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3D surfaces are important geometric models for many objects of interest in image analysis and Computational Anatomy. In this
paper, we describe a Bayesian inference scheme for estimating a template surface from a set of observed surface data. In order
to achieve this, we use the geodesic shooting approach to construct a statistical model for the generation and the observations
of random surfaces. We develop a mode approximation EM algorithm to infer the maximum a posteriori estimation of initial
momentum μ, which determines the template surface. Experimental results of caudate, thalamus, and hippocampus data are
presented.

1. Introduction

3D surfaces are important geometric models for many
objects of interest in image analysis and Computational
Anatomy. For example, they are often used to represent the
shape of 3D objects, the surface of human faces, and the
boundaries of brain structures or of other human organs.
Most data analysis methods in this domain are template-
centered, and a proper estimation of a template plays an
important role to obtain high quality results. This paper is
devoted to the description of statistically supported template
estimation method which is adapted to surface data sets.

Our approach will be to build a generative statistical
shape model in which the template is a parameter. We will
then estimate it using maximum likelihood. This model
relies on the very natural setting for which an observed
surface is a noisy version of a random deformation of the
template. This is the most generic and most basic approach
of the deformable template paradigm, even if we add a
small refinement by including a prior distribution on the
template, based on what we will call a hypertemplate. Even
with this global scheme which is fairly simple, we will see

that implementing it in the context of surfaces will constitute
a significant theoretical and numerical challenge.

At the exception of the recent work of [1], this approach
significantly differs from what has been mostly proposed
in the literature, in which most of the methods compute
templates as averages over specific common parametriza-
tions of the surfaces (using, for example, the sphere as a
parameter space [2]). Parametric representations, however,
are limited by the fact that, because they are defined a
priori and independently for each object, they cannot be
assumed to suitably align important features in a given
data set of surfaces (i.e., give similar coordinates to similar
features in the surfaces). This usually results in oversmoothed
template surfaces (which is the equivalent of getting blurry
template images in the case of image averaging). In [1], a
similar diffeomorphic transformation model is used, but, as
we will see, our Bayesian construction will provide a well-
specified template whereas [1] needs to rely to topologically
unconstrained approximations to end up with a manageable
template.

In addition to the references above, there have been
several publications addressing the issue of shape averaging
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over a dataset, although most of them work with 3D volume
data or landmark points set. In several cases, the average is
based on metric properties of the space of shapes [3–7], and
the template is computed as an intrinsic average, minimizing
the sum of square distances to each element of the set
(Fréchet mean). Such methods have been implemented in
the context of diffeomorphic deformation models (which are
also models of interest in the present paper) for landmark
matching [8], for 3D average digital atlas construction [9],
and to quantify variability in heart geometry [10]. Other
definitions of the average, adapted to situations in which
the data is corrupted by noise, have been proposed [11–
13], based on variational approaches (but not relying on a
generative statistical model).

Our approach to build a generative statistical shape
model is reminiscent of the construction developed in [14]
for linear models of deformations, and in [15] for large
diffeomorphic deformations in 3D volume image averaging.
Adapting these ideas to surfaces will however require new
algorithms and numerical developments.

In order to present our model, we need to first provide
some background materials and notation, describing in
particular the geodesic shooting equations that we will
use to generate deformed surfaces. We will then introduce
a random statistical model describing the generation and
the observations of random surfaces. We then develop a
Mode Approximation EM algorithm for surface averaging, to
estimate the template from observations. In the optimization
part, we derive and implement a new variational scheme,
which is also applicable to surface matching, providing an
alternative approach to the one originally proposed in [16,
17]. Finally, we present and discuss experimental results on
caudate, thalamus, and hippocampus data.

2. EPDiff for Surface Evolution

We will base our random shape model on the so-
called EPDiff equation, which describes the evolution of
deformable structures (like images, surfaces, or landmarks)
under the action of groups of diffeomorphisms. It is a
geodesic equation for a Riemannian metric on diffeomor-
phisms, and describes a momentum conservation law in
the associated Hamiltonian system. The reader interested by
the theory behind this equation can refer to [18–20], but
most of this background will not be needed for the present
paper, in which we will only use the specific form of the
equations for surface evolution. The term EPDiff comes from
its determination as an Euler-Poincaré equation in the group
of diffeomorphisms, as introduced in [21]. One of its main
interests here is that it provides a numerically stable, easily
described, Hamiltonian evolution over diffeomorphisms,
which will constitute an ideal support for our shape models.

The EPDiff equations describe the combined time evo-
lution of a diffeomorphism, denoted φ(t, ·) and of what
can be interpreted as a momentum, denoted p(t, ·). The
initial conditions are always φ(0, x) = x for φ, and some
initial value, p0, for p. This initial momentum will be a key
component of the statistical model that will be built later on.

Let us start with the simplest form of the equation, which
assumes that p0 is a vector-valued function over Rd, that is,
p0 : Rd → Rd. It involves a smoothing kernel, K , defined on
R3 ×R3, a typical choice being

K
(
x, y

) = cst exp

(

−
∥
∥x − y

∥
∥2

2τ2

)

. (1)

Letting∇1K denote the gradient of K with respect to its first
variable, the corresponding EPDiff equation is

dφ

dt
(t, x) =

∫

R3
K
(
φ(t, x),φ

(
t, y
))
p
(
t, y
)
dy,

dp

dt
(t, x) = −

∫

R3
∇1K

(
φ(t, x),φ

(
t, y
))(

p(t, x) · p(t, y))dy.
(2)

Here, the notation a · b refers to the usual dot product
between vectors inR3. If K is smooth enough, this system has
solutions for arbitrary large t, and the mapping x �→ φ(t, x) is
a diffeomorphism at all times.

