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Abstract
Given two metastable states A and B of a biomolecular system, the problem is to calculate the
likely paths of the transition from A to B. Such a calculation is more informative and more
manageable if done for a reduced set of collective variables chosen so that paths cluster in
collective variable space. The computational task becomes that of computing the “center” of such
a cluster. A good way to define the center employs the concept of a committor, whose value at a
point in collective variable space is the probability that a trajectory at that point will reach B
before A. The committor “foliates” the transition region into a set of isocommittors. The maximum
flux transition path is defined as a path that crosses each isocommittor at a point which (locally)
has the highest crossing rate of distinct reactive trajectories. This path is based on the same
principle as the minimum resistance path of Berkowitz et al (1983), but it has two advantages: (i)
the path is invariant with respect to a change of coordinates in collective variable space and (ii) the
differential equations that define the path are simpler. It is argued that such a path is nearer to an
ideal path than others that have been proposed with the possible exception of the finite-
temperature string method path. To make the calculation tractable, three approximations are
introduced, yielding a path that is the solution of a nonsingular two-point boundary-value problem.
For such a problem, one can construct a simple and robust algorithm. One such algorithm and its
performance is discussed.

1 Summary
1.1 Introduction

Considered here is the problem of computing transition paths of conformational change,
given two different metastable states of a biomolecule. One motivation for this is to facilitate
the accurate calculation of free energy differences. Another motivation is to determine the
existence and structure of transition states and intermediate metastable states. The latter are
possible targets for inhibitors of enhanced specificity in cases where a family of proteins
have active sites with very similar structure. A good example of this situation is the Src
tyrosine kinase family, 1 which has long been implicated in the development of cancer. For
this system there are already computational results,2–4 supported by experiment,5 for the
transition path from an active catalytic domain to an inactive catalytic domain.

Some approaches to this problem generate ensembles of trajectories based on the equations
of motion. Notable examples are transition path sampling6 and Markov state models.7
Applying such methods to large proteins (without compromise) would appear to require
exceptional computing capabilities, so here we pursue a more theoretical approach that
avoids “direct numerical simulation.” Such an approach seeks to characterize one (or several
isolated) “representative” reaction paths connecting two given metastable states, each path
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representing a bundle or cluster of trajectories. Here we adopt a well developed and tested
theory, namely, transition path theory (TPT).8–11 Additional references on computing
transition paths are found in Ref. 12 In general, it may also be of interest to calculate (i) the
reaction rate for each bundle, or, at least, the relative rate for different bundles, and (ii) the
potential of mean force. Here we consider only the calculation of the path itself.

It happens that the path proposed here is based on the same principle as the minimum
resistance path, 13 but differs in an important respect. Here, we make the path independent
of the choice of coordinates in collective variable space by introducing a metric tensor to
measure distance. This enables one to choose these coordinates on the basis of convenience,
and, in particular, makes it easier to adapt to limitations imposed by a simulation program.
Additionally, an appropriate choice of metric yields differential equations for defining the
path that are significantly simpler than those for the minimum resistance path.

The minimum resistance path is offered as an alternative to the minimum energy path
(MEP) (also known as the steepest descent path), to capture finite temperature effects. The
MaxFlux method14 computes the minimum resistance path, as does the nudged elastic band
implementation of Ref.15 Other temperature-dependent paths have been proposed, including
one defined as a most probable stochastic trajectory in the sense of a path integral,16 one
based on mean first-passage times,17 and one whose tangent is the most probable direction
determined from a swarm of trajectories.12 A compelling case for including temperature
effects is given in Ref., 18 which shows for alanine dipeptide the considerable extent to
which the MaxFlux path from αR to C7ax1 differs from the minimum free energy path
(MFEP).9 This same article also shows that this same MaxFlux path well represents an
ensemble of trajectories generated with transition path sampling. However, the ability to
locate the center of such a bundle depends on a selection of collective variables that avoid
fine-grained roughness in the free energy landscape. Otherwise, actual averaging is needed,
as in the finite-temperature string (FTS) method (see Sec. IV.B of Ref. 19 and Ref.20).

In a nutshell, this article embraces a certain aspect of TPT and carries it to a logical
conclusion, obtaining a formula, an implementation, and a proof of concept. The aim is to
compute a path that is closer to the ideal than the MFEP and that, in a couple of respects, is
better than the path of the FTS method. Additionally, the formula for the path is
computationally more attractive than the formula that underlies either the path of the FTS
method or the MFEP.

1.2 Outline and discussion
There are two distinct steps in getting a solution: The first is to define the problem without
concern for the methods to be employed (other than taking into account the intrinsic
difficulty of the problem). Defining a problem apart from a method gives a more concise
definition. Also, by not guessing about what is feasible computationally, one may avoid
unnecessary compromises. The second step is to construct a method and algorithm.

Given two metastable states A and B of a biomolecular system, the aim is to calculate the
likely paths of the transition from A to B. Such a calculation is more informative and more
manageable if done for a reduced set of collective variables, functions of the system
configuration x,

chosen so that paths cluster in collective variable space. The computational task becomes
that of computing the “center” of such a cluster. A good way to define the center employs
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the concept of a committor, whose value at a point in collective variable space is the
probability that a trajectory at that point will reach B before A. The committor “foliates” the
transition region into a set of committor isosurfaces known as isocommittors. The maximum
flux transition path (MFTP) is defined as a path that intersects each isocommittor at a point
which (locally) has the highest crossing rate of distinct reactive trajectories. A more detailed
account of the problem definition is given in Section 2.

The minimum free energy path has been used for some time to represent reactive trajectories
in collective variable space. Only fairly recently has its relationship to reactive trajectories
been explained. The article9 applies large deviation theory to show that the MFEP is the
most probable path in the zero temperature limit of dynamics on a free energy surface
defined at finite temperature. Hence, the MFEP (though not the MEP) is an inherently
inconsistent construct and it is useful only to the extent that it represents fully finite-
temperature trajectories. In fact, it does this fairly well on the simple tests reported here.

