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Increased concentrations of circulating insulin-like growth factor-I (IGF-I) or IGF-I relative to IGF-binding proteins (IGFBPs)
are associated with increased risk of developing several forms of cancer. Conversely, exercise is linked with reduced risk. This
study aims to investigate the effect of a low-intensity exercise program on circulating levels of IGF-I, IGFBP-1, and IGFBP-3,
in previously sedentary males. Fourteen healthy men participated in cycle ergometer training at lactate threshold intensity for
60 min/day, 5 days/week for 6 weeks. After aerobic training, insulin sensitivity improved by 20%, while fasting insulin levels
decreased by 13%. Simultaneously, low-intensity aerobic training decreased the circulating levels of IGF-I by 9%, while IGFBP-1
levels increased by 16%. An interesting finding was that higher pretraining level of IGF-I was associated with greater decline in IGF-
I with training. Insulin-sensitizing low-intensity aerobic exercise is thus considered to be an effective method for downregulating
IGF-I and upregulating IGFBP-1 levels.

1. Introduction

Strong epidemiological evidence indicates that a sedentary
lifestyle leads to an increased risk of developing certain
cancers, including colon, prostate, breast, and endometrial
cancers [1–3]. By contrast, physical activity has been shown
to have a protective effect against their development. IGF-
I is a potent mitogen that promotes cellular proliferation
and prevents apoptosis in normal and cancer cells [4–6].
IGF-I axis hormones are important factors implicated in the
beneficial influence of exercise. Epidemiological studies have
shown that increased levels of circulating IGF-I or increased
IGF-I relative to IGFBP-3 are associated with a higher risk
of developing several forms of cancer, including prostate and
breast cancers [7–12].

The combination of a low-fat diet and exercise program is
known to reduce IGF levels. Barnard et al. [13, 14] showed a
decrease in the serum concentration of IGF-I and an increase
in IGFBP-1 with the implementation of a low-fat diet and
exercise program. Furthermore, they reported that serum
from men undergoing this form of intervention showed
reduced cancer cell growth and increased apoptosis in
LNCaP prostate cancer cells in vitro [13, 15]. In conjunction
with the changes in serum IGF-I and IGFBP-1, reductions
have also been shown in insulin and free testosterone, along
with increases in sex hormone-binding globulin [15, 16].
The changes in IGF-I and IGFBP-1 appear to be particularly
important. When IGFBP-1 was added to preintervention
serum, LNCaP cancer cells underwent apoptosis; whereas,
when IGF-I was added to postintervention serum, the
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reduction in growth was eliminated [17]. Thus, the down-
regulation of IGF-I and up-regulation of IGFBP-1, as a result
of the diet modification and exercise intervention program,
may have protective effects against the development of can-
cerous cells. However, the training intensity and/or duration
of exercise required to induce such favorable alterations has
not yet been fully elucidated.

A number of intervention studies have shown increased
[18–23], decreased [24, 25], or unaltered [26, 27] levels
of IGF-I after endurance or resistance training. Similarly,
many cross-sectional observational studies have examined
the association of physical activity with IGF-I levels in
the general population; however, their findings have been
inconsistent [28–32]. Additionally, some reports have shown
that circulating levels of IGFBP-1 and IGFBP-3 are also
modulated with exercise [23, 33, 34], whereas other groups
saw no effects in their levels with moderate-intensity aerobic
exercise or strength training [35, 36]. The different responses
of IGF axis hormones to the intensity and/or duration
of various types of exercise could be the reason why
exercise is not necessarily protective against all forms of
cancer. Furthermore, it also has been reported that very
heavy exercisers demonstrate high mortality ratios for lung,
colorectal, and pancreatic cancers [37].

