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Abstract
The registration of images is a task that is at the core of many applications in computer vision. In
computational neuroimaging where the automated segmentation of brain structures is frequently used
to quantify change, a highly accurate registration is necessary for motion correction of images taken
in the same session, or across time in longitudinal studies where changes in the images can be
expected. This paper, inspired by Nestares and Heeger (2000), presents a method based on robust
statistics to register images in the presence of differences, such as jaw movement, differential MR
distortions and true anatomical change. The approach we present guarantees inverse consistency
(symmetry), can deal with different intensity scales and automatically estimates a sensitivity
parameter to detect outlier regions in the images. The resulting registrations are highly accurate due
to their ability to ignore outlier regions and show superior robustness with respect to noise, to intensity
scaling and outliers when compared to state-of-the-art registration tools such as FLIRT (in FSL) or
the coregistration tool in SPM.

Keywords
image registration; robust statistics; inverse consistent alignment; motion correction; longitudinal
analysis

1. Introduction
There is great potential utility for information extracted from neuroimaging data to serve as
biomarkers, to quantify neurodegeneration, and to evaluate the efficacy of disease-modifying
therapies. Currently, the accurate and reliable registration of images presents a major challenge,
due to a number of factors. These include differential distortions that affect longitudinal time
points in different ways; true, localized anatomical change that can cause global offsets in the
computed registration, and the lack of inverse consistency in which the registration of multiple
images depends on the order of processing, which can lead to algorithm-induced artifacts in
detected changes. Thus, the development of an accurate, robust and inverse consistent method
is a critical first step to quantify change in neuroimaging or medical image data in general.
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Since the object of interest is typically located differently in each acquired image, accurate
geometric transformations are necessary to register the input images into a common space.
Approaches based on robust statistics are extremely useful in this domain, as they provide a
mechanism for discounting regions in the images that contain true differences, and allow one
to recover the correct alignment based on the remainder of the data. Inverse consistency is
critical to avoid introducing bias into longitudinal studies. A lack of inverse consistency in
registration is likely to bias subsequent processing and analysis, as documented in Yushkevicha
et al. (2009). The goal of this work is thus to develop a robust and inverse consistent registration
method for use in the analysis of neuroimaging data. The core application of this technique is
intra-modality and intra-subject registration with important implications for:

1. Motion correction and averaging of several intra-session scans to increase the signal
to noise ratio,

2. highly accurate alignment of longitudinal image data and

3. initial registration for higher-dimensional warps.

Although the remainder of this paper deals with neuroimaging data, the method can be used
for other image registration task as well.

Highly accurate rigid registrations are of importance when averaging multiple scans taken
within a session to reduce the influence of noise or subject motion. Since it is nearly impossible
for a person to remain motionless throughout a 20 minutes scan, image quality can be increased
by taking shorter scans and performing retrospective motion correction (Kochunov et al.,
2006). Many common sequences are short enough to allow for several structural scans of the
same modality within a session. Here even a slightly inaccurate registration will introduce
additional artifacts into the final average and likely reduce the accuracy, sensitivity and
robustness of downstream analysis.

Compared with cross-sectional studies, a longitudinal design can significantly reduce the
confounding effect of inter-individual morphological variability by using each subject as his
or her own control. As a result, longitudinal imaging studies are becoming increasingly
common in clinical and scientific neuroimaging. Degeneration in subcortical structures and
cortical gray matter is, for example, manifested in aging (Jack et al., 1997; Salat et al., 1999,
2004; Sowell et al., 2003, 2004), Alzheimer's disease (Dickerson et al., 2001; Thompson et al.,
2003; Lerch et al., 2005), Huntington's disease (Rosas et al., 2002), multiple sclerosis (Sailer
et al., 2003) and Schizophrenia (Thompson et al., 2001; Kuperberg et al., 2003; Narr et al.,
2005) and has been useful towards understanding some of the major pathophysiological
mechanisms involved in these conditions. As a result, in vivo cortical thickness and subcortical
volume measures are employed as biomarkers of the evolution of an array of diseases, and are
thus of great utility for evaluating the efficacy of disease-modifying therapies in drug trials.
To enable the information exchange at specific locations in space, highly accurate and unbiased
registrations across time are necessary. They need to be capable of efficiently dealing with
change in the images, which can include true neurodegeneration, differential positioning of the
tongue, jaws, eyes, neck, different cutting planes as well as session-dependent imaging
distortions such as susceptibility effects.

As an example see Figure 1 showing longitudinal tumor data (same slice of five acquisitions
at different times, MPRAGE, 256 × 256 × 176, 1mm voxels) registered to the first time point
(left) with the proposed robust method. The five time points are: 5 days prior to treatment start,
1 day prior, 1 day after treatment start, and 28, 56 days after treatment start. Despite of the
significant change in these images the registration is highly accurate (verified visually in non-
tumor regions). The bottom row depicts the outlier weights (red/yellow overlay), which are
blurry regions of values between 0 (outlier) and 1 (regular voxel) that label differences in the
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images. In addition to the longitudinal change in tumor regions and consequential deformation
(e.g. at the ventricles), the robust method also picks up differences in the scalp, eye region and
motion artifacts in the background. In our robust approach the influence of these differences
(or outliers) is reduced when constructing the registrations, while they have a detrimental
influence on the final registration result in non robust methods.

Statistically, robust parameter estimation has a history of supplying solutions to several
computer vision problems (Stewart, 1999) as it is capable of estimating accurate model
parameters in the presence of noise, measurement error (outliers) or true differences (e.g.
change over time). The approach presented here is based on robust statistics and inspired by
Nestares and Heeger (2000), who describe a robust multi-resolutional registration approach to
rigidly register a set of slices to a full resolution image. Our approach, however, is designed
to be inverse consistent to avoid introducing a bias. It also allows the calculation of an additional
global intensity scale parameter to adjust for different intensity scalings that can be present
especially in longitudinal data. A more complex intensity preprocessing is therefore not needed
in most cases. Furthermore, we automatically estimate the single parameter of the algorithm
that controls its sensitivity to outliers. This is a necessary addition, since a fixed parameter
cannot adequately deal with different image intensity scales, which are common in MRI. In
addition to the multi resolutional approach described in Nestares and Heeger (2000) we use
moments for an initial coarse alignment to allow for larger displacements and situations where
source and target may not overlap. Finally, we describe the registration of two full resolution
images (instead of only a set of slices) and explain how both rigid and affine transformation
models can be used in the symmetric algorithm. We demonstrate that our approach yields
highly accurate registrations in brain regions and out-performs existing state-of-the-art
registration algorithms.