To make the calculation tractable, three approximations are introduced. To make the
committor a more accessible quantity, the set of paths is approximated by a Brownian
dynamics model, resulting in a boundary value problem in ν-dimensional space. Then the
number of space dimensions is reduced to one by assuming most of the transition paths are
contained in a tube, resulting in a two-point boundary-value problem with 2ν unknowns. A
third approximation reduces this to ν unknowns, whose solution is a maximum flux
transition path. The resulting equations involve a free energy gradient term and an explicitly
temperature-dependent curvature term. Specifically, the maximum flux transition path ζ =
Z(s), 0 ≤ s ≤ 1, is defined by the condition that

holds for ζ = Z(s), where

β is the inverse temperature, F(ζ) is the free energy profile, D(ζ) is a proto-diffusion tensor
depending on masses and ξ, and the subscript s denotes differentiation (d/ds). In the high
temperature limit, the path becomes a straight line. In the low temperature limit, the path
becomes an MFEP. At zero temperature the path will have cusps at some intermediate local
minima, which presents difficulties if free energy profiles or relative reaction rates are to be
determined. This formula is a key result of this article. Details are given in Section 3. By
contrast the minimum resistance path satisfies a more complicated condition, −β∇F −
2c−1∇ζc + c−2(WD−1Zs)s ‖ WD−1Zs where , which differs from the
MFTP except in very special cases such as D(ζ) = I.

The temperature-dependent curvature term not only provides a finite temperature correction
to the MFEP, but it yields a nonsingular second order ordinary differential equation,
amenable to standard techniques—except for the need to do computationally intensive
sampling to evaluate terms in the differential equation. An existing set of algorithms for the
MFEP9,21 applies equally well to the MFTP. In Section 4, the equation of a simplified
MFTP, Eq. (12) below, is discretized using upwinded differencing and solved using the
semi-implicit simplified string method.22 (A notable alternative is the nudged elastic band
method, introduced in Ref.23) Algorithmic details are provided in Section 4.
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Section 5 compares the MFTP to the MFEP on numerical examples. First, an artificial
problem in full configuration space is solved to demonstrate the effect of the curvature term
of the MFTP. (A problem in full configuration space is equivalent to a problem in collective
variable space with perfect sampling.) In particular, the necessity of using an adaptive mesh
for the MFEP is demonstrated. Then alanine dipeptide in vacuum is solved using the ϕ, ψ
dihedrals as collective variables. For the transition path from C7ax to C7eq as in Ref.,9 the
computational cost for calculating the MFTP and the MFEP is almost same. However, for a

transition path from C7eq to  through C7ax shown in Ref., 19 the MFEP has a cusp at
C7ax and the computational cost for finding such a cusp is expensive. On the other hand, the
MFTP smooths out the cusp and the computational cost is reduced. Finally, the MFTP is
calculated for alanine dipeptide in explicit water and for alanine decapeptide.

An open source implementation of the MFTP method is available24 as a relatively simple
set of Python modules with examples using pure Python, CHARMM,25 and NAMD.26

1.3 Conclusions
For alanine dipeptide, the MFEP, MFTP, and FTS method paths are quite similar. On a
contrived problem with a rough energy landscape, e.g., Figure 2 in Ref., 20 the FTS method
path gives a much better result. On a different contrived problem given in Section 5.1, the
MFTP gives a much better result. Contrived examples are relevant because computational
techniques are sometimes applied in extreme situations for which they may not have been
designed. In terms of quality, the MFTP ranks higher than the MFEP but lower than the FTS
method path (because the latter addresses the more serious difficulty of multiple local
minima).

The minimum free energy path (and that of the FTS method) can have cusps at local minima
of free energy, which makes it unsuitable for defining an isocommittor at these points and
harder to compute. Computational difficulties include the need for an adaptive mesh and a
greater number of iterations until convergence.

2 What is the problem?
We begin by defining an ensemble of transition paths from A to B: For simplicity, assume
the molecular system obeys Newtonian dynamics with potential energy function U(x) and a
diagonal matrix M of atomic masses. Positions x and momenta p satisfy x = X(t), p = P(t)
where (d/dt)X(t) = M−1P(t) and (d/dt)P(t) = −∇U(X(t)). Initial values are drawn from a
Boltzmann-Gibbs distribution ρ (x, p): positions x from probability density const e−βU(x) and
momenta p from a Maxwell distribution. Imagine an extremely long trajectory. The
trajectory enters and leaves A and B many times yielding a huge set of reactive paths from A
to B. (A reactive path is a piece of the trajectory outside of A and B that comes from A and
goes to B.)

Generating an ensemble of trajectories is extremely demanding computationally. And, even
if this were possible, what would the user do with all the data? By answering such a
question, we might well avoid the task of computing trajectories. It is likely that one would
cluster the trajectories to produce a concise description. Therefore, one might instead
directly determine such a concise description. Specifically, if the paths cluster into one or
several distinct isolated bundles/tubes/channels/pathways, one might compute a
“representative path” for each cluster. This idea is developed in the paragraphs that follow.

However, transition paths might not cluster adequately—in full configuration space.
Assume, though, there is a smaller set of collective variables, ζ = ξ(x), such that in ζ-space,
paths cluster into one or several distinct isolated channels connecting two separated subsets
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Aξ and Bξ of collective variable space. Otherwise, there is little of interest to compute. A
typical example of collective variables is ϕ/ψ angles along a peptide backbone. Once the
collective variables are specified, the problem is to calculate a path in collective variable
space, ζ = Z(s), 0 ≤ s ≤ 1, connecting Aξ to Bξ where the transition paths are concentrated.
Along with a parameterization of the path in collective variable coordinates, would be a
realization of it in cartesian coordinates, so once the path is generated, structures can be
studied as well. A drawback of this approach is the need to identify an appropriate set of
collective variables. Indeed, defining suitable collective variables is an important research
problem.27

We want a minimal set of collective variables subject to two conditions: First, the
coordinates ζ must suffice to describe states Aξ, Bξ in ζ-space corresponding to A, B. Second,
coordinates ζ must also be rich enough to “express the mechanism of conformational
change” along the transition path. To make the second condition more precise, we introduce
the notion of “quasi-committor.”

