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     BACKGROUND 

 Because of the wide range of vectors able to transmit malaria, 
each with unique ecological requirements, malaria is transmit-
ted in a wide range of eco-epidemiological settings. The dis-
ease can be coarsely grouped into four such settings: malaria 
of deep forests, forest fringe, and hills; rural malaria attribut-
able to water-resources development (e.g., irrigation and large 
dams); rural malaria attributable to wetlands, rivers, streams, 
coasts, and non-agricultural manmade habitats; and urban and 
peri-urban malaria. 1  Within counties and even across rela-
tively small areas, there may be variations in eco-epidemiolog-
ical settings and thus, variations in malaria epidemiology. 

 The advancement of geographical information systems 
(GIS) and spatial statistics has greatly improved our under-
standing of malaria dynamics, including its dependence on 
ecological factors. 2–  9  More recently, Bayesian geostatistics have 
been embraced for disease mapping, with the advantages that 
both environmental covariates and spatial autocorrelation are 
able to be estimated simultaneously and that full posterior dis-
tributions are produced, which can be used to quantify uncer-
tainties in parameters of interest (e.g., predicted prevalence of 
infection). 10  Spatial prediction models have been used to pro-
duce malaria risk maps at national, 3,  8,  11–  18  sub-continental, 18,  19  
and global scales. 20,  21  

 Within Bangladesh, malaria is recognized to occur in two 
different ecological zones, hilly forested areas and floodplain 
areas, 22  with separate vectors thought to sustain transmission 
in the different zones. 23  In 2006, the Global Fund for AIDS, 
Tuberculosis, and Malaria awarded Bangladesh $39.6 million 
US dollars (USD) to support the national malaria-control 

program. 24  Three key objectives of the program are to provide 
effective diagnosis and treatment to 80% of estimated malaria 
cases by 2012, to promote the use of long-lasting insecticidal 
nets (ITNs) in 80% of households in these districts, and to 
use selective indoor residual spraying (IRS) for containment 
of outbreaks. 24  To help guide the program, a comprehensive 
malaria survey was conducted in malaria-endemic areas in 
Bangladesh in 2007. 25  

 The aim of this present study was to produce accurate, vali-
dated maps of predicted  Plasmodium falciparum  prevalence 
for 2- to 10-year-old children ( Pf PR 2–10 ) in the endemic areas 
of Bangladesh and identify high-risk populations at a preci-
sion useful for national and sub-national level control priority 
settings. The applicability of the methods and the implications 
of the results are discussed in the context of Bangladesh’s 
malaria-control program, which faces challenges of high-
risk areas in remote locations and the spread of multi-drug–
resistant  P. falciparum . 26,  27  

   METHODS 

  Datasets.    Malaria survey data.   Data analyzed had been 
collected during a 2007 malaria-prevalence survey across 
the malaria-endemic thanas (fourth administrative unit) in 
Bangladesh 25  ( Figure 1 ). The endemic thanas lies within 13 
of 64 districts (third administrative unit) in Bangladesh and 
represents approximately 10% of the country’s population. 
Based on existing knowledge of malaria prevalence in the 
country, the survey was designed using a multi-stage cluster 
sampling technique more fully described in Haque and 
others. 25  Blood samples from 9,750 people (0–92 years of 
age) were tested, with diagnosis based on the results of rapid 
diagnostic tests (RDTs). The average  Plasmodium  prevalence 
was 3.97%, with 90% of cases being  P. falciparum . 25  The 9,750 
individuals could be geo-located to 354 villages. 
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  Because of the development of immunity,  Pf PR is age-
dependent, rising during early childhood, peaking in older 
children, and falling through adolescence and adulthood 
under stable endemic transmission. The assembled  Pf PR 
data were, therefore, standardized to the classical age range of 
2–10 years using an algorithm based on catalytic conversion 
models first adapted for malaria by Pull and Grab 28  and modi-
fied by Smith and others. 29  

   Environmental variables.   A number of ecological and 
climatic factors affect both the extrinsic life cycle of the 
malaria parasite and that of the  Anopheline  vectors. 30  Based 
on published literature, variables thought pertinent to malaria 
transmission in Bangladesh were selected for statistical 
analysis. 