The remainder of this paper is organized as follows. After discussing related work and
introducing the theoretical background, such as robust statistics in Section 2, we present our
symmetric registration model, different transformation models as well as intensity scaling in
Section 3. Then we describe the registration algorithm in detail, taking care that the properties
of the theory are carried over to the implementation (Section 4). We specifically focus on
maintaining inverse consistency by resampling both images into a `half-way' space in
intermediate steps as opposed to resampling the source at the estimated target location. This
asymmetric sampling, which is commonly used, introduces a bias as the target image will not
be resampled at all, and will thus be less smooth than the resampled source. In Section 5 we
demonstrate the superiority of the proposed method over existing registration algorithms with
respect to symmetry, robustness and accuracy on synthetic and real data as well as a motion
correction application. The software implementing the presented robust registration is publicly
distributed as part of the FreeSurfer (surfer.nmr.mgh.harvard.edu) software package as
mri_robust_register.

2. Background
2.1. Related Work on Registration

Over the last 20 years methods for the registration of images (and in particular medical images)
have been studied intensely (see e.g. Maintz and Viergever (1998); Maes et al. (1999); Hill et
al. (2001) for surveys and comparisons). Many different applications domains exist for
registration, including multimodal intra-subject registration, cross-subject volumetric
registration, surface-based registration etc…, each of which require domain-specific
approaches to maximize accuracy. Some of the most prominent intensity based algorithms are
Cross-Correlation (Collins et al., 1995), Mutual Information (MI) (Maes et al., 1997, 1999;
Wells et al., 1996), Normalized Mutual Information (NMI), and Correlation Ratio (CR) (Roche
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et al., 1998). Recently (Saad et al., 2009) found registration errors when comparing CR and
MI and proposed a new cost function using a local Pearson correlation.

Intensity based methods consider information from the whole image and are often deemed to
be more reliable and accurate than feature based methods (West et al., 1997, 1999). Driving
the optimizations based on geometrically defined features such as points (Schönemann,
1931; Evans et al., 1989; Bookstein, 1991), edges (Nack, 1977; Kerwin and Yuan, 2001),
contours (Medioni and Nevatia, 1984; Shih et al., 1997) or whole surfaces (Pelizzari et al.,
1989; Fischl et al., 1999; Dale et al., 1999; Greve and Fischl, 2009) has the advantage of
reducing computational complexity, but introduces reliability difficulties when extracting/
placing the features. Furthermore, extracting surfaces is a complicated and time consuming
process in itself and not feasible in cases where only an initial rigid registration is needed or
for the purpose of averaging two structural scans from the same session. Additionally, hybrid
approaches exist such as Greve and Fischl (2009), a surface based approach that additionally
incorporates information derived from local intensity gradients. Note that a large body of work
describes rigid registration in the Fourier domain, e.g. van der Kouwe et al. (2006); Bican and
Flusser (2009); Costagli et al. (2009), but since we expect and wish to detect spatial outliers/
change we operate in the spatial domain.

A number of different registration methods are implemented in freely available software
packages. The widely used registration tool FLIRT (Jenkinson et al., 2002), part of the FSL
package (Smith et al., 2004), implements several intensity based cost functions such as standard
least squares (LS), correlation ratio (CR) and mutual information (MI) as well as sophisticated
optimization schemes to prevent the algorithms from being trapped in local minima. Another
freely available and widely used registration tool is based on Collignon et al. (1995) and
distributed within the SPM software package (Ashburner and Friston, 1999). In this paper, we
use these two programs as standards to evaluate the accuracy and robustness of our technique.

Instead of applying a rigid or affine transformation model, more recent research in image
registration has focused on nonlinear warps, which typically depend on an initial affine
alignment. Non-linear models include higher-order polynomials (Woods et al., 1992, 1998),
thin-plate splines (Bookstein, 1989, 1991), B-splines (Unser et al., 1993; Kostelec et al.,
1998; Rueckert et al., 1999; Kybic et al., 2000), discrete cosine basis functions (Ashburner and
Friston, 1997; Ashburner et al., 1997), linear elasticity (Navier-Stokes equilibrium) (Bajcsy
and Kovavcivc, 1989; Gee et al., 1993) and viscous fluid approaches (Gee et al., 1993;
Christensen et al., 1994). Specifically a method described in Periaswamy and Farid (2006)
presents promising results. It is based on a linear model in a local neighborhood and employs
the expectation/maximization algorithm to deal with partial data. Similar to our approach, it
constructs a weighted least squares solution to deal with outlier regions, however, with an
underlying globally non-linear (and usually asymmetric) transformation model.

Several inverse consistent approaches exist for nonlinear warps. Often both forward and
backward warps are jointly estimated, e.g. (Christensen et al., 2001; Zeng and Chen, 2008).
Others match at the midpoint (Beg and Kahn, 2007) or warp several inputs to a mean shape
(Avants and Gee, 2004). Yeung et al. (2008) describe a post processing method to create a
symmetric warp from the forward and backward warp fields.

While nonlinear methods are often capable of creating a perfect intensity match even for scans
from different subjects (change information is stored in the deformation field), it is not trivial
to model and adjust the parameters of these algorithms, in particular the trade-off between data
matching and regularization. In addition, it is worth noting that perfect intensity matching does
not guaranty accurate correspondence. These methods need to be designed to allow the warp
enough freedom to accurately match the data while restricting the algorithm to force the warp
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to behave ̀ naturally', for example preventing the merging of two gyri into one, or more simply
to ensure smoothness and invertibility. Due to their robustness, transformation models with
low degrees of freedom are generally better suited for tasks where no change (e.g. motion
correction) or only little change (e.g. longitudinal settings) is expected. Furthermore, rigid or
affine registrations are frequently used to initialize higher order warps. We therefore focus on
highly accurate, low degrees of freedom, intensity based registrations in this work.

2.2. Robust Statistics
The field of robust statistics describes methods that are not excessively affected by outliers
or other model violations. Classical methods rely heavily on assumptions that may not be met
in real applications. Outliers in the data can have a large influence on the results. For example,
the mean is influenced arbitrarily by a single outlier, while the median is robust and stays fixed
even with outliers present. That is why robust parameter estimation plays an import role in
computer vision applications (see e.g. Stewart (1999)).

A measure for robustness is the breakdown point that describes the fraction of incorrect
(arbitrarily large) observations that can be present before the estimator produces an arbitrarily
large result. The breakdown point of the mean is 0 while for the median it is 0.5, which is the
maximum attainable, as for values above one half, it is impossible to distinguish between the
correct and the contaminating distribution.