To measure the progress of a transition, there is a natural reaction coordinate, known as the
committor. This concept of a commitment probability was introduced by Onsager,28 and the
abbreviated term “committor” was introduced in Ref., 29 which they defined as follows: For
each point x in configuration space, consider a trajectory starting with X(0) = x and
velocities drawn at random from a Maxwell distribution, and define the committor q(x) to be
the probability of reaching B before A. Since it is the coordinates of the collective variables
that are of interest, it is natural also to define a quasi-committor: For each point ζ, consider a
trajectory starting with random initial values conditioned on ξ(x) = ζ and define the quasi-
committor q̂(ζ) to be the probability of reaching Bξ before Aξ:

We could say that the variables ζ = ξ(x) are rich enough to express the mechanism of
conformational change if the quasi-committor q̂(ζ) has no local minima or maxima outside
of Aξ and Bξ (except for regions of negligible probability). Otherwise, there is some
unexpressed degree of freedom important to the transition. As an example, suppose that
virtually all trajectories stay within a narrow tube having a geometry in full configuration
space illustrated by Figure 1. Suppose that the free energy profile as a function of arc length
along the transition tube is much higher in the backward section than it is in the two forward
sections. Then most of the increase in the quasi-committor as a function of arc length occurs
in the middle section of the tube. Consequently, the variation in the quasi-committor, as a
function of the ill-chosen collective variable ζ corresponding to the horizontal axis, will be
dominated by this middle section of the tube. This results in a graph of q̂(ζ) that increases at
the beginning and end of its range but decreases in the middle part. In addition to q̂(ζ)
having no local extrema, it is desirable that q̂(ξ(x)) ≈ q(x). The quality of the collective
variables can be checked in principle by calculating quasi-committor values q̂(ζ) at points
along the path from dynamics trajectories.

Two approaches have been proposed for defining the center of a cluster of paths in ζ-space:

i. a most probable path, e.g., a swarm-of-trajectories string method12 path, and

ii. a path that intersects each isosurface of the quasi-committor at a center of the
collection of points where reactive trajectories cross that isosurface, e.g., a finite
temperature string method19 path and a maximum flux transition path.

An MFEP is a limiting case of both approaches. (The MFEP is obtained from these various
approaches by letting β → ∞ in the path formula but not in the definition of the free energy
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profile.) Defining a representative path is a compromise between (i) best capturing the
object of interest and (ii) simplicity.

One problem with seeking the most probable path is that it is unclear how to assign relative
probabilities to paths. More importantly, the most probable path tends to be a path of
minimum energy, and it is not clear—a priori—that this is a “representative” path. For
Hamiltonian dynamics, it would seem that the probability that we attach to a path would be
proportional to exp(−βE) where E is the energy. Hence, the most probable path is the one
with just enough energy to surmount the potential energy barriers. For stochastic dynamics,
the explanation of how to assign probability to paths is quite complicated—if paths of
different durations are being compared. An explanation for Brownian dynamics is possible
using Freidlin-Wentzell theory and the assumption of vanishingly small noise (see Appendix
A of Ref. 9). It is reassuring though that the results of Freidlin-Wentzell theory agree with
those of TPT in the zero-temperature limit (for F(ζ) held fixed).

For defining a path in terms of an intersecting point on each isosurface of a quasi-committor,
one needs

i. a definition for the distribution of crossing points of reactive trajectories through a
quasi-commitor isosurface and

ii. a definition of centrality, e.g., mode, median, or mean.

We consider each of these in turn.

The finite-temperature string method defines the distribution of crossing points of reactive
trajectories in a way that includes recrossings. A subsequent article10 illustrates the dramatic
distortions that arise by including recrossings, and it emphasizes crossings of a surface by
distinct reactive trajectories instead of all crossings by reactive trajectories. They define such
a distribution in terms of the net crossings of reactive trajectories across each infinitesimal
piece of a surface. It is not obvious, however, that this necessarily gives nonnegative values
everywhere on the isosurface of a quasi-committor, so, instead, we use the density of last
crossings by reactive trajectories, called last hitting points in Ref.8 For the Brownian
dynamics approximation developed in the next section, these two measures are identical.

Consider now the question of defining the center. Let j(ζ) denote the density associated with
a definition for the distribution of crossing points of reactive trajectories through a quasi-
committor isosurface. One choice for the center is the point of highest probability, In other
words, seek the path ζ = Z(s), 0 ≤ s ≤ 1, each of whose points Z(s) is a local maximum of the
density j(ζ) on the quasi-committor isosurface Σ passing through Z(s). This is what we use
for the MFTP. Another choice, associated with the finite-temperature string method, is to
construct the path from the mean value ζ′ on each quasi-committor isosurface Σ: the point ζ′
that minimizes ∫Σ|ζ′ – ζ|2j(ζ)dζ. Although this notion is a superior measure of centrality, it is
more complicated to explain. In practice, methods for finding a maximum are designed only
to find a local maximum, which is what we do for the MFTP. This is satisfactory if there is a
choice of collective variables that produces a free energy landscape free of roughness at the
scale of the thermal energy.20 In any case, the equations defining a center-of-density path
are intrinsically more expensive computationally to solve than those for the MFTP, because
they require averaging on quasi-committor isosurfaces q̂(ζ) = constant (in addition to
conditional averages on collective variable isosurfaces ξ(x) = ζ in full configuration space)
rather than merely determining a (local) maximum.

These definitions for the center are flawed, however. “Collective variable space” is a set of
points, each point ζ representing a manifold ξ(x) = ζ in configuration space of dimension 3N
− ν. A change of variables within collective variable space, ξ(x) = χ(ξ′(x)), should not change
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the path, only its representation. This can be achieved by defining a metric tensor M(ζ) for
measuring distances—the distance from ζ to ζ + dζ being given by (dζ⊤M(ζ)dζ)1/2—which
somehow measures the distance between two infinitesimally close manifolds in
configuration space. (Being a tensor means that Mξ′(ζ′) = (∂χ/∂ζ′)⊤Mξ(χ(ζ′))∂χ/∂ζ′.)
Appendix A derives a correction factor for hypersurface area, and accordingly, we define a
corrected last hitting point density

A natural choice for M(ζ) arises during the course of deriving the hitting point density.