The interesting fact about these equations is that they
can have singular variants that are described in a similar way
and have the same existence properties. The simplest way
to relate the variants to the previous equation is to replace
the Lebesgue’s measure in the integrals by another, possibly
singular, measure. For example, taking a surface S0 in R3, we
can use the volume form on S0 as a reference measure and
obtain the equations (in which p0 and p(t, ·) need only to be
defined on S0)

dφ

dt
(t, x) =

∫

S0

K
(
φ(t, x),φ

(
t, y
))
p
(
t, y
)
dωS0

(
y
)
,

dp

dt
(t, x) = −

∫

S0

∇1K
(
φ(t, x),φ

(
t, y
))

× (p(t, y) · p(t, y))dωS0

(
y
)
,

(3)

where dωS0 is the volume form on S0. Note that the first
equation is defined for x ∈ R3, but it suffices to use it for
x ∈ S0 to obtain an equation for the evolving surface

St = φ(t, S0) = {y = φ(t, x), x ∈ S0
}
. (4)

We can write a discrete form of the equations by replacing
dy by a sum of Dirac measures (at points x1, . . . , xL in R3),
which gives, letting al(t) = p(t, xl),

dφ

dt
(t, x) =

L∑

l=1

K
(
φ(t, x),φ(t, xl)

)
al,

dak
dt

= −
L∑

l=1

(al · ak)∇1K
(
φ(t, xk),φ(t, xl)

)
.

(5)

Similarly to (3), the first equation is valid for all x ∈ R3, but
it suffices to solve it for x = xl, l = 1, . . . ,L to obtain the
evolution of the point set

xl(t) = φ(t, xl). (6)
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Also, (5) can be seen as a discretization of (3) in which
x1, . . . , xL are the vertices of a triangulation of S0, and al(t) =
p(t, xl)δσS0 (xl), where δσS0 (xl) is the area of a surface element
around xl.

The evolution of point sets is the most important from
a practical point of view, since it is an ODE that can be
easily implemented. Assuming a radial kernel K(x, y) =
γ(‖x − y‖2) like in (1), and denoting γkl = γ(‖xk − xl‖2),
and γ′kl = γ′(‖xk − xl‖2), (5) can be rewritten as

dxk
dt

=
L∑

l=1

γklal,
dak
dt

= −2
L∑

l=1

γ′kl(al · ak)(xk − xl).

(7)

Once the initial position of the vertices, x(0) = (x1(0), . . . ,
xL(0)), and the initial momentum, a(0) = (a1(0), . . . , aL(0)),
are provided, the evolution of the point set is uniquely
determined.

3. Generative Model for Surface Observation

3.1. Random Triangulated Surfaces. If a triangulated tem-
plate surface T with vertices x(T) is given, and we solve, until
time t = 1, (5) initialized with x(0) = x(T) and a random
initial momentum a(0) = α, the displaced vertices provide
a random perturbation of the initial surface that will be
denoted by Tα. This is stated in the following definition.

Definition 1. Let T be a triangulated surface with vertices

x(T) = (x(T)
1 , . . . , x(T)

L ). Let α ∈ (R3)L be a collection of L
vectors in R3. Let (x(t), a(t)) be the solution of (5) with
initial condition x(0) = x(T) and a(0) = α. One defines Tα

to be the triangulated surface with vertices x(Tα) = x(1) and
the same topology as T .

By letting α be random, we build Tα as a random
deformation of T . This will form the “ideal”, unobserved,
surface, of which only a noisy version is observable (the noise
process will be described in the next section).

Following [15], we will use a Bayesian formulation in
which T is itself represented as a random deformation T0,μ :=
(T0)μ, where T0 is a fixed surface that we will call the
hypertemplate, and μ is a prior initial momentum shooting
from T0 to T (same notation as in Definition 1). One of the
main interests of using a hypertemplate is to fix the topology
of T so that it belongs, by construction, to the same class of
objects as T0.

So, if N surfaces are observed, we need to model
the probability distribution of the prior momentum, μ
(starting at T0), which specifies T = T0,μ and of N defor-
mation momenta α(1), . . . ,α(N) which specify the surfaces
Tα(1) , . . . ,Tα(N) . We now provide a statistical model for the
joint probability distribution of μ,α(1), . . . ,α(N).

We first introduce some notation. Letting K be the kernel
introduced in the previous section to define the geodesic
shooting equations, we let ΓT be the 3L by 3L matrix formed

with the 3 by 3 blocks K(x(T)
k , x(T)

l )IdR3 . We define, for a
triangulated surface T with L vertices x(T), and α ∈ R3L,

‖α‖2
T = α∗ΓTα =

L∑

k,l=1

K
(
x(T)
k , x(T)

l

)
(αk · αl). (8)

We define the joint distribution of μ,α(1), . . . ,α(N) on

R3L × (R3L)
N

by

p
(
μ,α(1), . . . ,α(N)

)
= 1

Z
exp

⎛

⎝−1
2
λ
∥
∥μ
∥
∥2
T0
− 1

2

N∑

n=1

∥
∥
∥α(n)

∥
∥
∥

2

T0,μ

⎞

⎠,

(9)

where λ is a fixed parameter regulating the weight on the
hypertemplate.