M-estimators are a generalization of maximum likelihood estimators (MLEs) and were
introduced by Huber (1964). Instead of computing the estimator parameter θ minimizing

 for a family of probability density functions f of the observations x1 … xn
as done for MLEs, Huber proposed to minimize any general function ρ:

(1)

The mean, for example, minimizes the sum of squared errors, so ρ(xi, θ) := (xi − θ)2 (where
“:=” means “define”). The median can be understood as an M-estimator minimizing the sum
of absolute errors ρ(xi, θ) := |xi − θ|. Since most commonly used ρ can be differentiated, the
solution can be computed by finding the zeros to Σψ(xi, θ) with ψ(xi, θ) := ∂ρ(xi, θ)/∂θ. For
most ρ and ψ no closed form solutions exist and iterative methods are used for the computations.
Usually an iteratively reweighted least squares (IRLS) algorithm is performed (see next
section).

A specific ρ used often in robust settings is the Tukey's biweight function (see Figure 2):

(2)

For small errors the biweight is similar to the squared error, but once a specific threshold c is
reached it flattens out. Therefore large errors of outliers do not have an arbitrarily large
influence on the result. Often the (scaled) derivative of ρ:
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(3)

is referred to as the Tukey's biweight function, as it is used in the actual computations.

To further highlight the difference between the robust and least squares approach Figure 3
depicts the distribution of the residuals after a successful registration (zoom-in into the
histogram of residuals normalized by the number of voxels). For least-squares registration, the
ideal residuals would be Gaussian noise, and in fact most residuals are around zero (the high
peak there is cut off by the magnification). However, due to true differences in the images
caused by distortion and anatomical change, larger residuals exist that cannot be explained by
Gaussian noise models. These regions have extremely low probability under the Gaussian
model (red curve in Fig. 3), which causes them to have a disproportionately large influence on
the registration. As mentioned above, even a single large outlier can have an arbitrarily large
effect on the result of the least-squares registration that is only optimal for zero-mean, unit
variance Gaussian noise. Together with the residual distribution Fig. 3 shows two curves:

 where f (x) is either the parabola x2 (red) or the Tukey's biweight function ρ(x)
(green). It can be seen that the parabola results in the Gaussian (red curve) and cuts off the tails
significantly while the green function produced by the Tukey's biweight better models the
larger residuals.

2.3. Iteratively Reweighted Least Squares

Consider a linear regression model with design matrix A and N observations in vector :

(4)

The M-estimator then minimizes the objective function

(5)

where vector  is the i-th row of the matrix A. When using least-squares estimation

 we obtain the standard least squares linear regression solution, which can be solved
directly. For a general ρ with derivative ψ := ρ′ one proceeds by differentiating the objective
function (with respect to ) and by setting the partial derivatives to zero:

(6)

when setting the weights . These equations describe a weighted least squares problem

that minimizes . Since the weights depend on the residuals ri, which in turn depend on
the estimated coefficients (which depend on the weights), an iteratively reweighted least-
squares algorithm is used. It selects an initial least-squares estimate (all weights equal to one),
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then calculates the residuals from the previous iteration and their weights, and then solves for
a new weighted-least-squares estimate:

(7)

with  the current weight matrix in iteration (j) (wi depends on the parameter

vector ). These iterations are continued until a maximum number of iterations is reached
or until the total squared error:

(8)

cannot be reduced significantly in the next iteration. It should be noted that the residuals

 are normalized before computing the weights in each step:

(9)

σ is a robust estimator for the standard deviation obtained by a scaled version of the median
absolute deviation (MAD):

(10)

where the median is taken over all elements, i, j = 1, …, N.1 Fig. 4 shows a zoom-in of the
distribution of residuals (blue) as presented in Fig. 3 of two images after successfull
registration. Here also the distribution of the weighted residuals (wiri) is shown in green. It can
be seen that the weights reduce the tail (large residuals) significantly.

3. Robust Symmetric Registration
As described above, the first step in constructing a robust simultaneous alignment of several
images into an unbiased common space for a longitudinal study or for motion correction, is to
register two images symmetrically. To avoid any bias, the resulting registration must be inverse
consistent, i.e., the same registration (inverse transformation) should be computed by the
algorithm if the time points are swapped.

3.1. Symmetric Setup
We first describe our symmetric gradient based image registration setup. Instead of
understanding the registration as a local shift of intensity values at specific locations from the
source to the target, we transform both images: the source IS half way to the target IT and the
target half way in the opposite direction towards the source. The residual at each voxel is

1The constant is a necessary bias correction. The MAD alone estimates the 50% interval ω around the median rm of the distribution of
r: P(|r − rm| ≤ ω) = 0.5. Under normality ω = 0.6745 σ ⇒ σ = 1.4826 ω.
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(11)

where  is the intensity at voxel location  is the local displacement from
source to target and depends on the spatial parameters . This setup is symmetric in the
displacement. We will explain later how an intensity scale parameter can be incorporated.

When applying a small additive change  to the n parameters in vector  we can write the
result using a first order Taylor approximation

(12)

Since there is one such equation at each voxel, it is convenient to write this in matrix form (a
row for each voxel):

(13)

We will call the design matrix containing the partial derivatives the A matrix. For N voxels and
n parameters it is a N × n matrix. In the following we will simply refer to the residuals to be

minimized as  and the observations at the current location . Thus,

equation (13) can be written .

The goal is to find the parameter adjustments  that minimize Σρ(ri), which can be achieved
with iteratively reweighted least squares (cf. Section 2.3). Choosing the Tukey's biweight
function ρ will prevent the error from growing without bound. This will filter outlier voxels,
and at the end of the iterative process we obtain the robust parameter estimate and the
corresponding weights, which identify the regions of disagreement.

What remains is to set up the design matrix A, i.e. to compute the partial derivatives of  (Eq.
11):

(14)

Here DI = (I1 I2 I3) denotes a row vector containing the partial derivatives of the image I in the
three coordinate directions. The vector , the derivative of the displacement for each parameter
pi, will be described in the following section. This formulation allows us to specify different

transformation models (the ), that can easily be exchanged.

Note that common symmetric registration methods (Frackowiak et al., 2003) need to double
the number of equations to set up both directions. They solve the forward and backward
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problem at the same time. In our approach this is not necessary, due to the symmetric
construction detailed above. However, a symmetric setup like this is not su cient to guarantee
symmetry. The full algorithm needs to be kept symmetric to avoid treating the source image
differently from the target. Often, for example, the source is resampled to the target in each
iteration, which introduces a bias. We describe below how to keep the algorithm symmetric
by mapping both images into a halfway space to ensure that they are treated in the same manner,
with both images being resampled into the symmetric coordinate system.