3 A method
As stated previously, computing q̂(ζ) is not feasible. Consequently, we derive a method,
which employs three uncontrolled approximations—a controlled approximation being one
that can be made arbitrarily accurate with sufficient computational effort. Section 3.1
approximates paths in collective variable space by those of Brownian dynamics; Section 3.4
assumes most paths lie in a tube where isocommittors are planar; and Section 3.5 assumes
that on average the trajectories are parallel to the path. The basic ingredients of much of this
development are present in the literature but scattered among several articles. Here they are
combined to produce equations from which we derive the MFTP.

3.1 Brownian dynamics approximation of collective variable paths
The probability density function (p.d.f.) for ξ(x) is

where δ(ζ) = δ(ζ1)δ(ζ2)⋯δ(ζν). Let 〈·〉ζ be the expectation for the conditional density ρ(x, p|
ξ(x) = ζ):

In Appendix B is an adaptation of an argument from Ref.9 (Sec. III, A and B) suggesting
that as an approximation to q̂(ζ), we should seek a function q(ζ) that minimizes a certain
functional I(q) that can be expressed in terms of collective variables ζ. Define the free
energy F(ζ) for coordinates ζ = ξ(x) by

(1)

Also define a proto-diffusion tensor D by

(There is freedom in the scaling of D. We use this freedom to make Eq. (4) below agree with
an alternative derivation of the Brownian dynamics, in which one assumes instantaneous
relaxation of the degrees of freedom not represented by the collective variables. The tensor
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D(ζ) fails to be a diffusion tensor because it is missing a time scale factor.) The functional is
then

(2)

where the integral is over the transition region outside of Aξ and Bξ subject to q(ζ) = 0 on the
boundary of Aξ and q(ζ) = 1 on the boundary of Bξ.

The corresponding Euler-Lagrange equation for q(ζ) is the Smoluchowski (backward
Kolmogorov) equation:

(3)

subject to q(ζ) = 0 on the boundary of Aξ and q(ζ) = 1 on the boundary of Bξ.

The function q that satisfies the Smoluchowski equation subject to the given boundary
conditions can be shown to be the exact committor function for paths ζ = ζ(τ) in collective
variable space generated by the Brownian dynamics

(4)

where  and η(τ) is a collection of standard white noise processes. The fact that τ
is an artificial time does not affect the committor. In principle, the assumption q(ζ) ≈ q̂(ζ)
can be checked a posteriori by comparing committor values of the Brownian dynamics to
the quasi-committor values of actual dynamics.

Reference9 (Sec. III.C) appears to suggest that the Smoluchowski equation uniquely
specifies dynamics except for scaling of time: If the Smoluchowski Eq. (3) is satisfied by

committors q(ζ) for arbitrary sets  and  in collective variable space, then trajectories
whose committor functions satisfy Eq. (3) must have paths that are those of the Brownian
dynamics. Hence, paths in collective variable space can be generated with the proper
probabilities from the system of stochastic differential equations.

3.2 Last hitting-point distribution
Appendix C considers the rate at which reactive trajectories cross an arbitrary surface Σ that
separates collective variable space into two parts, one containing Aξ and the other containing
Bξ. The result given there is that the rate of the last crossing of Σ by reactive trajectories is
given by the integral

where n̂(ζ) points to the side containing Bξ, and

is the last hitting-point flux. The choice of the last hitting point to represent the point where
a reactive trajectory crosses an isocommittor is somewhat arbitrary. Therefore, it is
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gratifying to know that the expression for J(ζ) also gives the net flux and the first hitting-
point flux of reactive trajectories.

The normal to an isocommittor is given by n̂(ζ) = ∇q(ζ)/|∇q(ζ)|, so the distribution of last
hitting points on an isocommittor is proportional to

In particular, of interest is the flow rate through a tiny disk at ζ. Thus, we consider here the
corrected last hitting point density jc(ζ). A natural choice for M(ζ) is D(ζ)−1 because it
simplifies the expression for jc(ζ) and it can be shown to be a metric tensor. (D(ζ) is the

“harmonic” Boltzmann-weighted average of , and  is the
distance from the hyperplane ξ(x) = ζ to the hyperplane ξ(x) = ζ + Δζ at the point x.) Hence,
the corrected last hitting point density becomes

3.3 Defining the path
For computation it is convenient to label the isocommittors with the path parameter s. In
particular, denote by Σ(s), 0 ≤ s ≤ 1, the isocommittor passing through ζ = Z(s). Write q̄(s) =
q(Z(s)) and define σ(ζ) implicitly by

(5)

In this way the committor q(ζ) is decomposed into two independent parts: one part σ(ζ)
specifies the isocommittor label and the other part q̄(s) calibrates the isocommittors. Thus,
∇q(ζ) = q̄s(σ(ζ))∇σ(ζ), and the corrected normal flux is

(6)

(recalling that the subscript s denotes differentiation d/ds). Note that q̄s(σ(ζ)) is constant on
an isocommittor Σ(s), so it can be neglected when determining the center of intensity of
jc(ζ).