There is a technical difficulty here, which is that one must
make sure that this probability can be normalized (Z exists),
which requires that the exponential is integrable. That this
is true is not straightforward, and we have not been able to
find a proof that works with any choice of the kernel K . One
way to deal with this is to introduce a constant Aμ (which
can be chosen arbitrarily large so that it does not interfere
with the algorithms that will follow), and add to the model
the constraint that ‖μ‖T0

is smaller than Aμ. Under such an
assumption, one obtains (after integrating out the α’s)

Z = (2π)3NL/2
∫

‖μ‖T0
≤Aμ

exp
(
−1

2

∥
∥μ
∥
∥2
T0
− N

2
log det ΓT0,μ

)
dμ.

(10)

This is finite, since, for any given μ, the transformation
x(T0) → x(T0,μ) is the restriction of a diffeomorphism to the
vertices of T0 (as seen from (5)). This implies that ΓT0,μ is
nonsingular, and its determinant is bounded away from 0
when μ is restricted to a compact space.

In fact, the choice Aμ = ∞ can be proved to be acceptable
for a large class of kernels. Those are kernels for which
the smallest eigenvalue of ΓT decreases at a speed which is
at most polynomial in the minimal distance, hT , between
the vertices. A list of kernels satisfying this property can be
found in [22]. For such kernels, we find that (L being fixed)
log det ΓT = O(loghT). Just sketching the argument here,
one can prove, using elementary properties of dynamical
systems, that hT = O(exp(−C‖μ‖T0,μ

) for some constant C,
so that the log determinant in (9) is linear in ‖μ‖T0,μ

and Z is
well defined, even with AT0,μ = ∞. For very smooth kernels,
including the Gaussian, bounds on the smallest eigenvalue
of ΓT are much worse (with a decay which is exponential
in (−1/h2

T)), and the previous argument does not work.
Since the bounds in [22] hold uniformly with respect to the
number of points, a polynomial bound may still be valid for
a fixed L, although we were unable to discover it.

Notice that, conditionally to the template, the momenta
α are independent and follow a Gaussian distribution
with inverse covariance matrix given by ΓT . An example
of simulated random deformations obtained using such a
model is provided in Figure 1.
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(a) (b)

Figure 1: Random deformation of a template caudate surface (left).
The six surfaces following the template are independent realization
of the model described in (9).

3.2. Observation and Noise. The second part of our genera-
tive model is to describe the observation process, which takes
an ideal surface Tα generated according to the model above,
and returns the noisy observable.

Modeling such a noise process is a tricky issue. Obvious
choices (like adding noise to the vertices of Tα) do not work
because one cannot assume that the observed surfaces are
discretized consistently with the template. In this paper, we
will work around this issue by assimilating the observation
of a surface that of a singular Gaussian process.

For this, we consider that surfaces in R3 are not observ-
able directly, but only via their action on test functions, that
we will call sensors. We define a sensor to be a smooth vector
field w over R3 (typically with small support). Given an
oriented surface S, define

(S,w) =
∫

S
w(s) ·NS(s)dωS(s), (11)

where NS is the normal to S. The real number, (S,w) is the
measurement of S through the sensor w.

Now, modeling noisy surfaces will result in assuming
that, given any w, the measurement (S,w) is a random
variable. We will assume that it is Gaussian, and more
generally, that, given m sensors, w1, . . . ,wm, the random
vector ((S,wj), j = 1, . . . ,m) is Gaussian.

S, via its action on sensors, is therefore modeled as a
Gaussian random field. Given an ideal surface Tα, we will
assume that its mean is given by

E((S,w)) = (Tα,w) (12)

and the process is thereafter uniquely characterized by its

covariance operator

G(w, w̃) = cov((S,w), (S, w̃)). (13)

We will assume that this covariance is associated to a
symmetric operator Lobs so that

G(w, w̃) = σ2
∫

Rd
(Lobsw(x) · w̃(x̃))dx dx̃. (14)

(The apparently redundant parameter σ2, which could have
been included in Lobs, appears here because it can be easily
estimated by the algorithm, with the operator Lobs remaining
constant.)

To finalize our model, it remains to describe how S is
discretized, that is, to make explicit a finite family of sensors
through which S is measured. Let (zj , j ∈ J) form a regular
grid of points in Ω. Let γs be a radial basis function (a
Gaussian, e.g.,) and define, for j ∈ J and d = 1, 2, 3

wj,d = γs
(
x − zj

)
ed (15)

where ed is the dth vector of the standard basis of R3

(this therefore specifies 3|J| sensors). The resulting observed
variables are

yj,d =
(
S,wj,d

)
=
∫

S
γs
(
s− zj

)
N (d)

S (s)dωS(s), (16)

where N (d)
S = NS · ed is the dth coordinate of NS. These

variables are, by assumption, jointly Gaussian, with means
mj,d = (Tα,wj,d) and covariance matrix

gi,d,i′,d′ = G
(
wi,d,wi′,d′

)

= σ2δd,d′

∫

Rd
Lobsγs(x − zi)γs(x̃ − zi′)dx dx̃.

(17)

Assuming that Lobs is translation invariant, the resulting
expression is a function of zi − zi′ that we will denote

gi,d,i′,d′ = σ2δdd′γobs(zi − zi′). (18)

Let Robs = (r(obs)
i j ) be the inverse matrix of the one with

coefficients (γobs(zj − z′j), j, j′ ∈ J). The log likelihood of the
process will include error terms taking the form

Eobs= 1
σ2

∑

j, j′∈J

3∑

d=1

r(obs)
j, j′

(
yj,d−

(
Tα,wj,d

))(
yj′,d−

(
Tα,wj′,d

))
.