3.2. Transformation Model
This section describes some possible transformation models (for background see e.g.
Frackowiak et al. (2003)). Depending on the application, different degrees of freedom (DOF)
are allowed. For within subject registration, 6 DOF are typically used to rigidly align the images
(translation and rotation) across different time points or within a session for the purpose of
motion correction and averaging of the individual scans. To align images of different subjects
to an atlas usually 12 DOF transforms (affine registrations) or higher dimensional warps are
used. However, even in higher-dimensional approaches, a linear registration is often computed
for initial alignment. In the next paragraphs we will describe how to implement a transformation
model with up to 12 DOF.

Generally the displacement  can be seen as a function of the n dimensional model
parameter vector  into  (for a fixed location ). Here  is assumed to be linear in the
parameters (or it has to be linearized) and can be written as

(15)

where M can be seen as a 3 × n Jacobian matrix containing as columns the partials ,
needed in the construction of the design matrix A (see Eq. 14). In the following paragraphs we
will compute these Jacobians M for the affine (MA) and the rigid (MRT) case. Note also that
the displacement  is not equivalent with the transformation T, but it is the amount of which

a location  is displaced, so .

The affine 12 DOF displacement  is given by a translation vector and a 3 × 3 matrix:

(16)

It is straightforward to construct a transformation matrix (in homogeneous coordinates) from
these parameters:
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(17)

For the rigid case, we can restrict this transform, to only allow rotation and translation.
However, for small rotation it is more convenient to use the cross product to model the
displacement of a rotation around the vector (p4, p5, p6)T by its length in radians:

(18)

Note that this model is used to compute the values p4…p6 in each step. It is not used to map
the voxels to the new location as small amounts of stretching could accumulate. To construct
the transformation, only the translation and the rotation around the vector (p4, p5, p6)T by its

length  are considered. With , , 

and  (a unit quaternion) we obtain the transformation matrix T:

(19)

After specifying the displacement model, we can plug it into equation (14) and obtain the matrix
equation:

(20)

3.3. Intensity Scaling
Images can differ in both geometry and intensity in longitudinal settings. If the assumption
that a set of images share an intensity scale is violated, many intensity based registration
algorithm can exhibit degraded accuracy. Often a pre-processing stage such as histogram
matching (Mishra et al., 1995; Nestares and Heeger, 2000) is employed. An alternative to
preprocessing the images is to utilize a similarity measure that is insensitive to scalings of
intensity such as mutual information or entropy. Due to difficulties when estimating geometric
and intensity changes simultaneously only a few exceptions such as Woods et al. (1992,
1998); Ashburner and Friston (1997); Ashburner et al. (1997); Periaswamy and Farid (2006)
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incorporate explicit models of intensity differences obviating the need for complex intensity
pre-processing.

We can easily incorporate a global intensity scale parameter s into our model in a symmetric
fashion. First the intensity scale factor is applied to both source and target to adjust their
intensities to their geometric mean:

(21)

Recall that the additive spacial displacement was kept symmetric by adding half the
displacement to the source and half of the negative displacement to the target, to move both to
towards a common half way space. The intensity scale factor is multiplicative, so instead of
simply multiplying the source image's intensities by s we scale them by  and the target by

 to map both images to their intensity (geometric) mean. This keeps the residual function
symmetric with respect to the intensity scaling factor in addition to the symmetric displacement
setup.

For the approximation, the corresponding partial derivative is added in the Taylor
approximation:

(22)

Thus, in order to incorporate intensity scaling, one simply appends s to the parameter vector
 and attaches a column to matrix A, containing the partial derivative of the vector  with

respect to s:

(23)

4. Registration Algorithm
The algorithm consists of the following steps:

1. Initialize Gaussian Pyramid: by subsampling and smoothing the images.

2. Initialize Alignment: compute a coarse initial alignment using moments at the
highest resolution.

3. Loop Resolutions: iterate through pyramid (low to high resolution):

4. Loop Iterations: on each resolution level iterate registration to obtain best parameter
estimate. For each iteration step:

(a) Symmetry: take the current optimal alignment, map and resample both
images into a half way space to maintain symmetry.

(b) Robust Estimation: construct the overdetermined system (Eq. 20) and
solve it using iteratively reweighted least squares to obtain a new estimate
for the parameters.
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5. Termination: If the difference between the current and the previous transform is
greater than some tolerance, iterate the process at this resolution level up to a maximal
number of iterations (Step 4), otherwise switch to the next higher resolution (Step 3).

The above algorithm will be described in more detail in the following sections.

4.1. Gaussian Pyramid (Step 1)
Since the Taylor based registration can only estimate small displacements, it is necessary to
employ a multiresolution approach (Roche et al., 1999; Hellier et al., 2001), together with an
initial alignment (see next section). As described in Nestares and Heeger (2000) we construct
a Gaussian pyramid, bisecting each dimension on each level until the image size is
approximately 163. We typically obtain about 5 resolution levels with a standard adult field-
of-view (FOV) for an MRI image that is approximately 1mm isotropic (i.e. an FOV of 256mm).
First a standard Gaussian filter (5-tab cubic B-Spline approximation)

(24)

is applied in each direction of the image, which is then subsampled to the lower resolution.
These pyramids (source and target) need to be constructed only once for the entire process.

4.2. Initial Alignment (Step 2)
In order to speed up the registration and increase its capture range, an initial coarse alignment
is constructed using moments. Geometric moments have proven to be an efficient tool for
image analysis (Del Bimbo, 1999). For a grayscale image with pixel intensities I(x1, x2, x3),
the raw image moments Mijk are calculated by

(25)

where i, j, k are the exponents of the coordinates x1, x2, x3 respectively (taking the values 0 or
1 in the following equation). The centroid of an image can be derived from the raw moments:

(26)

We compute the translation needed to align the centroids and use it by default as an initial
transformation to ensure overlapping images when starting the robust registration algorithm.
Furthermore, it is possible to use central moments as defined below to compute an initial
rotational alignment. For full head images with possibly different cropping planes, such a
rotational pre-alignment can be very inaccurate and should therefore only be used when
aligning skull stripped images. Central moments are defined translation invariant by using
the centroid (Eq. 26):

(27)

The covariance matrix of the image I can now be defined using :
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(28)

The eigenvectors of the covariance matrix correspond to the three principal axes of the image
intensities (ordered according to the corresponding eigenvalues). These axes are then aligned
for two images. Care needs to be taken to keep the correct orientation. This is achieved by
flipping the first eigenvector if the system has left-handed orientation. Even if both systems
are right-handed, it can still happen that two of the axes are pointing in the opposite direction,
which can be detected and fixed by projecting each axis onto its corresponding axis in the other
image and flipping it if necessary. If the angle between the corresponding axes is too large, the
correct orientation cannot be determined without additional information and the initial
rotational alignment is not performed. Note that initial moment based orientation alignment
was never necessary and therefore not used in any of our tests, since head MRI images are
usually oriented similarly.