Each point Z(s) on the desired path maximizes the last hitting-point flux jc(ζ) on the
isocommittor q(ζ) = q(Z(s)). Hence, ∇jc(Z(s)) ‖ ∇q(Z(s)). To keep the derivation independent
of the calibration q̄(s), introduce a vector n(s), not necessarily normalized, such that n(s) ‖
∇q(Z(s)). Hence,

(7)

3.4 The localized tube assumption
Assume there exists a tube connecting Aξ to Bξ such that (i) on each isocommittor, regions
of high jc(ζ) are concentrated in the tube, (ii) each isocommittor is nearly planar in the tube.
This scenario is illustrated in Figure 2 below.
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Exploit the localized tube assumption by approximating the isocommittor through Z(s) as a
plane Π(s) with normal n(s). Hence, the isocommittor surface Σ(s) : σ(ζ) = s has the simple
description of a hyperplane,

(8)

These approximations (see Ref.11 (Sec. 6.6.1)) are sufficient to define a practical method
(see Ref.30 (Sec. 12)). The unknown direction vector n(s) is to be chosen to minimize the
integral I(q)) of Eq. (2) restricted to some tube. For simplicity the boundary points Z(0) and
Z(1) can be moved to points in Aξ and Bξ that locally minimize F(ζ). In this way the problem
of solving for a committor of many variables is reduced to that of a one-dimensional
calculation along the length of the tube.

It remains to derive the condition that determines Z(s). This is done in Appendix D, where it
is shown that the condition is

A further simplification is to assume (iii) D(ζ) is nearly constant on each isocommittor
within the tube. More specifically, approximate D(ζ) by D(Z(σ(ζ))). Then, as shown in
Appendix D, the above condition simplifies to

(9)

3.5 The maximum flux transition path
Although the localized tube assumption is sufficient for defining a practical method, the
method would not be simple, so we make an additional simplifying assumption: Assume the
flux J(ζ) points in the direction of the path so that J(Z(s)) ‖ Zs(s) or D(Z(s))∇q(Z(s)) ‖ Zs(s),
whence

As it can be shown, the result is a maximum flux transition path

(10)

(The simplifying assumption is justified, for example, if the probability is strongly peaked
around the path, resulting in most of the probability contained in a narrow tube with a flux
J(ζ) pointing in the direction of the tube and the path.) This assumption is also made for the
FTS method, see Eq. (14) of Ref.19 and Sec. II.A. of Ref.20 Geometrically, this condition
means that instead of having the free energy gradient vanish orthogonal to the path, it is
balanced by a “centripetal” force, which reduces curvature and avoids cusps.

To express Eq. (10) as an equation, write it as −βc(Z, Zs)2∇F+ − c(Z, Zs)∇ζc(Z, Zs) +
(D−1Zs)s = λD(Z)−1Zs where λ is a scalar and premultiply by  to obtain an expression for
λ. After eliminating λ, the equation becomes
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(11)

where .

Note that, if D is constant, the limit β → 0 for Eq. (11) gives a geodesic Zss = 0, which is the
desired result.

In the two-dimensional case with D = I, the Euclidean length of
 is exactly equal to the curvature, which is defined to be the

reciprocal of the radius of curvature. To see this, note that this is true if we parameterize
with (actual) arc length and note also that the curvature term is independent of
parameterization (which can be checked analytically).

If we normalize the parameterization using (d/ds)c(Z,Zs) = 0, this implies

Combining with Eq. (11), we have

(If the normalization  is used instead, the equation has the same form but with the
projector  .)

The presence of partial derivatives of D(ζ) can be awkward. From the simplified condition
Eq. (9), we get the simplified maximum flux transition path (SMFTP)

(12)

We will implement the SMFTP in the following section; a similar procedure can be devised
for the MFTP.

Values obtained from constructing the path can be used to calculate the free energy F(Z(s))
along the path,

(13)

However, F(Z(s)) is not a potential of mean force for the transition.

3.6 The minimum free energy path
The simplifying assumption of the preceding subsection, which is used to derive the MFTP,
is valid in the limit β → ∞ in the Brownian dynamics approximation; see Ref. 11 (Sec. 6.6)
and Ref.9 (App. A). A more systematic derivation might therefore neglect the curvature
term. The result would be a minimum free energy path
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Each point ζ = Z(s) on the MFEP is a local minimum of F(ζ) in the hyper-plane orthogonal
to D(Z(s))−1Zs(s).

One difference from an MFTP is that an MFEP can have a cusp at an intermediate local
minimum. If the path passes sufficiently close to a local minimum ζ = ζ0 of F(ζ), then for a
short section of the path, ζ = Z(s), a ≤ s ≤ b, a quadratic approximation to F(ζ) is accurate.

Assume D = constant and  constant, where A is symmetric
positive definite. The MFEP is then defined by Zs ‖ − βDA(Z − ζ0). Perform a change of

variables,  where QΛQ⊤ is a diagonalization of . The
MFEP for Y(s) is hence given by Ys ‖ −ΛY. For simplicity, suppose that Y = [x, y]⊤, that x(a)
< 0 < x(b), and that Λ = diag(λ, µ) with λ > µ. The path is hence defined by ys/(µy) = xs/(λx),
which can be integrated to yield the path

which has a cusp at x = 0.

The FTS method path is also likely to suffer from the presence of cusps, because for a
harmonic potential, the average position is the same as the most probable position.

The presence of cusps undermines the localized tube assumption. In particular, the
assumption of isocommittors being approximately planar breaks down at a cusp. This poses
a difficulty when computing quantities that are averages on isocommittors. Additionally,
cusps complicate the numerical approximation of paths.

4 An algorithm
An algorithm for calculating a transition path employs a progression of four controlled
approximations: discretization of the path ζ = Z(s) and the equations that define it; a finite
number of iterations for the solution of nonlinear discrete equations; use of restraints for
constrained sampling; and finite sampling.

4.1 Discretization
The path Z(s), 0 ≤ s ≤ 1, is approximated as a piecewise polynomial with break points 0 = s0
< s1 < ⋯ < sJ = 1. Here we choose a uniform mesh s = 0, Δs, …, 1 and obtain the path by
piecewise linear interpolation. Thus the problem is reduced to determining unknown nodal
values Zj ≈ Z(sj), j = 0,1,…,J, each representing a replica of the system in a different
configuration.

It is convenient for computation to use for the path parameter s the arc length along the path
divided by the total length of the path. In such a case, |Zs(s)| is constant. The arc length
normalization becomes

Eq. (12) is written as
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This is discretized by the finite difference scheme

and where

(14)

(15)

with

We choose upwinded differencing for (Zs)j based on the direction of the modified mean
force gj:

(16)

In the unlikely event that both conditions are satisfied, the choice is dictated by the arc
length normalization step of the simplified string method to be discussed next.