 A measure of vegetation cover was selected for analysis as 
the principle malaria vector in Bangladesh;  Anopheles dirus  

( An. dirus ) is known to be a forest-breeding mosquito. 23,  31  
Data concerning vegetation cover were obtained from the 
GlobCover Land Cover product, which is derived from satellite 
imagery from 2005 to 2006. 32  Vegetation was labeled accord-
ing to the United Nations (UN) Land Cover Classification 
System 33  at a resolution of 300 m. For this analysis, vegetation 
cover was dichotomized into forested, which included a num-
ber of more specific forest categories, and not forested, which 
included all other vegetation categories). Enhanced vegetation 
index (EVI) data were generated using methods described by 
Scharlemann and others. 34  

 Increases in altitude are commonly associated with cooler 
temperatures, thus providing a less suitable environment for 
malaria transmission, 35–  37  whereas increased precipitation 
has been found to support malaria transmission by creat-
ing additional water bodies for malaria vectors to complete 

  Figure  1.    District map of Bangladesh showing the  Pf PR 2–10  from the 354 villages geo-located and the location of Bangladesh within the Asia-
Pacific region ( Inset ). This figure appears in color at  www.ajtmh.org .    
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their lifecycle. 38,  39  Data for elevation, minimum temperature, 
and precipitation were obtained from the WorldClim Project 
at 1 km 2  resolution. 40  Peak malaria season in Bangladesh is 
from May to August, 41  coinciding with the monsoon season. 
Monthly precipitation and temperature were obtained for 
6 months over the period from April to September. Values 
were averaged to give mean minimum temperature and 
monthly precipitation over this monsoonal period. 

 Rural and remote populations are purported to face differ-
ent malaria risks compared with those in urban areas, 42–  46  par-
ticularly with respect to access to health care and prophylactic 
measures, including bed nets. To further investigate this rela-
tionship between malaria prevalence and remoteness, acces-
sibility (measured as travel time in minutes) to the nearest 
settlement of size > 50,000 people was calculated using the 
methods outlined in Uchida and Nelson, 47  which are based 
on GIS data of road networks, road quality, land cover, settle-
ments, and topography. 

 Using the spatial analyst extension of the GIS software 
ArcView version 9.3 (ESRI, Redlands, CA), data on vegeta-
tion, precipitation, minimum temperature, EVI, and access 
were extracted for the 354 village locations. 

   Population data.   Gridded population data for 2005 at a 
resolution of 30-arc second (approximately 1 km 2 ) were 
obtained from the Global Rural-Urban Mapping Project 
(GRUMP) 48  and imported into ArcMap. A 2008 study found 
GRUMP to be the most accurate spatial population dataset 
available. 49   The 2005 population data was projected forward 
to 2007 using the UN determined growth rate of 1.7% per 
annum for Bangladesh over this period. 50  

    Analysis.    Assessing spatial autocorrelation.   Statistical anal-
yses of spatial autocorrelation in the prevalence data were done 
using semivariograms in R version 2.9.0 (The R foundation 
for Statistical Computing, Vienna   ) with the GeoR package. 

   Assessing ecological variables.   Backwards step-wise regres-
sion analysis was conducted on environmental variables 
(EVI, elevation, precipitation, minimum temperature, forest 
cover, and access) using the Stata/SE Version 10 (Stata Corp., 
College Station, TX) statistical software package to determine 
their inclusion into the final spatial prediction models. Those 
variables with a  P  < 0.1 were retained. 

   Bayesian geostatistical model.   Spatial prediction models 
were constructed based on the principle of model-based 
geostatistics 51  using the Bayesian statistical software WinBUGS 
version 14.1 (MRC Biostatistics Unit, Cambridge, UK). Based 
on the RDT results, a binomial logistic regression model was 
constructed with the proportion infected at each surveyed 
location as the outcome. The predictor variables included two 
components: a deterministic component consisting of the fixed 
environmental effects and a stochastic (i.e., random effect) 
component with covariance in the random effects modeled 
using an isotropic, stationary spatial autocorrelation function. 
For comparison, two similar models were constructed, one 
without the deterministic component and one without the 
stochastic component. The deviance information criterion 
(DIC) statistic was calculated for the models to determine 
statistically if inclusion of both fixed and stochastic effects 
improved model fit (models with a lower DIC statistic are 
considered to show a better fit). 