4.3. Loops (Step 3)
There are three nested loops in the registration algorithm: the different resolutions of the
pyramid (step 3), several iterations on each level (remapping the images (step 4), and finally
the iteratively reweighted least squares algorithm for the robust parameter estimation (inside
step 4(b), see Section 2.3). Note, when switching form a lower to a higher resolution in step
3, the translational parameters need to be adjusted (scaled by 2) when given in voxel
coordinates.

4.4. Registration (Step 4)
On each resolution level there are several iterations of the resampling and robust parameter
estimation as explained next.

4.4.1. Half Way Space (Step 4a)—The registration model (Eq. 11) is designed to maintain
symmetry in the algorithm, however we must also ensure that all steps are performed similarly
for both images. Therefore it is not sufficient to map the source to the target in each iteration
and re-estimate the new parameters. In such a setup only the source would be resampled at (or
close to) the target location while the target would not go through the resampling process. In
order to avoid this asymmetry, which can introduce biases due to the arbitrary specification of
source and target, we propose to resample both images to the half way space in each iteration
step.

For a given transformation T from source to target the half way maps are constructed by
approximating the square root of the matrix T (here T is again assumed to be a 4 × 4 matrix in
homogeneous coordinates). For a positive definite matrix T (we don't allow reflections and
projections) there exists exactly one positive definite matrix  with . For its
computation we use the Denman-Beavers square root iteration (Denman and Beavers, 1976;
Cheng et al., 2001): Let Y0 = T and Z0 = I, where I is the identity matrix. The iteration is defined
by

(29)

Reuter et al. Page 13

Neuroimage. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The matrix Yk converges quadratically to the square root , while Zk converges to its inverse,
. Once  has been approximated, the source image is mapped to  and the target to

 (to ensure both get resampled at the same location). For the resampling process tri-linear
interpolation is used, although other interpolation algorithms can easily be employed. Note
that to maintain symmetry the square root iteration should only be stopped when the largest

element of  is sufficiently small.

4.4.2. Robust Estimation (Step 4b)—To set up the robust estimation problem (Eq. 20),
the partial derivatives and a smoothed version of both images need to be computed. Smoothing
is used to prevent the algorithm from being trapped in a local minimum. For smoothing we
apply a Gaussian kernel in each image direction (Nestares and Heeger, 2000):

(30)

The smoothed derivatives can be computed by applying

(31)

in the direction of the derivative and the smoothing kernel in the two other directions. Once
the image derivatives DI are computed, the matrix A and vector  can be constructed (see Eq.
20). If the matrix gets too large, it is often sufficient to subsample the image at the highest
resolution and only select every second voxel. As the derivatives and intensity information are
selected from the high resolutional image the result will still be more accurate than stopping
at the previous lower resolution level in the Gaussian pyramid. For further improvement
stochastic sampling algorithms can be employed to avoid aliasing. Subsampling specific
regions more densely than others (e.g. depending on gradients, edges or the outlier weights) is
also likely to improve accuracy. Our tests, however, show very accurate results even with the
simple subsampling algorithm.

Once the system has been constructed, the iteratively reweighted least squares algorithm
(Section 2.3) is employed to compute the new parameters and weights. For this reason, the
saturation parameter c of the Tukey's biweight functions must be specified. In Nestares and
Heeger (2000) a constant saturation value c = 4.685 is recommend (suggested for Gaussian
noise in Holland and Welsch (1977)). However, a fixed value cannot adjust well to different
image contrast types and SNR levels, such as non-linear deformations or larger intensity
differences. In these cases it can happen that the registration fails as too many voxels are
considered outliers. Therefore in order to reduce the number of detected outliers particularly
in the brain, it is necessary to find a less sensitive (i.e. larger) value in these cases. The user
can always adjust this parameter according to the specific image situation. For full head scans,
however, we developed a method that automatically estimates the sensitivity parameter. It also
works remarkably well in brain-only registrations. For full head images, a global limit on the
number of outlier voxels will not be a good measure, as large outlier regions especially at the
skull, jaw and neck should be permitted. The following outlier measure uses a Gaussian to
weigh voxels at the center of the image more strongly than voxels further away (see also Figure
5):

(32)
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where di is the distance of voxel i to the center. W is zero iff (if and only if) all weights wi are
one (meaning no outliers). A large W means that many voxels in the center of the image are
labeled outlier. In that case the saturation is automatically incremented and W recomputed until
W < Wthresh. All of this can be computed quickly on a lower resolution level (we choose the
third highest level, i.e. for a 2563 image this is 643). The threshold Wthresh will be discussed
and determined in Section 5.4 below. Note that in situations with significant outliers in the
center, a global unweighted threshold can be used instead or the sensitivity parameter can be
adjusted manually.

4.5. Termination (Step 5)
In order to measure how much a new parameter estimate differs from the last iteration, the root
mean square (RMS) deviation of the two corresponding transformations is computed. This
measure will also be used to assess the quality of a registration when compared to some ground
truth. The RMS deviation measures the average difference of voxel displacements inside a

spherical volume for two given affine transformations  and , where M1, M2
are two 3 × 3 linear transformation matrices and t1, t2 the corresponding 3×1 translation vectors.
The RMS error for a spherical volume with radius r is then given by:

(33)

where tr is the trace (see Jenkinson (1999) for the derivation). An average displacement error
is used as a quality measure for a transformation instead of, for example, the maximum
displacement because it depends on all voxels contained in the sphere instead of possibly only
a single voxel. The misalignment of a single voxel is not very important if the rest of the image
is aligned accurately. While a translation has an equally strong effect everywhere, a rotation,
for example, shifts voxels different distances depending on the distance to the rotation center.
For a translation of 0.1mm (and 1mm3 voxels) both maximum displacement and average
displacement are the same ERMS = 0.1. Such a displacement can easily be seen on the screen
when switching between the images. Even ERMS of 0.05 and below can be noticed when
magnifying the images. These displacements, however, are too small to visualize in a printed
version of the image (e.g. checkerboard).

In this work the RMS error is measured on the transformations defined in RAS (right, anterior,
superior) coordinates with the origin located approximately at the center of the image. The
radius of the spherical volume is set to r = 100 which corresponds to 100mm, enough to include
the full brain. The iterations of the parameter estimation are usually terminated once ERMS <
0.01 i.e. the average displacement consecutive estimates is below 0.01mm, which is very
restrictive. To avoid long runtimes in ill conditioned cases, a maximum number of iterations
can also be specified by the user (the default is 5).