Analogous to the development in Section 3.5, it is possible to use the parameterization
normalization to get a nonsingular second order difference equation for the values Zj, but
this is omitted because the solution method uses the formulation given here.

For the MFEP, cusps can occur at some intermediate local minima, requiring an adaptive
mesh to resolve.

4.2 Solution of nonlinear discrete equations
A second component of the algorithm is an iterative method for achieving rapid local
convergence given a plausible initial guess.

Because of its simplicity and demonstrated effectiveness, we adopt the semi-implicit
simplified string method used in Ref.22 (Eq. (11)). To determine a path, begin with an initial
guess and generate successive improvements by alternating between moving the points of
the curve Zj in the direction gj and reparameterizing.

The first step of each iteration is to solve the following equations for the :
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where  and (DsD−1Zs)j are given in Eq. (14) and Eq. (15). (The extra factor τ provides the
time scale factor missing from D.)

Then the normalization adjustment is to choose the {Zj} to be equidistant along the resulting
curve:

It can be shown that if the semi-implicit simplified string method converges, the resulting
points Zj satisfy a nonstandard discretization of the differential equation containing τ as a
parameter. In the limit τ → 0, the discretization becomes upwinded differencing.

For large systems, targeted molecular dynamics31 has been used to get an initial path.2,32
Another potentially promising but quite different approach is rigidity analysis.33

4.3 Conditional averages
Evaluation of ∇F and D at break points involves sampling on hyper-surfaces {x : ξ(x) = Zj}
of configuration space.

For calculating such conditional expectations, the Dirac delta function δ(s) can be
approximated by the p.d.f. of a Gaussian δε(s) = (2πε2)−1/2exp(−s2/(2ε2)). Note

where

(17)

Then, 〈O(x)〉ζ = 〈O(x)δε(ξ(x) − ζ)〉/〈 δε(ξ(x) − ζ)〉 is nothing but an average using U(x; ζ).
The effect is that of using restraining potentials instead of constraints. These restraints
should be as strong as possible without restricting the step size used in the sampling. From
constξ exp(−βF(ζ)) = 〈δε(ξ(x) − ζ)〉, we have

4.4 Sampling

We would like to estimate the statistical error of . Ideally, we want the standard deviation
of the estimate smaller than some given tolerance. The major contribution to the sampling
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error of  comes from that of (∇F)j, because of the cancelation and subsequent
multiplication by ε−2. Thus, we neglect the statistical error of Dj in estimating the error of gj.
So then, the statistical error of  comes from the sample average of , n = 1,2,
…,N, where N is the sample size. The statistical error is defined by (max0≤j≤Jerror bar of
Δj)τ2, where an error bar is an estimate of 1 standard deviation. Such an estimate can be
obtained using block averaging as in Ref.34 (Appendix D.3). In general, 32 blocks is a
reasonable choice.

At each iteration, the configuration x from the previous iteration could be used to start the
equilibration of the molecular dynamics. Thus, it is necessary that values of x be stored such
that ξ(x) = Zj, j = 0,1,…,J. It is reasonable to expect less equilibration time is needed in later
iterations as the path converges.

5 Numerical tests
5.1 An artificial problem

As an example to illustrate our method, consider a problem finding the MFTP and MFEP for
the potential energy function

where the energy unit is kcal/mol and the mass matrix M has identical diagonal entries.
Unless specifically mentioned, the inverse temperature β−1 = 0.59595 kcal/mol,
corresponding to 300 K. In particularly, we take collective variables ζ = ξ(x,y) = (x,y). In this
case, the MFEP becomes a minimum energy path (MEP). Alternatively, an MEP can be
considered as an MFEP for which we have an accurate estimate of F(ζ).

In Figure 3, we show an MEP connecting two local minima through the third local
minimum. The MEP has a cusp at the intermediate minimum. The MEPs are computed
using the simplified string method with piecewise linear interpolation and equal arc length
normalization. The time step τ2 = 0.01. The iteration is stopped if d < 0.00005, where

. From the figure, we can see that the cusp is missing if the number of
images (J + 1 = 10) is too small. Also, the MEP does not go through the intermediate local
minimum as it should, even with many images (J + 1 = 80).

A calculation (not shown here) similar to that for Figure 3 was done for the MFTP. The
MFTP is calculated using the semi-implicit simplified string method described in Section 4.
The MFTP can be resolved using a relatively small set of images, for example, the MFTP
calculated by only 10 images (J = 9) is almost indistinguishable from the one calculated
using 80 images (J = 79). The MFTP avoids the cusp problem.

The MFTP generates different paths at different temperature. Figure 4 shows MFTPs at 3 K,
30 K, 300 K, 3000 K, 30000 K, respectively. It is clear that the MFTP is close to the MEP at
low temperature (3 K) and is close to a straight line at high temperature (30000 K), which is
what we expect.

An FTS method path is expected to be similar to an MFEP for this example.
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5.2 Phi, psi for alanine dipeptide in vacuum
For comparison with the MFEP, we study alanine dipeptide at 300 K in vacuum.9 We
compare the MFEP and the MFTP with two dihedral angles ϕ and ψ as collective variables.
All simulations were performed using the CHARMM simulation program25,35 and the full-
atom representation of the molecule in the CHARMM force field.36,37 Langevin dynamics
with friction coefficient 10.0 ps−1 and time step 1.0 fs was used. For the calculation of ∇F
and D, harmonic potentials as in Eq. (17) were added involving the dihedral angles ϕ and ψ
with force constant k = 2000 kcal/(mol rad2). (k = 1/βε2 so ε = 1°.)