Whether exercise induces desirable (i.e., downregulation
of IGF-I and upregulation of IGFBP-1) or undesirable (i.e.,
up-regulation of IGF-I and down-regulation of IGFBP-
1) effects on cancer prevention is highly dependent on
training intensity. As high-intensity exercise produces an
acute increase in circulating IGF-I levels [38, 39], the exercise
intervention that induces a reduction in IGF-I levels may
be in the low or moderate categories. To the best of our
knowledge, only one cross-sectional study has shown a
reduction in serum IGF-I levels and increase in IGFBP-1
levels in participants of an exercise program, without empha-
sis on diet modification, in comparison to a control group
[16]. Despite the fact that physical exercise is considered
a strong intervention for cancer prevention [1], there are
few studies that specifically assess the effects of exercise
on specific biomarkers of cancer [40]. In addition, it has
been described in a previous review that persons at varying
risks of developing cancer should be examined in exercise
intervention studies, as the magnitude of protection caused
by exercise may differ in high-versus low-risk individuals
[40]. Furthermore, no previous intervention study has been
conducted to examine whether an exercise regimen alone
can elicit favorable changes in both IGF-I and IGFBP-1
levels for cancer prevention in healthy men. Additionally,
insulin is another factor which has the potential to influence
the levels of IGF-I and IGFBP-1 after exercise training.
Hyperinsulinemia stimulates liver production of IGF-I and
suppresses IGFBP-1 production [4, 41]. It is also known
that insulin itself promotes cellular growth in normal as
well as malignant tissues [42, 43]. In addition, leptin may
also regulate changes in IGF-I following exercise intervention
[44].

The lactate threshold (LT) represents the oxygen uptake
(VO2) or work rate above which there is a systemic rise in
blood lactate levels during incremental exercise [45]. The

LT level corresponds to approximately 50% VO2 max, and
exercise at LT can be performed easily and safely even in the
elderly and individuals with metabolic syndrome [46, 47]. In
a previous study by our group, low-intensity aerobic training
at LT level caused an increase in insulin sensitivity (SI),
with a concomitant decrease in the basal level of insulin
[48]. In this study we used this exercise training program
as it was designed to have an insulin-sensitizing effect. We
hypothesized that LT-level aerobic training, which does not
stimulate IGF-I production and reduces basal insulin levels,
would result in simultaneous alterations in both the down-
regulation of IGF-I and up-regulation of IGFBP-1. Thus,
we investigated the effect of mild aerobic exercise training
at LT level on the circulating levels of IGF-I, IGFBP-1, and
IGFBP-3 to determine an optimal exercise intervention that
can induce favorable changes in IGF-I and IGFBP-1 levels for
cancer prevention in healthy men.

2. Methods

2.1. Subjects. Fourteen healthy men (22.6 ± 0.5 years) who
had not undergone any regular exercise for at least 2 years
were examined. All subjects were nonsmokers, had no
evidence of chronic disease, such as diabetes, hypertension or
cancer, and were not taking any medication. All subjects were
also asked to maintain their normal dietary habits and not to
engage in any strenuous physical activity. Before beginning
the study, the nature, purpose, and risks of the study were
explained to all subjects, and informed written consent was
obtained. The protocol was approved by the local ethical
committee of Fukuoka University.

2.2. Body Composition, Physical Fitness, and Exercise Training.
Each subject’s body fat percentage was measured by hydro-
static weighing before commencing training and 2 days after
the last training session. This was estimated based on the
hydrostatic density with a correction for the residual lung
volume. To measure physical fitness, a graded exercise test
was performed on a mechanically braked ergometer (Electric
Bicycle Ergometer, Lode’s Instrumenten B. V., Groningen,
Holland) before commencing the training program and 2
days after the final training session. The work rate was
initially set at 10 watts and increased every 4 seconds by
1 watt, until physical exhaustion. VO2 was measured from
the mixed expired gas collected in neoprene bags. The
volume of the expired gas was quantified with a twin-drum-
type respirometer (Fukuda Irika CR-20, Tokyo, Japan),
and both the O2 and CO2 fractions were analyzed by a
mass spectrometer (ARCO-1000, ARCO System Inc., Chiba,
Japan). Blood samples were obtained from the earlobe every
30 seconds to measure blood lactate levels. The blood lactate
concentration was plotted against the exercise workload for
each subject, and the workload at the first breaking of lactate
was used to calculate the exercise training intensity for each
subject. The LT was determined for each subject based on
a visual inspection, according to the estimations of three
experts, who were blinded to the purpose of our study, and
the average was used to establish the exercise intensity for
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Table 1: Characteristics of the subjects.

