of 180 radials that were acquired during 4 separate injections. Each group of imaging data was
acquired in a repeating pattern so that any individual radial was acquired every 180TR or 720
ms. The pattern for each imaging data acquisition was created by starting with one of the angles
0°, 90°, 180°, or 270° and then incrementing the angle by 66.5° with each TR, which
approximates an optimized radial acquisition order based on the Golden Ratio (29).

Since the order of the imaging data within each repeating pattern is of little consequence to the
fitting of the PSF model, a pattern was selected that eliminates the need for a spoiling gradient
which helps keep the TR as short as possible. Such a pattern for radial acquisition can be created
by incrementing the angle between successive readouts by a large angle in the 45° to 135°
range. The operation of this pulse sequence can be understood by considering the effects of a
second readout after a single excitation and radial readout. After the first readout, residual
magnetization exists with a phase corresponding to the outer part of k-space. Without spoiling
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this magnetization, it will decay according to . However, the second RF excitation will cause
this residual magnetization to split into two components: one at the tip of the previous radial
readout and the other at the same distance from the center of k-space but 180° away (30) (page
126). If the next radial readout is performed at nearly the same angle as the previous (or 180°
from it), then one of these two residual magnetizations will refocus toward the center of k-
space and cause interference with the desired readout. In contrast, a readout at an angle roughly
perpendicular to the first readout will push both residual magnetizations along trajectories only
in the high k-space (which naturally has low energy) while they decay according to . As a
result, the signal from the residual magnetization can be neglected.

Data Processing
The DCE-MRI data were reconstructed into a time series of images using the general method
described in the Theory section. Step (a) of finding the temporal basis functions, φℓ(t), was
performed by constructing C from the training data and applying an SVD. It is worth noting
that each row of C contains data from one time instant, so temporal interpolation via cubic
splines was used to compute C from the time sequentially acquired training data. For this
reason, the training data’s acquisition should satisfy the temporal Nyquist criterion. In this case
the sampling is fast enough that the readout times were ignored in the interpolation; however,
all the training data were interpolated to a temporal spacing of 4 ms to make the construction
of Φq easier. In the second step, (b), cℓ (k) were determined by solving Eq. [6] for each location
in the k-space for L = 5 and P = 12. Again, the readout time was approximated as instantaneous,
but each TR was accounted for when constructing Φq. Φq was inverted using the MATLAB
pinv function with its default parameters. pinv performs a truncated SVD pseudo-inverse
procedure that stabilizes the solution (26). For step (c), Eq. [2] was evaluated to estimate the
(k, t)-space signal. The last step, (d), was accomplished by applying a standard gridding
algorithm (31) with a modified Hamming filter for density compensation (H(|k|) = |k|(0.54 +
0.46 cos(|k|π/max(|k|)))) and a Kaiser-Bessel convolution kernel (W = 3 and β = 13.9) (32) to
the estimated (k, t)-space signal. Then the temporal signal changes in each region of interest
were extracted, and these signal-intensity curves were averaged together within each region of
interest. The time of peak contrast enhancement, TP, and mean transit time, MTT, were
calculated by first fitting Eq. [9] to the signal-intensity curves and then using the relations

[10]

and

[11]

where the fitting was accomplished using non-linear least-squares optimization in MATLAB
(8). For the sake of comparison, the imaging data were also processed using the sliding window
method with a window size of 720 ms and temporal step size of 32 ms. The signal-intensity
curves were extracted and analyzed in exactly the same manner as for the model based
reconstruction.