The initial path in collective variable space is a straight line between two points in (ϕ,ψ)-
space. The path is discretized into J + 1 images. The configuration of alanine dipeptide at
each image along the initial path is built using the IC module in CHARMM with dihedral
angles fixed at the interpolated values. Then follow 1000 steps of minimization and 50,000
steps of heating before the iteration starts. Each iteration of the path involves 50,000 steps of
equilibration and 500,000 steps of sampling (per image). The configuration at the final step
of sampling in the previous iteration is used as the initial configuration for the equilibration
in the next iteration.

We begin by comparing the MFTP and MFEP from C7eq to C7ax. The MFEP is calculated
using the simplified string method with linear interpolation between images and equal arc
length normalization. The MFTP is calculated using the semi-implicit simplified string
method. In Figure 5, the initial path is the straight line between (−83.2°,74.5°) and (70°,
−70°), which were determined as C7eq and C7ax in Ref.9 The path is discretized into 20
images. The time step τ2 = 0.16 in CHARMM time units squared, or τ2 = (19.56fs)2. The
statistical error estimated by block averaging using 32 blocks is ±0.00577°. The iteration is
stopped if d < 0.18°. (The tolerance value should be chosen properly since the statistical
error will eventually dominate the other errors so that d fluctuates about a positive number.)
It takes 34 and 31 iterations to converge for the MFTP and MFEP, respectively. The
computational cost for two methods is comparable. The path calculated for this problem by
the FTS method using the CHARMM force field is given in Figure 5 of Ref.19

Next we compare the MFTP and MFEP from C7eq to . In particular, we calculate the

transition path , in which C7ax serves as an intermediate metastable state.
The initial path is taken to be the straight line between (−80°, 80°) and (190°, −190°).
Figure 6 shows the MFTP and MFEP generated using 40 images. The time step τ2 = 0.16 in
CHARMM time units squared. The iteration is stopped if d < 0.18°. It takes 35 and 44
iterations for the MFTP and MFEP to converge, respectively. It is evident that the MFTP is
more efficient than the MFEP in this case.

5.3 Phi, psi for alanine dipeptide in solution
We also test our method for alanine dipeptide solvated in explicit water. Again, the
backbone dihedrals ϕ and ψ are used as collective variables to describe the transition. The
initial paths are straight lines connecting two points among (−77°, 138°), (55°, 48°), (60°,
−72°), and (−77°, −39°) in (ϕ, ψ)-space.

For preparing the simulation, each starting structure for alanine dipeptide with constrained ϕ
and ψ angels is solvated in a (20 × 18 × 15) Å3 box with 191 TIP338 water molecules and
equilibrated for 50,000 ps. The molecular dynamics are carried out with the CHARMM
program under the CHARMM22 force field. Periodic boundary conditions are used and the
electrostatic interactions are treated with the particle–mesh Ewald method.39 The system is
simulated at a constant pressure of 1.0 atm and a constant temperature 300 K with the
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algorithm based on Hoover’s methods. We use a 1-fs time step with the SHAKE40
algorithm to keep all bonds involving hydrogen atoms at fixed lengths.

In Figure 7, four MFTPs are calculated using the semi-implicit simplified string method.
Each iteration involves 50,000 steps of equilibration and 500,000 steps of sampling. The
transition paths are the result of 50 iterations. The path C7eq–αR calculated for this problem
by the FTP method using the CHARMM force field is given in Figure 12 of Ref.19 The
MFTP is similar to the FTS method path.

5.4 Alpha carbon coordinates for alanine decapeptide in vacuum
In this example, conformational change of alanine decapeptide from a α-helical structure to
a π helix is studied. Alanine decapeptide is a small molecule with 9 residues and 102 atoms,
terminated with methyl groups.41 The transition from one state to another involves breaking
and forming hydrogen bonds. In particular, the α helix forms hydrogen bonds between
residues i and i + 4, and the π helix forms hydrogen bonds between residues i and i + 5.

In defining the reaction, the backbone atoms are more important than side chain atoms.41 In
this study, we use the Cartesian coordinates of the 9 alpha carbon atoms as collective
variables. The MFTP is calculated using the semi-implicit simplified string method, where
the time step τ2 = 0.2 in CHARMM time units squared and the iteration is stopped if d <
0.004 Å. The initial path is a straight line connecting coordinates of the α helix and π helix
in collective variable space and it is discretized into 51 replicas. The molecular simulations
are done using CHARMM program with CHARMM22 all-atom force field. The harmonic
force constant is 200 kcal/mol/Å2 (ε = 0.0547Å). At each iteration, samples are taken from a
500-ps simulation following 50-ps equilibration. It takes 234 iterations before the path
converges. The more stringent stopping criterion requires more computational time, but it
gives a better quality path.

Figure 8 shows the free energy profile along the MFTP. The free energy is calculated using
Eq. (13). Specifically, F0 = 0, Fj = Fj−1 + (1/2)(∇Fj−1 + ∇Fj) · (Zj−Zj−1), j = 1,2,…,J. There
might be transition states at replica 20 and 49 and a marginal intermediate metastable state at
replica 23. Computation using backbone ϕ and ψ angels as collectiv variables yields a
similar free energy plot. The free energy plot along the transition path is similar to one of the
three MEPs in Ref.41 For the other two paths the transition takes place by passing through a
higher energy barrier than the energy difference between the α helix and π helix. It appears
that the transition from the α helix to π helix is not a barrier-crossing event.
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A A correction factor for hypersurface area
The flow rate through a tiny disk at ζ is j(ζ) times the area of the disk. Let D(M;ε) be a disk
of radius ε in the M(·)-metric on a quasi-committor isosurface at some point ζ. Then D(M;ε)
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is the intersection of the ball {ζ′ | (ζ′ − ζ)⊤M(ζ)(ζ′ − ζ) ≤ ε2} with the surface {ζ′ | n̂ · (ζ′ − ζ)
≈ 0}, where n̂ = ∇q̂/|∇q̂|. Let 1ε(u) = 1, 0 ≤ u ≤ ε, and 1ε(u) = 0, u > ε. Then,

After a change of variables ζ′ = ζ + M(ζ)−1/2ζ″, we have

where t̂ = M−1/2n̂/|M−1/2n̂|. Accordingly, we obtain a correction factor

B Derivation of Brownian dynamics approximation
The quasi-committor is related to a full phase-space committor q* defined in Ref.11 (Sec. 6.
2) as follows:

Note that q*(x, p) = 0 or 1, because the dynamical equation is deterministic. By definition,
the quasi-committor q̂(ζ) = 〈q*(x, p)〉ζ.