5. Results
This section presents results quantifying the accuracy and robustness of the robust registration
in comparison to other commonly used methods. As mentioned above, the robust registration
is capable of ignoring outlier regions. This can be verified when checking the weights during
a successful registration, as shown in Figure 6. The top images show the (enhanced) differences
between the target and registered source. The regions that contain the strongest differences are
correctly detected as outliers as can be seen in Figure 6 (bottom), where the weights are
overlayed (red/yellow regions). Note that the weights range from 0 to 1 and are blurry (because
they are computed on smoothed images), so they can blur in from neighboring slices.
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Figure 7 (left) is an example of an image that is misaligned using FLIRT with the mutual
information similarity function. The visible edges in the brain regions indicate an alignment
error. Figure 7 (right) shows the differences when using the robust registration, where clearly
less strong edges are visible. The remaining residuals are due to resampling and noise. Figure
7 bottom shows a magnification of the target (red) and registered source (green) on top of each
other. The red and green edges (left) at the ventricle and temporal lobe indicate misalignment
while yellow regions are accurately aligned (right). The difference between the two transforms
here is ERMS = 0.88, almost one voxel on average.

In the following sections we analyze the performance of different registration tools. We use
the RMS deviation of two transformations as described in Section 4.5 to quantify the distance
(the error) of a computed transformation with respect to some ground truth transformation. For
the following tests we use a set of 14 healthy subjects each with two scans 14 days apart. The
images are MPRAGE T1 weighted full head scans (on Siemens Sonata 1.5T) and are resampled
to 2563 voxels each with 1mm side length (original dimensions 256×256×128 with 1mm ×1mm
×1.33mm voxels).

5.1. Inverse Consistency
Since this algorithm is intended to compute inverse consistent registrations, we need to verify
experimentally that the final transforms are exactly inverses of each other when switching
source and target. For each subject we register the image from time point 2 to the time point 1
and vice versa while comparing the obtained transforms of several common registration
algorithms. We compare the robust registration (with different parameter settings) with the
FLIRT registrations (Jenkinson et al., 2002) from the FSL suite (Smith et al., 2004) using
different cost functions: standard least squares [FLIRT-LS], correlation ratio [FLIRT-CR],
mutual information [FLIRT-MI]. Furthermore, we compare with a registration tool from the
SPM software (Ashburner and Friston, 1999) based on Collignon et al. (1995) [SPM]. The
robust variants are: [Robust] robust rigid registration (no intensity scale), [Robust-I] with
intensity scaling, and [Robust-I-SS] with additional sub-sampling at the highest resolution. We
also include our implementation with standard least squares [LS] instead of the robust Tukey's
biweight error function to see the effect of the robust estimation with no other differences in
the algorithm. In Figure 8 the RMS deviation of the forward and inverse backward transforms
are computed and compared for different image types as used in the FreeSurfer software
package: full head scans (orig), intensity normalized images (T1) and normalized skull stripped
images (norm).

The FLIRT registrations perform similarly. The higher mean in the mutual information method
on the orig images is due to a single outlier (ERMS = 2.75). It can be seen that the robust
registration methods are extremely symmetric, even with intensity scaling switched on, adding
another degree of freedom and a higher chance for numerical instabilities. Also our non-robust
method [LS] with the standard least squares error function is perfectly symmetric in all cases.
This test, however, does not tell us anything about the accuracy of the registration.

5.2. Tests Using Synthetic Data
In this section we present results using images that were transformed, intensity scaled and
otherwise manipulated with known transformations, which then can be used as ground truth.
We compare how well several registration algorithms perform on the same test set of the 14
MPRAGE T1 weighted full head scans (Siemens Sonata 1.5T) of the same healthy subjects.
The registration methods are the same as in the previous section (FLIRT, SPM and robust
registration).
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A random rigid transformation (rotation, translation) was computed for each image. The
parameters were chosen in a way that reflects possible (large) head movements in a scanner:
50mm translation in a random direction together with a random rotation of 25 degrees around
an arbitrary axis with the origin at the center of the image. The maximum displacement of a
corner of theses image was between 130mm and 140mm. The parameters were chosen, so that
all methods can find approximate solutions. For larger transformations [SPM] was no longer
capable of recovering the correct registrations at all, while the robust methods performed
perfectly (not shown) in tests up to 100mm translation and 40 degrees rotation. These
transformations move the images apart so that there is almost no overlap, furthermore parts of
the face, skull, neck and jaw can be cropped because they are mapped outside the field of view.
The robust approach can deal well with this kind of partial matching. Moreover, we believe
that, due to the multiresolution algorithm and the initial moment based alignment, even larger
transformations will be recovered accurately.

For the synthetic registration comparison, the transform that represents half the random
translation and rotation is used to map and resample each image at the target location and the
inverse is applied to map and resample each image at the source location. This ensures that
both images (source and target) will be resampled and do not move outside the field of view
as easily. An accurate registration from source to target needs to be close to the original random
transform. The accuracy is measured using the RMS deviation (see Section 4.5) of the ground
truth and the computed transformation matrix. Four different tests were performed. In all cases
random rigid motion was applied (as described above):

1. Only-Motion: only random rigid motion.

2. Noise: significant Gaussian noise was added with σ = 10 (Figure 9 middle).

3. Outlier-Boxes: 80 boxes (each box 303 voxel) were created and copied from a random
location to another random location within the same image, with 40 boxes each in
source and target (Figure 9 right).

4. Intensity: global intensity scaling (±5%) was performed.

The results of this experiment are given in Figure 10. It can be seen that the robust version
outperforms the three different FLIRT similarity functions in all tests. [SPM] yields similar
accuracy, but fails completely for larger transforms (not shown). The robust registration shows
almost no influence of the outlier boxes since these are accurately detected as such. There is
only little influence of noise. However, when the global intensity scale is different in the two
images, the robust registration methods needs 7 DOF (one additional intensity scale parameter:
[Robust-I]) to maintain accuracy, because it strongly depends on similar intensity levels. This
underlines the importance of incorporating automatic intensity scaling into the robust
registration method. Subsampling on the highest resolution in the robust registration [Robust-
I-SS] leads to a significant reduction in memory and run time, but still yields the same
registration accuracy in these tests. The simple non-robust implementation LS performs poorly
in most cases.

It should be noted that the FLIRT methods produce a few individual registrations with low
accuracy when outliers or noise are present (as can be seen by checking the scatter data, the
small circles in Figure 10, some are too large and not shown). The SPM method on the other
hand produces quite accurate results in most test cases. However, as mentioned above it fails
completely for larger transformations.