 To predict the prevalence at unsampled sites within the 
endemic thanas, a grid of prediction locations was generated 
with locations spaced at 0.01 decimal degrees (approximately 

1 km). Using the in-built  spatial.unipred  function in WinBUGS, 
the geostatistical random effect was interpolated to all pre-
diction locations, and predicted prevalence was calculated by 
adding the random effect to the sum of the products of the 
coefficients for the covariates and the values of the covariates 
at each prediction location. The key outputs of this final anal-
ysis are probability distributions of the predicted prevalence 
at each of the unsampled locations, with each of distributions 
able to be summarized by a median, standard deviation (SD), 
and credible intervals (CrI). In this analysis, the median and 
lower 25% and upper 75% CrI will be presented. 

   Model validation and measures of uncertainty.   Validation of 
predicted prevalence was undertaken by partitioning the data 
into five random subsets, running the model using four of five 
subsets, and validating the model with the remaining subset. 
Five separate models were run, each with a different subset 
excluded for validation. The accuracy of the prediction was 
determined in terms of area under curve (AUC) of the receiver-
operating characteristic (ROC), with observed prevalence, 
dichotomized at 0 and ≥ 0, taken as the comparator. This 
gave an indication of the ability of the model to discriminate 
between areas where transmission did and did not occur. Mean 
error and mean absolute error values were also calculated for 
the predicted prevalences to give an indication of prediction 
bias and overall precision respectively. 

   Defining at-risk population.   Using the mean predicted 
 Pf PR 2–10  various at-risk populations, > 0.5%, > 1.0%, and 
> 5.0%, were defined. The adjusted GRUMP population surface 
was used to calculate population at risk and the predicted 
number of cases at a given point in time. With high-risk areas 
purported to occur in remote locations, the aforementioned 
accessibility surface was used to determine number of cases 
reached by targeting 80% of the most affected populations (i.e., 
those with the highest predicted prevalences) or alternatively 
targeting 80% of at-risk populations that are most accessible 
(i.e., closest to centers > 50,000 people). 

     RESULTS 

 The spatial distribution of  Pf PR 2–10  in the 354 location vil-
lages surveyed is presented in  Figure 1 . A diagnostic vario-
gram ( Figure 2 ) revealed that spatial autocorrelation was a 
feature of age-standardized data with spatial autocorrelation 
observed at distances up to approximately 50 km. More sim-
ply, malaria prevalence at a given location is affected by the 
prevalence of neighboring locations (at distances of up to 
50 km), necessitating the use of a geostatistical model to 
correct for this observed spatial dependence. 

  Forest cover, minimum temperature, and elevation were 
retained from the backwards step-wise regression analysis and 
included as fixed effects in the models. The model with both 
fixed and random effects performed marginally better than 
the model with no fixed environmental effects, with a DIC of 
404.1 compared with 405.5 ( Table 1 ). These two models had 
similar predictive performance, but the model including fixed 
environmental effects had marginally lower mean error and 
mean absolute error estimates ( Table 2 ). 

           Maps of the median and lower 25% and upper 75% Bayesian 
credible interval for the posterior distributions of  Pf PR 2–10  in 
Bangladesh are also presented in  Figure 3 . The distribution of 
 P. falciparum  shows a large degree of heterogeneity ranging 
from 0% to 50%. 
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  Approximately 6.2 million, 3.1 million, and 0.7 million 
people were calculated to be living in areas with a predicted 
 Pf PR 2–10  of > 0.5%, > 1.0%, and > 5.0%, respectively ( Table 3 ). 
Within these different at-risk populations, targeting the 80% 
of the population closest to centers > 50,000 people reached 
far fewer cases than if priority was given to reaching the 80% 
in highest prevalence areas. 