It is not difficult to show that q̂(ξ(x)) approximates q*(x, p) in the sense that it minimizes 〈|
q(ξ(x)) − q*(x, p)|2〉 over all q(ζ). However, this is not useful for determining q̂(ζ) because
q*(x, p) is too costly to compute. On the other hand, it is possible to find a best
approximation to q*(x, p) in another sense. Because q* is constant on a trajectory, we have

Consequently, q* satisfies the stationary Liouville equation

Since we do know Lq* = 0, we seek instead an approximation q that minimizes I(q) = 〈|
L(q(ξ(x)) − q*(x, p))|2〉, a standard tactic in numerical analysis. As shown in Sec. III.B of
Ref.,9 this simplifies to

which is to be as small as possible. A low value for I(q) is attained by having q(ζ) increase
monotonically from the value 0 on Aξ to the value 1 on Bξ, which is consistent with the
prescription given earlier that ξ(x) be chosen so that the quasi-committor has no local
minima or maxima outside of Aξ and Bξ.
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The functional I(q) can be expressed in terms of collective variables ζ as given by Eq. (2)
and shown in Eq. (15) of Ref.9

C Derivation of lasting hitting-point distribution
The proof of Proposition 5 in Ref.8 (p. 158) analyzes the flux of reactive trajectories. The
flux J(ζ) gives the rate at which such trajectories cross an arbitrary surface Σ that divides
collective variable space into two parts, one containing Aξ and the other containing Bξ, via
the integral ∫ΣJ(ζ) · n̂(ζ)dSζ where n̂(ζ) points to the side containing Bξ. The proof actually
examines not all crossings but only those occurring within a vanishingly small time interval
before the last crossing—see Eq. (50) of Ref.8 Therefore, it considers the net flux only in
this limiting sense. As the length of the time interval τ → 0, the positions of these crossings
all converge to the position of the last crossing. So, indeed, one gets the flux of the last
hitting point from Proposition 5 of Ref.8 The result given in Ref.8 (Eq. (39)), as well as in
Ref.10 (Eq. (6), Eq. (A12)), and Ref.11 (Eq. (62)), is that the last hitting-point flux for
reactive trajectories is J(ζ) = ρξ(ζ)D(ζ)∇q(ζ). (Proposition 4 of Ref.8 does not apply to the
infinitely damped case of Langevin dynamics.) The expression for J(ζ) also gives the net
flux of reactive trajectories, see Eq. (32) of Ref.11 Also, the formula for j(ζ) in Section 3.2
agrees in the special case D = I with that for the first hitting point distribution given in Ref.
42 (Appendix B). Last and first are the same for reversible dynamics like Brownian
dynamics. Finally, there is an example in Metzner, Schütte, and Vanden-Eijnden (2006)
section III.C, where it is suggested to use n̂ · J.

D Derivation of the maximum flux condition
We have from Eq. (1) and Eq. (6) that the normal flux is

(18)

where σ(ζ) is defined implicitly by q(ζ) = q̄(σ(ζ)). And for each point Z(s) on the desired
path, the condition to be satisfied Eq. (7) is ∇jc(Z(s)) ‖ n(s). Furthermore, the assumption Eq.
(8) that isocommittors are planar implies

(19)

Differentiating Eq. (19) w.r.t. ζ, we get

where the argument ζ of σ has been omitted, whence

(20)

Substituting Eq. (20) into Eq. (18), the normal flux becomes

where
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Note that

and

Thus, we have

and

Hence, the maximum flux condition is that

If we approximate D(ζ) by D ̄(σ(ζ)) where , then

and

Thus, the maximum flux condition simplifies to
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Figure 1.
A schematic illustration of a poor choice of collective variables. The horizontal axis is
collective variables, and the vertical axis is unrepresented degrees of freedom. The
collective variables fail to indicate the progress of the reaction.
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Figure 2.
Shading indicates contours of free energy, thin curves denote isocommittors, ellipses enclose
concentrations of crossing points from reactive trajectories, and the thick curve is the center.
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Figure 3.
Minimum energy path obtained using the simplified string method. The initial path is the
straight line between (−1,0) and (1,0). The path is discretized into J + 1 images. Four figures
are generated using J + 1 = 10, 20, 40, 80 images, respectively.
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Figure 4.
Maximum flux transition path obtained using the semi-implicit simplified string method.
Here we used the same initial path and the same stopping criterion for convergence as for
Figure 3. The MFTPs are generated using 20 images at 3 K, 30 K, 300 K, 3000 K, 30000 K,
respectively (which roughly correspond to β−1 = 0.006,0.06,0.6,6,60 kcal/mol.) The contour
lines are separated by 0.25 kcal/mol.
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Figure 5.
Maximum flux transition path and minimum free energy path from C7eq to C7ax for alanine
dipeptide in vacuum at 300 K. Triangles are images of the initial path; rectangles are the
images of the maximum flux transition path; and circles are the images of the minimum free
energy path. The contours are those for the zero-temperature free energy (adiabatic energy).
The contour lines are separated by 0.6 kcal/mol.
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Figure 6.
Maximum flux transition path and minimum free energy path for alanine dipeptide from

C7eq to  passing by C7ax in vacuum at 300 K. The figure is generated using 40 images.
Triangles are the images for the initial path; rectangles are the images of the maximum flux
transition path; and circles are the images of the minimum free energy path. The contours
are those for the zero-temperature free energy. The contour lines are separated by 0.6 kcal/
mol.
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Figure 7.
Maximum flux transition paths for alanine dipeptide in solution. The transition paths are
calculated by the semi-implicit simplified string method with the nearby straight lines as
initial paths.
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Figure 8.
Free energy profile along the transition path.
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