Before training After training

Age (year) 22.6 ± 0.5

Height (m) 1.71 ± 0.01

Weight (kg) 63.5 ± 1.8 62.9 ± 1.8

BMI (kg/m2) 21.7 ± 0.6 21.4 ± 0.6

Percent fat (%) 13.6 ± 1.1 12.9 ± 1.1

Fat mass (kg) 8.7 ± 0.9 8.2 ± 0.8

LBM (kg) 54.8 ± 1.4 54.7 ± 1.5

VO2 max (mL/kg/min) 42.7 ± 1.1 45.4 ± 1.0∗

LT-VO2 (mL/kg/min) 18.1 ± 0.9 23.5 ± 0.7∗

Values are the means ± SE. BMI, body mass index; LBM, lean body mass;
LT-VO2, VO2 at lactate threshold. ∗P < .05 versus before training.

training. Cycle ergometer aerobic training at the LT level was
performed at our laboratory for 60 minutes per day, five
times a week for 6 weeks.

2.3. Blood Sampling and Analysis. Blood samples were
obtained from an antecubital vein each morning between
0700 and 0900 h, following overnight fasting, prior to
training, and 16−72 hours after the final training session.
Plasma glucose levels were measured spectrophotometrically
using glucose oxidase (Glucose B-test; Wako Pure Chemical,
Osaka, Japan); serum insulin (Phadeseph insulin radioim-
munoassay kit, Shionogi, Osaka, Japan) and leptin (Human
leptin kit, LINCO Research, Missouri, USA) concentrations
were measured by radioimmunoassay; and serum IGF-
I (Somatomedin-C·II [Chiron] measurement kit, Chiron
Inc., Tokyo, Japan), IGFBP-1 (DSL-7800, Diagnostic Systems
Laboratories, Inc., Texas, USA), and IGFBP-3 (Ab Tube IGF-
BP-3 Eiken, Diagnostic Systems Laboratories, Inc., Texas,
USA) were measured by immunoradiometric assay. The
intra- and interassay coefficient variations were 3.9% and
2.8% for IGF-I, 4.6% and 6.0% for IGFBP-1, and 7.2%
and 10.5% for IGFBP-3, respectively. Pre- and posttraining
samples were measured simultaneously. Insulin resistance
index (IRI) was calculated using Matthews’ formula [49].

2.4. Intravenous Glucose Tolerance Test (IVGTT) and Min-
imal Model Data Analysis. IVGTTs were performed before
commencing the training program and 16 hours after the
last training session. Following overnight fasting, subjects
were allowed to rest while lying down for at least 30 minutes
prior to blood sampling. Baseline samples for glucose and
insulin were obtained, followed by glucose administration
via the contralateral antecubital vein (300 mg/kg body
weight) within 2 minutes. Subsequent samples were obtained
at frequent intervals until 180 min, as previously described
[50]. Insulin (Humalin; Shionogi, Osaka, Japan) was infused
(20 mU/kg) via an antecubital vein between the periods
of 20−25 minutes post glucose administration. On the day
before undergoing IVGTT, all subjects were provided with
an evening meal consisting of ≥140 g carbohydrate, ≥30 g
fat, and ≥33 g protein. SI was estimated using a minimal
model approach, as previously described [50]. The SI index

Table 2: Metabolic parameters: IGF-I, IGFBP-1, and, IGFB-3
before and after mild training.