(19)
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Replacing yj,d by its expression in (16), we have

σ2Eobs =
∑

j, j′∈J

3∑

d=1

r(obs)
j, j′

∫

S
γs
(
x − zj

)
N (d)

S (x)dωS(x)

×
∫

S
γs
(
x − zj′

)
N (d)

S (x)dωS(x)

− 2
∑

j, j′∈J
r(obs)
j, j′

3∑

d=1

∫

S
γs
(
x − zj

)
N (d)

S (x)dωS(x)

×
∫

Tα

γs
(
x − zj′

)
N (d)

Tα
(x)dωTα(x)

×
∑

j, j′∈J
r(obs)
j j′

3∑

d=1

∫

Tα

γs
(
x − zj

)
N (d)

Tα
(x)dωTα(x)

×
∫

Tα

γs
(
x − zj′

)
N (d)

Tα
(x)dωTα(x).

(20)

Let us analyze the first term. We have

∑

j, j′∈J
r(obs)
j, j′

3∑

d=1

∫

S
γs
(
x − zj

)
N (d)

S (x)dωS(x)

×
∫

S
γs
(
x − zj′

)
N (d)

S (x)dωS(x)

=
∑

j, j′∈J
r(obs)
j, j′

3∑

d=1

∫

S×S
γs
(
x − zj

)
N (d)

S (x)γs

×
(
y − zj′

)
N (d)

S

(
y
)
dωS(x)dωS

(
y
)

=
∫

S×S

∑

j, j′∈J
r(obs)
j, j′ γs

(
x − zj

)
γs
(
y − zj′

)

× (NS(x) ·NS
(
y
))
dωS(x)dωS

(
y
)

=
∫

S×S
Kobs

(
x, y

)(
NS(x) ·NS

(
y
))
dωS(x)dωS

(
y
)
,

(21)

with the notation

Kobs
(
x, y

) =
∑

j, j′∈J
r(obs)
j, j′ γs

(
x − zj

)
γs

(
y − zj′

)
. (22)

Treating the other terms similarly, we can rewrite the
error term in the form

Eobs = 1
σ2

∫

S×S
Kobs

(
x, y

)(
NS(x) ·NS

(
y
))
dωS(x)dωS

(
y
)

− 2
σ2

∫

S×Tα

Kobs
(
x, y

)

× (NS(x) ·NTα

(
y
))
dωS(x)dωTα

(
y
)

+
1
σ2

∫

Tα×Tα

Kobs
(
x, y

)

× (NTα(x) ·NTα

(
y
))
dωTα(x)dωTα

(
y
)

(23)

and we will abbreviate this (introducing a notation for the
right-hand side) as Eobs = (1/σ2)‖S− Tα‖2

obs. Thus, we can
write

p
(
y | Tα, σ

) = cst exp
(
− 1

2σ2
‖S− Tα‖2

obs

)
. (24)

We have the following important proposition.

Proposition 1. Assume that γs is taken equal to the Green
function of Lobs. Then, when the grid J becomes finer and Kobs

is given by (22), one has

Kobs
(
x, y

) −→ γobs
(
x − y

)
. (25)

See the appendix for a proof of this proposition (which
requires some background on the theory of Hilbert spaces
with a reproducing kernel) and possible extensions. For
practical purposes, we will use γobs instead of Kobs in ‖ · ‖obs,
therefore assuming that the sensors are chosen according to
the proposition. It is interesting to notice that the resulting
norm in this case is precisely the norm that has been
introduced in [16] to compare surfaces, when they are
considered as elements of a reproducing kernel Hilbert space
of currents. We refer to [16] for details on the mathematical
construction.

In the rest of the paper, we develop a parametric
procedure to estimate the template T from the observation of
i.i.d. surfaces S(1), S(2), . . . , S(N) generated as described above.
This includes in particular N hidden deformation momenta
α(1),α(2), . . . ,α(N), such that the complete distribution of
observed and unobserved variables is

p
(
μ,α(1), S(1), . . . ,α(N), S(N)

)

=cst exp

⎛

⎝−λ
2

∥
∥μ
∥
∥2
T0
− 1

2

N∑

n=1

(∥
∥∥α(n)

∥
∥∥

2

T
+

1
σ2

∥
∥∥S(n)−Tα(n)

∥
∥∥

2

obs

)
⎞

⎠,

(26)

where we have written for short T = T0,μ.
We now discuss the estimation of the parameter μ,

and of the associated template T0,μ, which is the main
purpose of this paper. This will be implemented with a mode
approximation of the EM algorithm, as described in the next
section.
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4. Algorithms for Surface Template Estimation

4.1. Mode Approximation EM. Let Θ = (α(1),α(2), . . . ,α(N))
be the hidden part of the process, representing the collection
of initial momenta, and let S = (S(1), S(2), . . . , S(N)) be the
collection of observed surfaces. The complete distribution
for the process, including the prior is given by (26).

The EM algorithm is an iterative method that updates a
current estimation of μ using the following two E- and M-
steps.

E-step: determine the conditional expectation μ̃ �→
Eμ{logπ(μ̃,Θ, S) | S)}.

M-step: maximize this expression with respect to μ̃
and replace the current estimation of μ by the obtained
maximizer.