RESULTS
Simulation

Figure 3 demonstrates that the proposed method produces more accurate signal-intensity curves
than the sliding window method in the simulation. The proposed method correctly assigns the
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cardiac pulsation only to the descending aorta, while the sliding window method’s curves are
all fairly smooth. Also, the normalized root mean square error (RMSE) was computed for all
of the curves using

[12]

where c(tn) represents the reconstructed signal-intensity curve and cgs(tn) is the gold standard
curve. The curves from the sliding window method have normalized RMSEs between 7% and
15%, while the proposed method’s curves have between 0.4% and 3.2% normalized RMSE.
The mean transit time (MTT) and peak time (TP) were computed for all the signal-intensity
curves from the simulation. The gamma-variate in Eq. [9] was fit to the data shown in Figure
3 (c) and (d), and the results are shown in Tables 1, 2, and 3. The peak times were slightly
improved in two cases, while the mean transit time was consistently improved by a small
amount by the proposed method. The largest performance increase was in the estimate of the
peak concentration where the sliding window method has errors from 9% to 20%, while the
proposed method’s errors for peak concentration ranged between 0.2% and 2.4%.

In Vivo Experiments
The characteristics of the experimental signal-intensity curves reconstructed using the
proposed method and sliding window mimic those observed in the simulation as is seen in
Figure 4. The singular values decay quickly as shown in Figure 4 (a) where the model order,
L = 5, is shown on the plot. The sliding window and proposed methods are compared in Figures
4 (c) and (d) for the regions of interest in Figure 4 (b). The sliding window method’s curves
are generally smooth, because the temporal averaging suppresses the cardiac pulsation. The
sliding window’s width of 720 ms means that the first time point reconstructed is at 360 ms as
seen in the figure, and the time averaging can distort the pre-contrast signal-intensities as can
be seen in Figures 4 (c) and (d). In contrast, the proposed method’s curves are reconstructed
for all time points in the experiment and reveal cardiac pulsation in most of the regions because
of the improved temporal resolution. Perfusion parameters were estimated by fitting the gamma
variate function in Eq. [9] to the signal-intensity curves that were reconstructed at 32 ms time
steps for both methods. A comparison between the time of peak contrast enhancement, the
Mean Transit Time, and the peak signal intensity is given in Tables 4, 5, and 6 for all 5 regions
of interest in the image. The measurements from all 5 experiments were used to test the
hypothesis that their means are identical by computing the t test statistic for paired, dependent
samples (33) (page 409)

[13]

that compares the differences in the measurements to the standard deviation of the differences.
(d̄ is the mean value of the differences in the perfusion parameters for the two methods. σd is
the standard deviation of the differences of the measurements for the two methods over the
Nexp = 5 experiments.) The means are concluded to be different when |t| > tα/2 where tα/2 is
looked up in a table for the Student’s t distribution using Nexp − 1 degrees of freedom. For a
level of significance of 95%, α = 0.05 and tα/2 = 2.776, so 6 out of 15 cases listed in Tables 4,
5, and 6 imply that the two methods report different means for the perfusion parameters in a
statistically significant sense.
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DISCUSSION
Temporal Resolution

The temporal resolution of radial k-space trajectories is difficult to define, because the center
of k-space is acquired more often than the outer portion. In this study, the center of k-space is
acquired every 4 ms, but the outer part of k-space is acquired every 720 ms. For this reason,
the sliding window has a width of 720 ms, so the finest details in the dynamic images have this
temporal resolution. In comparison, the IRIS method’s rotating sampling pattern and keyhole
operation enables a sliding window width of 400 ms which is a factor of 1.8 better than the
multi-injection sliding window method demonstrated here. While the keyhole operation in IRIS
improves the SNR and temporal resolution, it does mean that the dynamics come only from
the central 1/4th of the k-space since the outer portion is replaced by its time average. In contrast,
the proposed method resolves all points in the k-space to a resolution of 32 ms which is 22.5
times better than sliding window. In the proposed method, the temporal resolution is
determined by the training data, while the SNR is a function of how many times, P, each k-
space location is acquired during the experiment. Higher P improves the SNR of the model
fitting, but increasing P decreases the coverage of the k-space by the imaging data. For phase
encoding, this means reduced spatial resolution, while for radial sampling the result is an
increase in the level of undersampling artifacts. The proposed method has traded a small
amount of SNR for a large increase in the temporal resolution without requiring a large increase
in the number of injections. In contrast, sliding window would require 90 injections and IRIS
50 injections to achieve similar temporal resolution. However, these large number of injections
cannot be used in practice due to the build up of the contrast agent in the blood (8).