       DISCUSSION 

 The results of this analysis build on the findings of the 
Malaria Atlas Project (MAP), which previously defined the 

spatial limits of malaria within all endemic countries, 20,  21  to 
present a more detailed empirical description of malaria risk 
in Bangladesh. The findings indicate that malaria in the coun-
try exhibits a unique spatial pattern, with varying prevalence 
levels and significant and justifiable relationships to environ-
mental variables. Importantly, there exist areas of relatively 
high transmission that should not be neglected because of 
their remoteness. 

 The presentation of spatial variation in disease risk is one of 
the most important functions of spatial analysis, 52  with a diag-
nostic semi-variogram the first step in this process. For malaria 
in Bangladesh, the observed spatial autocorrelation at dis-
tances up to 50 km is approximately one-half of that observed 
in Kenya 17  but about 10 times that observed on a small island 
in Vanuatu. 11  The practical implication of this is that malaria 
control in Bangladesh will need to be targeted at a finer spa-
tial scale than in Kenya but not with the same precision as that 
in Vanuatu. 

 The observed variation in risk can then be formally included 
in the geostatistical model to generate a continuous predic-
tion surface, with this surface being the enabling link between 
the original point-prevalence survey and instructive outputs 
to guide the control program. For example, if the program 
managers decide that they will first target populations living 
in areas with prevalences above 5%, the predicted prevalence 
map shown in  Figure 3  clearly demarcates their targeted area. 
The calculations in  Table 3  are then able to inform program 
managers of the number of bed nets, for example, that need 
to be procured to cover 80% of the population in this area. 
The number of cases averted, however, will depend on which 
80% of the population is provided with bed nets: those liv-
ing closest to settlements > 50,000 people or those living in 
the highest risk areas. This has important implications in meet-
ing the first key objective of the control program, which is 
to effectively diagnosis and treat 80% of estimated malaria 
cases. 

 Targeting those higher endemicity regions located within for-
ested areas will become particularly important as Bangladesh 

  Table  1 
  Results of Bayesian geostatistical models for Bangladesh  Pf  PR 2–10  in 2007  

Coefficient (posterior mean) Odds ratio (posterior mean; 95% Bayesian credible intervals) * DIC † 

Bayesian geostatistical model with environmental covariates and no random spatial effect
α (intercept) −2.42 (−3.67 to −1.46)
Elevation 0.64 (0.06–1.05) 14.72 (1.29–82.45) OR/100 m
Minimum temperature 0.35 (0.07–0.82) 1.23 (1.02–1.31) OR/°C
Forest ‡ 1.93 (1.51–2.22) 6.87 (4.52–9.23)
DIC 593.7

Bayesian geostatistical model with spatial random effect but no environmental covariates
α (intercept) −4.96 (−5.92 to −3.93)
Φ (rate of decay of spatial correlation) § 4.07 (1.19–8.12)
σ 2  (variance of geostatistical random effect) ¶ 4.17 (2.38–10.0)
DIC 405.2

Bayesian geostatistical model with spatial random effect and environmental covariates
α −5.34 (−6.18 to −4.56)
Φ 7.96 (1.96–24.64)
σ 2 3.0 (1.72–6.67)
Elevation 0.34 (0.08–0.84) 4.17 (1.40–34.11) OR/100 m
Minimum temperature 0.77 (0.21–1.37) 1.29 (1.07–1.58) OR/°C
Forest 0.79 (0.15–1.52) 2.34 (1.61–4.73)
DIC 404.1

  *   Bayesian credible intervals can be interpreted as having a similar meaning to confidence intervals used in frequentist statistics.  
  †   Models with a lower DIC statistic are considered to show a better fit.  
  ‡   Unforested is used as the reference category.  
  §   The unit is change in spatial autocorrelation per decimal degree. A lower Φ indicates that spatial correlation occurs over longer distances (i.e., spatial clusters are larger).  
  ¶   A higher variance indicates a greater tendency to spatial clustering.  