The conditional expectation can be expanded as

Eμ
{

logπ
(
μ̃,Θ, S

) | S
)}

=−λ
2

∥
∥μ̃
∥
∥2
T0
− 1

2

N∑

n=1

Eμ

(∥∥
∥α(n)

∥∥
∥

2

T
+

1
σ2

∥∥
∥S(n)−Tα(n)

∥∥
∥

2

obs
| S(n)

)
.

(27)

Considering the highly nonlinear relation between α(n)

and the deformed surface Tα(n) , an explicit computation in
(27) is impossible. We will therefore rely on the classic mode
approximation in the EM which replaces the conditional
distribution by a Dirac measure taken at the conditional
mode, yielding

Eμ
{

logπ
(
μ̃,Θ, S

) | S
)}

≈ λ

2

∥∥μ̃
∥∥2
T0

+
1
2

N∑

n=1

∥
∥
∥α̂(n)

∥
∥
∥

2

T
+

1
σ2

∥
∥
∥S(n) − Tα̂(n)

∥
∥
∥

2

obs

⎫
⎬

⎭,

(28)

where

α̂(n) = arg min
α

{
‖α‖2

T +
1
σ2

∥
∥
∥S(n) − Tα

∥
∥
∥

2

obs

}
. (29)

This results in a maximum a posteriori procedure that
maximizes alternatively in μ and in the α(n)’s. Like in [15], we
will refer to it as a mode approximation to the EM (MAEM)
rather than a MAP algorithm, in order to strengthen the fact
that it is an approximation of the maximum a posteriori
procedure relying on the likelihood of the observed data only.
As illustrated in [14], the MAEM can be biased (leading to
inexact estimation of the template, even with a very large
number of samples), especially when the noise is important,
but it is obviously more feasible than the exact EM. Notice
that the MAEM method is a special form of EM algorithm,
and as such optimizes a lower bound of the log likelihood of
the observed data.

We summarize the two steps of the ith iteration of the
MAEM in our case. Suppose μ and the α(n)’s are the current
variables to be updated. Then the next iteration is as follows.

MAE step: with μ (and therefore T) fixed, find, for n =
1, . . . ,N , α̂(n) to minimize

‖α‖2
T +

1
σ2

∥
∥
∥S(n) − Tα

∥
∥
∥

2

obs
(30)

and replace α(n) by α̂(n).

M step: with α(n) fixed, update μ with the minimizer of

λ
∥
∥μ̃
∥
∥2
T0

+
N∑

n=1

(∥
∥
∥α(n)

∥
∥
∥

2

T0,μ̃
+

1
σ2

∥
∥
∥S(n) −

(
T0μ̃

)

α(n)

∥
∥
∥

2

obs

)
. (31)

We now discuss how each of these steps can be imple-
mented.

4.2. MAE Step. Our goal in this section is to optimize (30).
We work with fixed n and drop it from the notation to
simplify the expressions. The objective function is

E(α) = ‖α‖2
T +

1
σ2
‖S− Tα‖2

obs. (32)

This problem is equivalent to the surface matching algorithm
considered in [16], with a slightly different formulation since
[16] optimize an energy with respect to a time-dependent
momentum instead of just the initial momentum (i.e.,
they solved simultaneously the geodesic estimation and the
matching problems). These two formulations are equivalent
when using continuous time (they produce the same min-
ima), but they yield different results when discretized. In our
setting, formulating the problem as in (32) is natural, and
focuses on the modeled random variable, α.

We need to compute the variation of E with respect to α.
This computation will be useful for the M-step also. We first
discuss the discretization of the error term, which follows
[16]. Let S be a triangulated surfaces, with vertices x(S) =
(x(S)

1 , . . . , x(S)
L ) and faces F(S) = ( f (S)

1 , . . . , f (S)
M ). Each face is

represented by an ordered triple of vertices: f = (x
f
1 , x

f
2 , x

f
3 ),

and we define the face centers and area-weighted normals by

c f = 1
3

(
x
f
1 + x

f
2 + x

f
3

)
,

Nf = 1
2

(
x
f
2 − x

f
1

)
×
(
x
f
3 − x

f
1

)
.

(33)

Then a discrete approximation of ‖S− S′‖2
obs is

U
(
xS

′) =
∑

f , f ′∈F(S)

γobs

(
c f − c f ′

)(
Nf ·Nf ′

)

+
∑

f , f ′∈F(S′)

γobs

(
c f − c f ′

)(
Nf ·Nf ′

)

− 2
∑

f∈F(S), f ′∈F(S′)
γobs

(
c f − c f ′

)(
Nf ·Nf ′

)
,

(34)

where S is considered as fixed and U is therefore considered
as a function of the vertices, x(S′), of S′.

With this notation, we can write

E(α) = ‖α‖2
T +

1
σ2

U
(
x(Tα)

)
. (35)
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We want to compute the gradient of E and for this, apply
the chain rule to the transformations α → Tα → U(x(Tα)),
yielding

∂αU =
(
dx(Tα)

dα

)∗
∂xU , (36)

where A∗ is the transpose matrix of A.
The gradient ofU with respect to x(S′) has been computed

in [16], and is given as follows. We denote by F(S)
l the set

of faces (triangles) that contain a vertex xl in a triangulated

surface S. For f ∈ F(S)
l , we let el( f ) denote the edge opposed

to xl in f , positively oriented in f . With S′ = Tα, we have

∂U

∂x(S′)
l

(
x(S′)

)

=
∑

f∈F(S′)
l

∑

g∈F(S)∪F(S′)
ag

(
2
3
∇γobs

(
c f − cg

)(
Nf ·Ng

)