The results show that the proposed method significantly improves the temporal resolution of
the signal-intensity curves which leads to more accurate curves and sometimes results in more
accurate perfusion parameters. The nature of the improvement in the signal-intensity curve’s
accuracy for the proposed method is subject dependent since it depends on the characteristics
of the true signal-intensity curves. In the simulation, the improvement in the time of peak
contrast enhancement and MTT is relatively small, but there is a significant improvement in
the peak contrast intensity value. In the experimental study, several cases of parameter
measurements showed different values between the sliding window and proposed methods (in
a statistically significant sense). The simulation results imply that these differences correspond
to improvements in the parameter estimates.

Practical Considerations
Pulmonary perfusion imaging using the proposed method has two inherent limitations. First,
all methods based on the multiple-injection approach assume reproducible data acquisition
conditions from one injection to another. Experimental data reveal that the overall intensity of
the blood increases slightly with each injection due to build up of the contrast agent, and the
cardiac pulsation artifact differs because of the heart-rate variability. But, the magnitudes of
these inconsistencies are relatively small, and they do not appear to significantly degrade the
quality of the reconstructions. Second, slice selection is a limiting factor on the signal-intensity
curve analysis. The slice must be carefully placed to avoid seeing any cardiac motion, and as
a result, the roots of the pulmonary artery and vein cannot be imaged. This slice placement
makes it difficult to distinguish the time of peak contrast enhancement between the pulmonary
artery and the lungs. Also, the slice thickness is large enough that multiple tissues and blood
vessels are overlapped in the images. The overlapped anatomy causes a superposition of signal-
intensity curves in the data and complicates the selection of the regions of interest.

A key requirement of the proposed method is that the number of data frames must equal or
exceed the PSF model order (unless additional constraints are used); otherwise, Eq. [6] is
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underdetermined. The parameters of the experiment must be chosen carefully to ensure that
adequate data are collected based on the empirically determined model order so that P > L.
The model order, L, can be chosen in a variety of ways including comparing the noise variance
to the singular values, considering the percent of the training data’s energy represented, and
sweeping L to examine the resulting spatial coefficients. Choosing L too low will result in
blurry, blocky artifacts along the time dimension similar to artifacts observed in SVD image
compression schemes, while too high of an L leads to noisy reconstructions. Also, even when
Eq. [6] is overdetermined, it can be ill-conditioned. For example, the worst case condition
number observed in this study was approximately 20 while the median was approximately 5.
Ill-conditioning occurs when the rows of Φq are nearly linear combinations of each other as
can happen when the samples are taken too densely in time or when the samples are spaced
close to the period of a strong sinusoidal component in the data. Severe ill-conditioning will
cause some coefficients to have unrealistically large values resulting in image artifacts.
However, this issue can be largely avoided by spacing the samples widely over time and then
solving Eq. [6] in a regularized least-squares sense as was done in this study.