5.3. Tests Using Real Data
In contrast to the simulations with available ground truth transformations we do not know the
correct registration in advance in typical registration paradigms. Therefore we need to establish
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a different performance metric. This can be achieved by registering the skull stripped and
intensity normalized images of a test-retest study (two time points) with different registration
methods. These registrations are highly accurate as the images contain only brains of healthy
normals and only small changes in the brain are involved (e.g. noise etc.). In these well behaved
situations the registration of these brain images computed by the different algorithms deviate
from each other only by small amounts. The goal here is to find registrations of the
corresponding full head images that are as close as possible to the brain-only, intensity
normalized registrations.

The group chosen for this test is the same as described above. This test will be more noisy as
the `ground truth' is already defined inaccurately. Figure 11 (left) shows the distances of all
other methods to the SPM registration of the skull stripped normalized image (norm). It can
be seen that compared to the full head registrations, the norm registrations are on a similar low
level for all methods (SPM has of course zero distance to itself). SPM has been chosen to
construct the ground truth registration of the norm images, as it performed more accurately
than the FLIRT methods in the previous tests. We did not choose a robust registration to
establish the ground truth to not favor our method. However, we tested establishing the ̀ ground
truth' with any other method which leads to very similar results and almost exactly the same
plots.

The results on the full head (orig) image (Figure 11 middle) and intensity normalized full head
(T1) image (Figure 11 right) evidence behavior that is similar to the previous tests. SPM
performs (here only slightly) better than the FLIRT methods, while the robust registration
yields the most accurate results. As expected for the orig images intensity scaling [Robust-I]
improves the registrations further, while for the normalized T1 images it is not necessary. Again
subsampling [Robust-I-SS] on the highest resolution reaches the same accuracy, indicating
that the expensive iterations on the highest resolution level can be avoided.

5.4. Parameter Estimation
As described in Section 4.4.2 a fixed saturation level c cannot be recommended for all image
types. The value c = 4.685 from Nestares and Heeger (2000) will lead to erroneous registrations
in many common settings. Figure 12 (top) shows the accuracy of each robust registration of
the orig images plotted vs. the selected saturation level. For some subjects the optimal
registration is reached at c ≈ 6 while other need a higher value c ≈ 15. For the normalized T1
images or for [Robust-I] (with intensity scaling enabled) the results look similar (not shown),
however with individual minima spread between c = 4 and c = 9. When using a fixed saturation
level for all registrations, c ≈ 14 is optimal for [Robust] with an average RMS error of slightly
below 0.3 and c = 8.5 is optimal for [Robust-I]. Even with a fixed saturation, both robust
methods are on average better than the other non-robust registration methods (cf. Figure 12
bottom).

For [Robust] without intensity scaling, a relative high saturation value (c = 14) is particularly
necessary to compensate for the differences in image intensity. Lower values might label too
many voxels outlier due to the intensity differences or non-linearities, resulting in misaligned
images (see Figure 13 for an example). Instead of manually inspecting the outliers and
registrations while determining an optimal saturation setting per image, we introduce the center
focused weight measure W (Eq. 32) for full head images to indicate when too many outliers
are detected in brain regions and to adjust the sensitivity accordingly. Figure 13 (bottom row)
shows the same image registration, where the automatic parameter estimation results in less
detected outliers and a successful alignment.

We will now determine an optimal W for the automatic saturation estimation. Figure 14 presents
scatter plots of registration accuracies [Robust] and [Robust-I] on the full head (orig) images

Reuter et al. Page 18

Neuroimage. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



here plotted versus W. The horizontal red line shows the average minimum error when choosing
the individual saturation that leads to the best registration for each subject (with respect to the
ground truth). The automatic saturation estimation can almost reach this optimum by fixing
the center focused weight measure W around 0.2 (see the black curve showing the average of
W between 0.05 and 0.3). Additionally, W is quite robust since the average (black dashed curve)
is relatively flat. Ensuring a W around 0.2 for the tested image types in the automatic saturation
estimation leads to registrations that are almost as accurate as when taking the optimal result
per subject (which is of course not know a priori).

5.5. Application: Motion Correction
Frequently several images of a given scan type are acquired within a session and averaged in
order to increase SNR. These images are not perfectly aligned due to small head movements
in the scanner (for some groups of patients there can be even large differences in head location,
due to uncontrolled motion) and need to be registered first. Since not only noise but other
differences such as jaw movement or motion artifacts are prevalent in these images, a robust
registration method should be optimally suited to align the images while discounting these
outlier regions. It can be expected that except for noise, brain tissue and other rigid parts of the
head will not contain any significant differences (except rigid location changes). A
misalignment of the within-session scans will of course affect the average image negatively
and can reduce the accuracy of results generated by downstream processes. Therefore highly
accurate registrations for motion correction are the first step, for example, towards detecting
subtle morphometric differences associated with disease processes or therapeutic intervention.

To test the robust registration for this type of within-session motion correction, the two scans
of the first session in the longitudinal data set presented above were selected. The second scan
was registered to the first with the different registration methods. It was then resampled at the
target location (first scan) and an average image was created. Since these within-session scans
should show no change in brain anatomy, it can be expected that the difference between scan
1 and aligned scan 2 in brain regions will be very small and mainly be due to noise (and of
course scan 2 will be smoother due to resampling). Therefore a larger difference in the brain-
region between the registered images implies misalignment, most likely due to image
differences elsewhere (e.g. jaw, neck, eyes) or less likely due to non-linear differences between
the two scans. The gradient non-linearities will badly influence all rigid registrations similarly,
while possible non-brain outlier regions will influence the employed methods differently.
Therefore we will evaluate the performance of full head registration only within the brain mask.
2

We first quantify the registration error and compute the sum of squared errors (SSE) of the
intensity values in scan I1 and aligned/resampled scan :

(34)

where the sum is taken over all brain voxels . The brain masks to specify brain regions were
created automatically for each subject with the FreeSufer software package and visually
inspected to ensure accuracy.

2In some applications it might be better to compute registrations on skull stripped brains directly. However automatic skull stripping is
a complex procedure, and frequently needs the user to verify all slices manually. Furthermore, in some situations it makes sense to keep
the skull, for example, when registering to a Talairach space with skull to estimate intracranial content, which depends on head size rather
than brain size. Finally even skull stripped images can contain significant differences, for example in longitudinal data or simply because
different bits of non-brain are included, so that the robust registration is still the best choice.
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The SSE measure quantifies the intensity differences of the two images after alignment within
the brain. For a perfect registration these differences should be small as they only measure
noise, non-linearities and global intensity scaling (all of these should be small as the two images
are from the same scan session). Figure 15 (top) shows the signed difference of SSE with
respect to the result of the method [Robust-I]. The robust methods perform best on average,
while [FLIRT-LS], [FLIRT-CR] and [LS] yield a better results (lower SSE) only in one single
instance (white circles with negative value). To test significance of these results, we applied a
Wilcoxon signed rank test (Wilcoxon, 1945) for each algorithm with respect to [Robust-I] to
test if the median of the pairwise differences is equal to zero (null hypothesis). This is similar
to the t-test on the pairwise differences, without the assumption of normally distributed data.
We found that all non-robust methods show significant differences from [Robust-I] at a p <
0.001 while the null hypothesis cannot be rejected within the robust methods, as expected,
since their performance is basically the same.