+γobs

(
c f − cg

)
el
(
f
)×Ng

)
,

(37)

where ag = 1 if g ∈ F(S′) and a(g) = −1 if g ∈ F(S).
Now let us derive the variation of x(Tα) with respect to

the initial momentum, α. We know that x(Tα) = x(1), where
x and a evolve according to the system (7)

dxk
dt

=
L∑

l=1

γklal,
dak
dt

= −2
L∑

l=1

γ′kl(al · ak)(xk − xl)

(38)

with x(0) = x(T) and a(0) = α (and γkl, γ′kl are short
for γ(‖xk − xl‖2) and γ′(‖xk − xl‖2)). Now an infinitesimal
variation α → α + δα in the initial condition induces
infinitesimal variations a + δa and x + δx over time, and the
pair (δx, δa) obeys the following differential system, that can
be obtained from a formal differentiation of (7):

dδxk(t)
dt

=
L∑

l=1

γklδal + 2
L∑

l=1

γ′klal(xk − xl) · (δxk − δxl),

(39)

dδak(t)
dt

= −2
L∑

l=1

γ′kl(al · δak + δal · ak)(xk − xl)

− 2
L∑

l=1

γ′kl(al · ak)(δxk − δxl)

− 4
L∑

l=1

γ′′kl(al · ak)(xk − xl)((xk − xl) · (δxk − δxl))

(40)

with γ′′kl = γ′′(‖xk − xl‖2).
One can rewrite it in the matrix form:

d
dt

(
δx
δα

)

= J(t)

(
δx
δα

)

, (41)

where J(t) =
(
Jxx Jxa
Jax Jaa

)
with

Jxx(k, l) =
⎛

⎝2
L∑

q=1

γ′kqaq
(
xl − xq

)∗
⎞

⎠δkl − 2γ′klal(xk − xl)
∗

Jxa(k, l) = γklIdR3 .

Jax(k, l) =−
⎛

⎝2
L∑

q=1

(
aq·al

)

×
(
γ′kqIdR3 +2γ′′kq

(
xl−xq

)(
xl−xq

)∗)
δkl

⎞

⎠

+ 2(al · ak)
(
γ′klIdR3 + 2γ′′kl(xk − xl)(xk − xl)

∗).

Jaa(k, l) = −
⎛

⎝2

⎛

⎝
L∑

q=1

γ′kq
(
xl − xq

)
a∗q

⎞

⎠

⎞

⎠δkl − 2γ′kl(xk − xl)a∗k .

(42)

Solving this system with initial condition δx(0) = 0 and
δa(0) = δα provides what we have denoted

(
dx(Tα)

dα

)

δα. (43)

One does not need to compute all the coefficients of the
matrix dx(Tα)/dα using this equation in order to apply the
transpose in (36). This is fortunate because this would
constitute a computationally demanding effort given that
this matrix is 3L by 3L with L large. The right hand side
of (36) can be in fact computed directly using a single
dynamical system, given by

d
dt

(
ηx
ηα

)

= −J(t)∗
(
ηx
ηα

)

, (44)

where J(t) is defined in (39). If (44) is solved from time t = 1
to time t = 0 with ηx(1) = ∂xU and ηα(1) = 0, then

∂αU = ηα(0). (45)

This is a simple consequence of the theory of linear
differential systems (a proof is provided in the Appendix
for completeness). Note that the matrix J(t) depends on the
solution of (7) computed with initial conditions x(0) = x(T)

and a(0) = α. To emphasize this dependency, we will denote
it J(t) = J (T ,α)(t) in the following.

Given this, we see that a variation α → α + δα induces a
first-order variation δE of the energy given by

δE = 2〈δα , α〉T +
1
σ2

δα · ηα(0), (46)
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where the T-dot product is 〈δα , α〉T = δα · (ΓTα) and ΓT is
the matrix formed with 3 by 3 blocs γklIdR3 .

We choose to operate the gradient descent with respect
to this dot product and therefore choose a variation pro-
portional to δα = −(2α + Γ−1

T ηα(0)). So, the algorithm to
compute an optimal α is the following.

Algorithm 1 (MAE Step for Surface Template Estimation).

(1) Compute the variation ∂x(Tα)U using (37).

(2) Solve backward in time (44) initialized with ηx(1) =
∂x(Tα)U and ηα = 0.

(3) Replace α by α−ε(2α+(1/σ2)Γ−1
T ηα(0)) (using a line-

search to optimize ε).

This algorithm has to be applied N times (for all αk, k =
1, . . . ,N) in the MAE step.

Remark 1. The matrix ΓT being typically very badly condi-
tioned, we numerically compute Γ−1

T ηα after adding a small
positive number to the diagonal of ΓT . The inversion itself is
computed using conjugate gradient.

4.3. M Step. There are many similarities between the M-step
and the E-step variational problems, so that we will be able
to only sketch the detail of the computation here. We need to
minimize

Ẽ
(
μ
) = ∥∥μ∥∥2

T0
+

1
λ

N∑

n=1

Ũ (n)
(
x(T0,μ)

)
(47)

with

Ũ (n)
(
x(T)

)
=
∥
∥
∥α(n)

∥
∥
∥

2

T
+

1
σ2
‖S− Tα(n)‖2

obs. (48)

Let us consider the variation of each term in the sum
(fixing n, that we temporarily drop from the notation). Since

‖α‖2
T =

L∑

k,l=1

γ
(∥
∥
∥x(T)

k − x(T)
l

∥
∥
∥

2
)

(αk · αl), (49)

we can write

∂‖α‖2
T

∂x(T)
k

= 2
L∑

l=1

γ′
(∥
∥∥x(T)

k − x(T)
l

∥
∥∥

2
)

(αk · αl)
(
x(T)
k − x(T)

l

)
.