Before training After training

n 14 14

Basal glucose (mg/dL) 93.0 ± 1.0 90.3 ± 1.3∗

Basal insulin (μU/mL) 4.7 ± 0.2 4.1 ± 0.2∗

IRI (μU·mL−1·mg·dL−1) 1.08 ± 0.06 0.91 ± 0.05∗

SI (×10−5·min·μU·mL−1) 16.2 ± 1.5 19.5 ± 1.4∗

Leptin (ng/mL) 1.9 ± 0.3 1.7 ± 0.1

IGF-I (ng/mL) 245 ± 28 223 ± 22∗

IGFBP-1 (ng/mL) 39.4 ± 2.8 45.7 ± 3.8∗

IGFBP-3 (ng/mL) 2665 ± 129 2583 ± 110

Values are the means ± SE. IRI, insulin resistance index; SI, insulin
sensitivity; IGF-I, insulin-like growth factor-I; IGFBP, IGF-binding protein.
∗P < .05 versus before training.

represents the net increase in glucose disappearance rate,
which also depends on the rise in insulin above basal
levels. The minimal model program was written using Pascal
programming (Borland International, CA) on a Macintosh
IIcx (Apple Computer, CA).

2.5. Statistics. All values are shown as the means ± stan-
dard error (SE). Statistical analyses were performed using
Wilcoxon’s signed-rank test. Pearson’s correlation coefficient
was used for the analysis of the correlation between the
changes of variables after the exercise training. A P value of
less than .05 was considered to be statistically significant.

3. Results

Weight and body fat percentage did not change after
the training period (Table 1). By contrast, mild training
significantly increased indices of aerobic fitness. Both basal
glucose and insulin levels significantly reduced after train-
ing (Table 2). Although IRI, which was calculated using
Matthews’ formula, increased only slightly, the increase was
significant. Circulating leptin levels were not influenced by
training. LT exercise was found to significantly decrease the
circulating levels of IGF-I, whereas IGFBP-1 was significantly
increased. By contrast, IGFBP-3 levels were not influenced by
training.

There was no significant relationship between the base-
line level of IGF-I and baseline measures of VO2 max (r =
0.15) or LT-VO2 (r = 0.20). There were also no significant
correlations between the change in circulating IGF-I levels
and the changes in aerobic fitness (VO2 max, r = −0.10),
basal insulin (r = 0.08), IRI (r = 0.12), and SI (r = 0.41)
after exercise intervention. Similarly, relationships between
the change in IGFBP-1 and changes in basal insulin (r =
−0.33) and SI (r = 0.27) were not statistically significant.
Furthermore, the change in leptin levels after exercise was
not significantly correlated with the changes in IGF-I (r =
−0.22) or IGFBP-1 (r = −0.45). Conversely, there was a
negative correlation between pre-training IGF-I levels and
individual changes in IGF-I after training (r = −0.77;
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Figure 1: Relationship between pre-training IGF-I level and
individual changes in IGF-I after training.
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Figure 2: Changes in VO2 max and circulating IGFBP-1 levels after
low-intensity exercise.

P < .01) (Figure 1). Changes in VO2 max showed a positive
correlation with changes in IGFBP-1 (r = 0.61; P < .05)
(Figure 2).

4. Discussion

The main findings of this study were as follows: (1)
short-term cycle ergometer aerobic training at LT level
decreases circulating IGF-I concentrations and increases
IGFBP-1 levels, without changing body weight, in previously
sedentary men; (2) there is an inverse relationship between
pre-training IGF-I levels and individual changes in IGF-I
after training, suggesting that individuals with a higher pre-
training IGF-I level will have a more substantial decrease in
IGF-I following exercise intervention; and (3) increases in
aerobic fitness (VO2 max) positively correlates with changes
in IGFBP-1 level after training. It is known that alterations
in the IGF axis, including a reduction in IGF-I and an
increase in IGFBP-1, by lifestyle modification are associated
with an in vitro reduction in prostate cancer cell (LNCaP)

growth and increased apoptosis [13, 16]. Thus, the current
insulin-sensitizing exercise program is a safe and easily-
performed exercise program that simultaneously induces a
down-regulation of IGF-I and up-regulation of IGFBP-1.

The physiological effects of decreased IGF-I and
increased IGFBP-1 levels after mild aerobic training have
not been clarified by this study. However, since IGF-
I infusion causes hypoglycemia, primarly by stimulating
peripheral glucose uptake [51], and IGFBPs buffer the
acute hypoglycemic effect of IGF-I [52], we thus speculate
that the alterations in IGF-I and IGFBP-1 levels may be
an adaptive response to prevent hypoglycemia following
insulin-sensitizing training. In a previous study of exercise-
induced energy deficit, leptin administration significantly
increased circulating levels of IGF-I in healthy men and
women [44]. In this study, leptin levels were unchanged after
the training program, and the individual changes in the levels
of IGF-I were not significantly correlated with the changes in
leptin concentration. Thus, leptin may not play a role in the
alteration of IGF-I after mild exercise in healthy men.