In order to test if differences can be detected in the resulting average images, we count the
number of edges. Correctly aligned images should minimize the number of edges since all
edges will be aligned, while misalignment increases the edge count. The edges were detected
by scanning the x component of the gradient (using the Sobel filter) in the x directions and
counting local maxima above a threshold of 5. Figure 15 (bottom) shows that the misalignment
increases edge count on average when compared to [Robust-I]. However, due to the large
variance the FLIRT results are not significant. [SPM] is significantly different at level p =
0.058 and [LS] at the p < 0.001 significance level in the Wilcoxon signed rank test.

6. Conclusion
In this work a robust registration method based on Nestares and Heeger (2000) is presented,
with additional properties such as initial coarse alignment, inverse consistency, sensitivity
parameter estimation and global intensity scaling. Automatic intensity scaling is necessary for
the method to function when global intensity differences exist. Similarly the automatic
estimation of the saturation parameter avoids misalignment in specific image situations where
a fixed value potentially ignores too many voxels.

The presented method outperforms commonly used state-ofthe-art registration tools in several
tests, and produces results that are optimally suited for motion correction or longitudinal
studies, where images are taken at different points in time. Local differences in these images
can be very large due to movement or true anatomical change. These differences will influence
the registration result, if a statistically non-robust approach is employed. In contrast, the robust
approach presented here maintains high accuracy and robustness in the presence of noise,
outlier regions and intensity differences.

The symmetric registration model together with the ̀ half-way' space resampling ensure inverse
consistency. If an unbiased average of two images is needed, it is easily possible to resample
both, target and source, at the `half-way' location and perform the averaging in this coordinate
system. Furthermore, these registrations can be employed to initialize nonlinear warps without
introducing a bias. Robust registration has been successfully applied in several registration
tasks in our lab, including longitudinal processing and motion correction. The software is freely
available within the FreeSurfer package as the mri_robust_register tool.

Future research will extend the presented registration to more than two images and incorporate
these algorithms into a longitudinal processing stream, where more than two time points may
be involved. In those settings instead of simply registering all images to the first time point, it
is of interest to create an unbiased template image and simultaneously align all input images
in order to transfer information at a specific spatial location across time. Similar to the idea in
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(Avants and Gee, 2004) it is possible to estimate the unbiased (intrinsic) mean image and the
corresponding transforms iteratively based on the pairwise registration algorithm described in
this paper.
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Figure 1.
Robust registration of longitudinal tumor data (same slice of five acquisitions at different
times). Left: target (first time point). Top row: aligned images. Bottom row: overlay of detected
change/outlier regions (red/yellow). The outlier influence is automatically reduced during the
iterative registration procedure to obtain highly accurate registrations of the remainder of the
image; see also Fig. 6.
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Figure 2.
The robust Tukey's biweight function (green) limits the influence of large errors as opposed
to the parabola (red).

Reuter et al. Page 26

Neuroimage. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Distribution of residuals after successful registration together with the Gaussian (red) and
robust (green) models (produced by the two functions from Fig. 2).
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Figure 4.
Zoom-in of the residual distribution of Fig. 3 with weighted residual distribution overlayed in
green. It can be seen that the heavy tails are significantly reduced when using the robust weights.
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Figure 5.

Gaussian filter at the center .
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Figure 6.
The red/yellow regions (bottom row) are detected as outlier regions during the registraion
procedure of this Multiecho MPRAGE test-retest data. Their influence is automatically
reduced. It can be seen that the detected outliers agree with the non-rigid differences after
successful registration (top row) located mainly in the neck, eye, scalp and jaw/tongue region;
see also Fig. 1.
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Figure 7.
Difference after alignment. Left: FLIRT MI (the visible structures in the brain indicate
misalignment). Right: Robust method (accurate alignment, residual differences due to noise
and resampling). The top shows the difference images and the bottom a zoom-in into the aligned
target (red) and source (green). A good alignment should be yellow (right) while the inaccurate
registration shows misaligned red and green edges (left).
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Figure 8.
Comparison of inverse consistency using different methods: FLIRT LS: least squares, CR:
correlation ratio, MI: mutual information, SPM, LS (our implementation with least squares
instead of robust error function), Robust registration, Robust-I (+intensity scaling) and Robust-
I-SS (subsampling on the highest resolution). The white circles represent the individual
registrations.
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Figure 9.
Close-ups of test images: original (left) with Gaussian noise σ = 10 (middle) and with outlier
boxes (right).
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Figure 10.
Accuracy of different methods (see Fig. 8). The four different tests are: random rigid motion,
additional Gaussian noise (σ = 10mm), 80 boxes of outlier data and intensity scaling.
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Figure 11.
Accuracy of different methods (see Fig. 8) with respect to SPM (on the norm images).

Reuter et al. Page 35

Neuroimage. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 12.
Top: Accuracy of [Robust] for each individual subject. Bottom: Mean accuracy of the methods,
where [Robust] and [Robust-I] depend on the saturation level (fixed across all subjects). It can
be seen (bottom) that [Robust] reaches its minimal average registration error at the fixed
saturation level of c = 14 and [Robust-I] at c = 8.5. For most fixed saturation levels, both
methods perform better on average than FLIRT or SPM (note, the averages of [FLIRT-LS]
and [FLIRT-CR] almost coincide, compare with Fig. 11 middle).
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Figure 13.
Top: Fixed low saturation of c = 4.685 (high outlier sensitivity) in a registration with intensity
differences and non-linearities results in too many outlier and consequently in misalignment.
Bottom: Automatic sensitivity estimation adjusts to a higher saturation value (low outlier
sensitivity) to register the images successfully. The detected outlier regions are labeled red/
yellow.
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Figure 14.
Registration accuracy for each subject depending on center focused weight W (Robust top,
Robust-I bottom). Red horizontal line: averaging best registration per subject. Black curve:
average performance at specific W. Dashed curves: individual subject's results.

Reuter et al. Page 38

Neuroimage. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 15.
Error of motion correction task in brain region for different registration methods (top: sum of
squared errors comparison, bottom: edge count of average image). Both plots show the signed
difference to Robust-I.
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