(50)

The function U being defined as before, we see that the
derivative of the second term is given by applying the chain
rule again, this time in the form

(
dx(Tα)

dx(T)

)∗
∂x(Tα)U. (51)

Like in the previous section, the transpose of the
differential applied to the gradient of U can be computed by

solving a dynamical system backward in time. In fact, it is the
same system as with the variation in α, namely,

d
dt

(
ηx
ηα

)

= −J (T ,α)(t)∗
(
ηx
ηα

)

(52)

still initialized with ηx(1) = ∂x(Tα)U and ηα(1) = 0, but the
relevant result now is ηx(0). The gradient of Ũ is then

∂x(T)U = ∂x(T)‖α‖2
T +

1
σ2

ηx(0). (53)

Once this is computed, the next step is to compute
(reintroducing n in the notation)

(
dx(T0μ)

dμ

)∗⎛

⎝
N∑

n=1

∂x(T)U (n)

⎞

⎠. (54)

This follows a similar procedure, using (44), with T0 instead
of T and μ instead of α. This requires solving

d
dt

(
ηx
ημ

)

= −J (T0,μ)(t)∗
(
ηx
ημ

)

, (55)

initialized with ηx(1) = ∂x(T)Ũ and ημ(1) = 0. The variation

of Ẽ associated to an infinitesimal variation of μ is then

δE = 〈δμ, 2μ
〉
T0

+
1
λ

(
δμ · ημ(0)

)

=
〈
δμ, 2μ +

1
λ
Γ−1
T0
ημ(0)

�
.

(56)

We summarize the M step in the following algorithm.

Algorithm 2 (M-Step Algorithm for Surface Template Estima-
tion).

(1) For n = 1, . . . ,N :

(1.1) Compute ∂
x

(T
α(n) )U using (37).

(1.2) Solve system (44) backward in time with initial

condition η(n)
x (1) = ∂

x
(T
α(n) )U and η(n)

α (1) = 0.

(1.3) Compute

∂x(T)Ũ (n) = ∂x(T)

∥
∥∥α(n)

∥
∥∥

2

T
+

1
σ2

η(n)
x (0) (57)

using (50).

(2) Solve system (55) backward in time with

ηx(1) =
N∑

n=1

∂x(T)Ũ (n) (58)

and ημ(1) = 0.

(3) Replace μ by μ−ε(μ+Γ−1
T0
ημ(0)/λ), ε being optimized

with a line search.
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(a) S1 (b) S2 (c) S3 (d) S4 (e) S5

(f) S6 (g) S7 (h) S8 (i) S9

(j) Hypertemplate T0 (k) Estimated template T

Figure 2: Estimating the surface template from 9 caudate data. (a)−(i) observed surfaces. (j) is the hypertemplate. (k) is the result.

4.4. Surface Template Estimation Algorithm. We finally sum-
marize the surface template estimation algorithm:

Algorithm 3 (Surface Template Estimation). Having the
hypertemplate T0 and observed surfaces S(1), . . . , S(N), the
goal is to estimate the template T . Let T ,μ,α(1), . . . ,α(N)

denote the current estimation with initial guess T = T0,

μ = 0, α(n) = 0. Then, in the next iteration, update with
the following steps:

(i) With T fixed, apply Algorithm 1 to update each α(n),
n = 1, . . . ,N .

(ii) With α(n)’s fixed, apply Algorithm 2 to obtain a new
value for μ.
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(a) S1 (b) S2 (c) S3 (d) S4 (e) S5

(f) S6 (g) S7 (h) S8 (i) S9

(j) Hypertemplate T0 (k) Estimated template T

Figure 3: Estimating the surface template from 9 thalamus data. (a)−(i) observed surfaces. (j) is the hypertemplate. (k) is the result.

(iii) Solve (7) initialized with the hypertemplate T0 and
the newly obtained μ to update the estimated tem-
plate, T .

5. Result and Discussion

We applied the algorithm to surface data of human brain’s
caudate, thalamus, and hippocampus. All data are courtesy
of Center for Imaging Science at Johns Hopkins University.
Each surface has around 5−10 thousand triangle cells. We
randomly chose one as the hypertemplate and the others as
observed surfaces. In these experiments, we set λ = 1.0 and
σ2 = 1.0.

Figures 2 and 3 are the template estimation result for
caudate and thalamus, respectively.

We also applied the algorithm to 101 hippocampus
surface data in the BIRN Project (Biomedical Informatics
Research Network). In Figure 4, Panels (a)−(h) are 8 exam-
ples of the 101 observations. Panel (i) is the hypertemplate
and Panel (j) is the estimated template.

The result is visually satisfying in the sense that the
estimated template is found to agree with a qualitative
representation of the population. For example, in the
caudate experiment, the estimated template has an obviously

narrower upper tip than the hypertemplate. This captures
the population characteristic since most observed data have
narrower upper tips. Notice that the obtained template does
not look smoother than the rest of the population, as would
typically yield template estimation methods that average over
fixed parametrizations.