  Figure  2.    Sample semi-variogram of  Pf PR 2–10  dataset indicating 
the presence of spatial autocorrelation in the  Pf PR 2–10  data up to lags 
of 0.5 decimal degrees (the equivalent of ~50 km at the equator).    
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scales up control operations with the forest foci thought to 
serve as reservoirs from which the lowland and floodplain 
areas are reinfected. 23  Movement of people to and from the 
forest not only provides a constant flow of malaria parasites 
from the forest to rural communities 53  but also exposes immu-
nologically naive individuals to high levels of transmission. 23  To 
what extent the flow of malaria from the hilly, forested regions 
maintains transmission in the unforested, lowland areas is an 
important issue that warrants further research. 

 An additional challenge for the national control program 
is the flow of drug-resistant malaria across the border from 
Myanmar. 54  Areas of elevated transmission along the border 
region with Myanmar, which can be identified from the risk 
maps ( Figure 3 ), present strategic locales for both the surveil-
lance of imported malaria cases and drug-resistant malaria. 
Any attempt to control malaria in Bangladesh is jeopardized 
by unmonitored migration across the border. 

 An earlier study identified the most influential environ-
mental parameters for the distribution of  An. dirus  to be for-
est cover, altitude, rainfall, and temperature. 55  The current 
analysis replicated the positive associations with forest cover, 
altitude, and temperature but did not find a significant rela-
tionship with rainfall, possibly because of high and relatively 

consistent levels of rainfall across the study region over the 
monsoonal period. The positive association between malaria 
risk and increasing elevation, although unusual for some vec-
tor species, is to be expected for  An. dirus , 55  with higher alti-
tudes providing denser forest cover and thus, a more favorable 
ecological environment. 56  

 As GIS and geostatistical techniques become more sophis-
ticated, there is a need to foster better links between malaria-
program managers and researchers such that the most useful 
data are generated and that these data are accessible and usable 
outside the research community. Strong research-program links 
in Kenya led to the development of a 2009 malaria-risk map 
for Kenya, which is now the cornerstone for planning the scale 
up of malaria interventions such as ITNs and malaria diag-
nostics in the country beyond 2009. 17  Additionally, risk maps 
and geo-spatial data are increasingly being used to support 
malaria elimination in the southwest Pacific. 11  With closer ties 
to national programs, the results of model-based geostatistics 
can be better used. 

 In conclusion, geographic targeting has tremendous poten-
tial to enhance the effectiveness of the national malaria-control 
program in Bangladesh. In Bangladesh, the areas of relatively 
high malaria transmission in the hilly, forested region pres-

  Table  2 
  Summary of validation statistics for predicting continuous  Pf PR 2–10  in Bangladesh in 2007  
Model AUC * Mean error †  (% prevalence) Mean absolute error ‡  (% prevalence)

Bayesian geostatistical model with spatial random effect and 
environmental covariates 0.78 (0.74–0.82) −0.11 5.06%

Bayesian geostatistical model with spatial random effect but no 
environmental covariates 0.77 (0.73–0.81) −0.16 5.64%

  *   Area under curve (AUC) between 0.5 and 0.7 indicates a poor discriminative capacity, 0.7–0.9 indicates a reasonable capacity, and > 0.9 indicates a very good capacity.  
  †   Mean error is a measure of the bias of predictions (the overall tendency to over or under predict).  
  ‡   Mean absolute error is a measure of overall precision (the average magnitude of error in individual predictions).  

  Figure  3.    Median predicted spatial distribution of  Pf PR 2–10  across the endemic thanas of Bangladesh at 1- × 1-km resolution, upper 75% pre-
dicted prevalence ( Upper Inset ), and lower 25% predicted prevalence ( Lower Inset ). This figure appears in color at  www.ajtmh.org .    
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ent an immediate starting point for malaria-control activities. 
Targeting this area will ensure that interventions reach those 
most susceptible and potentially, control the flow of malaria to 
lowland low-risk areas. Furthermore, the presented  Pf PR 2–10  
estimates may provide baseline information against which epi-
demiological changes can be compared as the malaria-control 
program in Bangladesh is scaled up. 

 Received March 10, 2010. Accepted for publication June 30, 2010. 
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