The principal factor enhancing the production of IGF-
I in the liver is growth hormone, which stimulates IGF-I
synthesis and is further enhanced by insulin [41, 52]. As
fasting insulin levels are slightly but significantly decreased
after exercise intervention, it could potentially contribute to
the reduction in IGF-I levels. Some [19, 22, 39], but not all
[53–55], previous studies have reported increases in IGF-
I after acute exercise; however, these increases are transient
and typically return to baseline levels within 10−15 min after
exercise [56]. Increases in IGF-I after acute exercise are
considered to be unrelated to exercise-induced increases in
growth hormone [56]. Moreover, increases in IGF-I after
acute exercise were observed in growth hormone-deficient
subjects [19]. We previously showed that acute bout of
exercise at LT transiently increases growth hormone level
[57]. However, it is likely that resting levels of growth
hormone are not influenced by low-intensity training [58].

It is worthwhile noting that this study examines changes
in systemic IGF-I levels and that changes in local production
(i.e., paracrine/autocrine effects) are not assessed. Thus, this
study could not capture the potential effect of exercise on IGF
changes at the tissue level. A single bout of acute resistance
exercise upregulates local (i.e., skeletal muscle) IGF-I [59–
61]. To the best of our knowledge, whether local IGF-
I is upregulated by low-intensity aerobic exercise remains
unknown. A recent review suggested that local changes
in IGF-I are independent of changes in circulating IGF-I,
indicating that serum IGF-I is not necessarily a reflection of
local concentrations [56]. Thus, in this study, the reduced
levels of systemic IGF-I post-exercise intervention may not
have been influenced by local IGF-I.

It has been considered that reduced insulin levels after
exercise may contribute to the up-regulation of IGFBP-1
[14]. Furthermore, exercise-induced changes in basal insulin
levels did not significantly correlate with changes in IGFBP-
1; however, this may be due to the low number of subjects.
Conversely, the present results show a significant relationship
between changes in VO2 max and circulating IGFBP-1 levels.
Additionally, it seems noteworthy that correlations between
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the change in IGFBP-1 and changes in basal insulin (r =
−0.33) and SI (r = 0.27) were moderate and in the
expected direction, although not statistically significant. The
lack of statistical significance is most likely due to the
low sample size. Although we are unable to explain the
underlying mechanisms, the enhancement of aerobic fitness
might be important in the up-regulation of IGFBP-1 with
low-intensity training. It was shown by Hellenius et al. [62]
that low-intensity aerobic exercise (2 to 3 times/week at an
intensity of 60−80% maximal heart rate for 30−45 min) for
6 months improved SI and increased IGFBP-1 in healthy
middle-aged men. Although that study did not assess the
level of aerobic fitness (VO2 max), fasting insulin levels
decreased in the exercise group by 14%, with a 15% increase
in IGFBP-1 after training for 6 months. In this study a similar
decrease in fasting insulin (13%) caused a similar increase
in IGFBP-1 (16%) after exercise intervention. This indicates
that increases in IGFBP-1 are regulated by changes in insulin
induced by exercise training.

A previous study showed that the changes in IGF-I
and IGFBP-1 levels, induced by a combined low-fat diet
and exercise program, were accompanied by a reduction in
body weight [16]. Furthermore, in this cross-sectional study,
participants in the exercise program with a lower IGF-I and
higher IGFBP-1 had a much lower BMI, compared with
the control group [16]. By contrast, another report on the
effects of aerobic exercise combined with a low-fat, high-
complex carbohydrate diet showed reduced serum insulin
and positive control over aspects of metabolic syndrome,
including hypertension and hypertriglyceridemia, over a
period of only 3 weeks, even though the subjects remained
overweight or obese [63]. Furthermore, using regression
analyses, Nemet et al. [64] examined IGF-I and body mass
changes associated with 7-day strenuous exercise and found
a decrease in IGF-I levels, even in weight-stable subjects.
Similarly, this study showed that alterations of circulating
IGF-I and IGFBP-1, basal insulin, and SI after LT-level
training were observed without changes in body weight and
body fat percentage. Thus, in conjunction with previous
results, this suggests the importance of exercise alone, rather
than changes in body composition, on the regulation of IGF-
I and IGFBP-1.