Figure 5 shows how the energy in (31) changes with
the iteration in the caudate experiment. This confirms the
effectiveness and convergence of the algorithm. One can see
the energy drops quickly in the first twenty iterations, then
gradually slows down. After the 35th iteration, the energy
changes little and the estimated template remains stable.

In our model, the hypertemplate can be provided by an
atlas obtained from other studies, although we here simply
choose one of the surfaces in the population. Actually, as
Figure 6 shows, different choices for the hypertemplate yield
very similar results.

6. Conclusion

In this paper, we have presented a Bayesian approach for
surface template estimation. We have built, for this purpose,
a generative statistical model for surfaces: the construction
first applies a random initial momentum to the template
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(a) S1 (b) S2 (c) S3 (d) S4

(e) S5 (f) S6 (g) S7 (h) S8

(i) Hypertemplate T0 (j) Estimated template T

Figure 4: Estimating the surface template from 101 data. (a)−(h) are 8 examples out of 101 observed surfaces. (i) is the hypertemplate. (j) is
the result.

surface, then assumes an observation process using test
functions and noise. The template is assumed to be generated
as a random deformation of a hypertemplate, completing the
Bayesian model. We used a mode approximation EM scheme
to estimate the surface template, and introduced for this
purpose a novel surface matching algorithm optimizing with
respect to the initial momentum. The procedure has been
tested with caudate, thalamus, and hippocampus surface
data, showing its effectiveness and convergence, and also
experimentally proved to be robust to variations in the choice
of the hypertemplate.

Appendices

A. Proof of Proposition 1

Let us assume that Lobsγs = δ0, that is, γs is the Green Kernel
of the operator Lobs. This assumption implies, in particular,
that γs = γobs. Given a smooth function f , denote

fJ(x) =
∑

j, j′∈J
r(obs)
j, j′ γobs

(
x − zj

)
f
(
zj′
)
. (A.1)
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Figure 5: Energy change with the iteration.

(a) Hypertemplate 1 (b) Result 1

(c) Hypertemplate 2 (d) Result 2

(e) Hypertemplate 3 (f) Result 3

Figure 6: For the same observed population, we choose different surfaces as hypertemplate. The results only have minor differences.
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Define the vector space

VJ =
⎧
⎨

⎩g ∈ V : g(x) =
∑

j∈J
γobs

(
x − zj

)
ρj , ρj ∈ R, j ∈ J

⎫
⎬

⎭.

(A.2)

Introduce the RKHS V with scalar product given by

〈
w , w′

〉
V =

∫

Rd
(Lobsw)w′dx. (A.3)

Then fJ can be identified to the orthogonal projection of
f on Vj , because r(obs) is the inverse of the Gram matrix
(matrix of dot products) of (γobs(· − zj), j ∈ J), which are
the generators of VJ , and

f
(
zj
)
=
〈
f , γobs

(
·, zj

)〉

V
(A.4)

by assumption.
Now, let Jm be a sequence of progressively finer grids with

resolution εm tending to 0 when m tends to infinity. We prove
that ‖ fJm − f ‖V → 0, for which it suffices to prove that

⋃
VJm

is dense in V . This is equivalent to the fact that no nonzero g
in V can be orthogonal to all the VJm ’s. But g orthogonal to
VJm is only possible when, for all j ∈ Jm,

g
(
zj
)
=
〈
g, γw

(
· − zj

)〉

V
= 0. (A.5)

Since the z′j s form an arbitrarily fine grid in V and functions
in V are continuous, this implies g = 0.

So, fJ → f in V , which implies, for example, pointwise
convergence as soon as V is embedded in the set of
continuous functions (that is, if γobs is continuous). This
directly implies Proposition 1 in the case γs = γobs, by taking
f (x) = γobs(x − y) for a given y.

Extensions of this result is when γs is obtained by
applying some linear operator, say A, to γobs. One then has

Kobs(·, x̃) = A

⎛

⎝
∑

j, j′∈J
r(w)
j, j′ γobs

(
· − zj

)
γs
(
x̃ − zj′

)
⎞

⎠ (A.6)

and passing to the limit in the sum (for which one needs γs ∈
V and A continuous on V), one gets Kobs(x, x̃) → A2γobs.

B. Transposing Linear Differential Equations

We here justify the procedure described in Section 4, and
prove the following fact: consider the solution, z(t) ∈ Rp,
of the ordinary differential equation

∂tz = J(t)z, (B.1)

where J is a time-dependent operator (a p by p matrix).
Then, for any u ∈ Rp, we have

u · z(1) = η(0) · z(0), (B.2)

where η is the solution of the differential equation

∂sη = −J(s)∗η (B.3)

with η(1) = u.
Let us prove this result. First remark that since z is the

solution of a linear equation, it depends linearly on the initial
condition, z(0). More precisely, let M(s, t) be the p by p
matrix such that

∂tM(s, t) = J(t)M(s, t) (B.4)

and M(s, s) = IdRp . Then z(t) =M(0, t)z(0), and, obviously,
η(0) = M(0, 1)∗u. Using the identity M(t, s)M(s, t) = IdRp ,
we obtain

0 =M(t, s)(∂sM(s, t)) + (∂sM(t, s))M(s, t)

= (∂sM(s, t))M(t, s) + J(s)
(B.5)

so that ∂sM(s, t) = −M(s, t)J(s). Computing the transposed
equation yields and taking t = 1

∂sM(s, 1)∗ = −J(s)∗M(s, 1)∗. (B.6)

Thus, if η(s) = M(s, 1)∗u, we have η(1) = u and ∂sη =
−J(s)∗η as announced.
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