CONCLUSIONS
A new method for pulmonary perfusion imaging in rats has been presented in this paper. This
method adapts the multiple-injection, radial k-space data acquisition scheme from IRIS so that
a PSF model of the (k, t)-space can be used to perform dynamic imaging. Specifically, the
method covers the (k, t)-space with one high temporal resolution training data set and a second
extended k-space data set called imaging data. The sparse (k, t)-space samples are adequate to
determine the parameters of the model, which enables reconstruction of the dynamic image
sequence in high spatiotemporal resolution. Simulation and experimental results have shown
that the proposed method improves the temporal resolution of the signal-intensity curves over
the multiple-injection sliding window method. The increased temporal resolution of the
proposed method reduces the negative effects of temporal averaging, and it produces estimates
of perfusion parameters that are at least consistent with and sometimes improved upon the
multi-injection sliding window method. The proposed method may find use in the study of
respiratory diseases via pulmonary perfusion imaging, and the general concept of using the
PSF model for dynamic imaging may be even more advantageous in other imaging scenarios
where the spatiotemporal resolution trade-off is more extreme.
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Figure 1.
Sparse (k, t)-space sampling patterns for dynamic imaging of partially separable functions
where ky is the phase encoding axis, and kx, the frequency encoding axis, is into the page. The
open circles represent the training data, s1(k, t), and the filled circles represent the imaging
data, s2(k, t). (a) A conceptual (k, t)-space sampling pattern for partially separable functions
of order 1. (b) A realizable (k, t)-space sampling pattern for higher order partially separable
functions.
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Figure 2.
The k-space sampling over time for the proposed method. The dark radial is the one acquired
for that TR, while the light gray radials represent the full set. The training data cover 8 equally
spaced angles and are incremented by 45° every TR. The imaging data cover 720 equally spaced
angles that are divided into 4 unique sets for acquisition during separate contrast injections.
The imaging data’s angle step size is 66.5° every TR.
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Figure 3.
Results from the pulmonary perfusion simulation reconstructed using the proposed method
and the sliding window method. (a) The singular values of the training data normalized by the
square root sum of squares of the singular values and converted to dB. The 6th singular value
has a normalized value of −70.8 dB or 0.029%. (b) The gold standard signal-intensity curves
shown at 4 ms resolution. (c) The sliding window signal-intensity curves have a normalized
RMSE between 7 and 15%. The curves have been reconstructed at 32 ms spacing with a 720
ms sliding window. (d) The proposed method’s signal-intensity curves have a normalized
RMSE between 0.4 and 3.2%. The curves have been reconstructed at 32 ms resolution.
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Figure 4.
Representative experimental DCE-MRI results. (a) The singular values of the training data
normalized by the square root sum of squares of the singular values and converted to dB. The
6th singular value has a normalized value of −37.7 dB or 1.3%. (b) The regions of interest
analyzed to produce the signal-intensity curves. (c) The sliding window method’s signal-
intensity curves with 32 ms spacing. (d) The proposed method’s signal-intensity curves at 32
ms resolution.
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Table 1

Errors in time of peak contrast enhancement (TP) for the simulation in seconds. Improved measurements are
highlighted in bold. Key: PA - Pulmonary Artery, LL - Left Lung, RL - Right Lung, PV - Pulmonary Vein, DA
- Descending Aorta

Region Gold
Standard

Sliding
Window

Proposed

PA 1.70 s −0.01 s +0.01 s

LL 1.72 s −0.01 s +0.00 s

RL 1.72 s −0.02 s +0.00 s

PV 1.93 s −0.01 s +0.01 s

DA 2.40 s +0.00 s +0.02 s
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Table 2

Errors in Mean Transit Time (MTT) for the simulation in seconds. Improved measurements are highlighted in
bold. Key: PA - Pulmonary Artery, LL - Left Lung, RL - Right Lung, PV - Pulmonary Vein, DA - Descending
Aorta

Region Gold
Standard

Sliding
Window

Proposed

PA 0.80 s +0.06 s −0.02 s

LL 0.82 s +0.05 s −0.03 s

RL 0.82 s +0.05 s −0.02 s

PV 1.03 s +0.04 s −0.02 s

DA 1.50 s +0.02 s −0.01 s
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Table 3

Errors in peak signal-intensity (C0 + pre-contrast value) for the simulation in percent. Improved measurements
are highlighted in bold. Key: PA - Pulmonary Artery, LL - Left Lung, RL - Right Lung, PV - Pulmonary Vein,
DA - Descending Aorta

Region Gold
Standard

Sliding
Window

Proposed

PA 97.5 −20% −1.0 %

LL 52.7 −13% −0.2 %

RL 65.4 −16% −2.4 %

PV 130.8 −13% −0.4 %

DA 145.4 −9% +1.0 %
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