There were some limitations of this study that should
also be described. The short period (6 weeks) of training
intervention was a limiting factor in this study. Further
studies are needed to examine whether longer periods of
exercise intervention induce sustained and greater impacts
on the changes in insulin sensitivity, fasting insulin, and IGF-
I and IGFBP-1 levels. Information on dietary intake before
and during the intervention was not recorded, despite the
fact that diet is an important modifier of IGF levels. Because
of this limitation, we are unable to perform a cross-sectional
analysis of the relationship between dietary components and
IGF levels. It is already known that IGF-I declines during
energy and protein restriction [41]. Since body weight did
not decrease in this study, dietary intake does not need to be
reduced during the exercise intervention. Thus, reduced IGF
levels after the current aerobic training might not be affected
by decreased dietary intake. Another limitation is that this

study has no control group. The potential problems with the
absence of a control group are the unwitting incorporation
of a sampling bias. For example, the possibility that an
inverse relationship between the initial (baseline) IGF-I levels
and the change in IGF-I levels after training could be due
to a convergence towards the mean effect cannot be fully
excluded. However, previous reports have shown that a single
IGF-I measurement is generally representative of the levels
over a period of time [7] and IGF-I levels appear to have no
detectable diurnal or circadian variation [29, 65].

It is also worth mentioning that, although a lower level
of IGF-I is associated with a lower cancer risk in prospective
healthy population, several studies have shown that lower
IGF-I is associated with an increased risk of cardiovascular
disease, type II diabetes, obesity [56, 66], osteoporosis, and
cognitive decline [56]. There are also reports of conflicting
data showing that subjects with obesity or type II diabetes
have normal levels of total IGF-I [67, 68] and no significant
correlation between IGF-I and bone mineral density in
women [69, 70]. Nindl and Pierce have described in their
recent review that the fact that there are studies claiming
that both increases and decreases in IGF-I concentrations
have beneficial effects on health presents a contradictory
situation. Furthermore, they also stated that, even though
local IGF-I is consistently up-regulated with both acute and
chronic exercises, circulating IGF-I may actually decrease
[56]. However, despite lowering IGF-I, the current exercise
program would be expected to have beneficial effects on all
of these various conditions.

In this study, subjects were healthy men with a relatively
low risk of developing cancer. Although the changes in IGF-
I were most dramatic in men with high baseline levels, it is
not clear whether this will apply to populations with different
baseline levels. Serum levels of IGF-I are inversely associated
with age [29, 31], and IGF-I levels are higher in women
than in men in Western population [29]. Conversely, in the
Japanese population, the circulating IGF-I level was found
to be higher in men than in women [32]. Further work is
needed to extend the present outcome to a wider population
by examining whether the same exercise regimen at the LT
can induce such favorable changes in individuals who have
elevated IGF-I levels and are at increased risk of developing
cancer.

In conclusion, we found that short-term aerobic exer-
cisetraining at LT levels decreased circulating IGF-I and
increased IGFBP-1 levels, without changing body composi-
tion, in previously sedentary men. These results are consis-
tent with those of a previous rodent study demonstrating
the beneficial effects of low-level exercise on cardiovascular,
as well as cancer risk factors [71]. It has been described
that physical exercise deserves particular attention in the
prevention of neoplasia, especially as it also exerts consistent
beneficial effects on other major chronic diseases prevalent
in the Western world, such as atherosclerosis and type
2 diabetes [1]. The current low-intensity aerobic training
regimen is thus considered to be an effective approach in
healthy men for down-regulating IGF-I and up-regulating
IGFBP-1 levels.
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