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Mutations that affect splicing of precursor messenger RNAs play a major role in the development of
hereditary diseases. Most splicing mutations have been found to eliminate GT or AG dinucleotides that
define the 50 and 30 ends of introns, leading to exon skipping or cryptic splice-site activation. Although
accurate description of the mis-spliced transcripts is critical for predicting phenotypic consequences of
these alterations, their exact nature in affected individuals cannot often be determined experimentally.
Using a comprehensive collection of exons that sustained cryptic splice-site activation or were skipped as a
result of splice-site mutations, we have developed a multivariate logistic discrimination procedure that
distinguishes the two aberrant splicing outcomes from DNA sequences. The new algorithm was
validated using an independent sample of exons and implemented as a free online utility termed
CRYP-SKIP (http://www.dbass.org.uk/cryp-skip/). The web application takes up one or more mutated
alleles, each consisting of one exon and flanking intronic sequences, and provides a list of important
predictor variables and their values, the overall probability of activating cryptic splice vs exon skipping, and
the location and intrinsic strength of predicted cryptic splice sites in the input sequence. These results will
facilitate phenotypic prediction of splicing mutations and provide further insights into splicing enhancer
and silencer elements and their relative importance for splice-site selection in vivo.
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Introduction
Removal of introns from precursor messenger RNA

(pre-mRNA) by splicing is a critical step in eukaryotic gene

expression. Splicing of human pre-mRNAs is mediated by

conserved but highly degenerate sequences that include

the MAG|GURAGU consensus (M is A or C; R is purine; | is

the exon–intron boundary) at the 50 splice site (ss) and the

YAG|R motif (Y is pyrimidine) at the 30ss, which are

preceded by an upstream poly-Y tract and the branch

point sequence. In addition to these traditional sequences,

accurate recognition of exons and introns by the spliceo-

some requires auxiliary elements in the pre-mRNA that

repress or promote splicing, termed exonic or intronic

splicing silencers (ESSs/ISSs) or enhancers (ESEs/ISEs).

These signals are thought to act through combinatorial

effects of RNA secondary structure1,2 and/or numerous

regulatory factors that bind to pre-mRNAs, including

serine/arginine-rich (SR) proteins3,4 and heterogeneous

nuclear ribonucleoproteins.5 – 8

Auxiliary splicing sequences have been characterized

experimentally,3,9,10 computationally11,12 or by a combina-

tion of the two approaches.13–15 Recent gene-specific16 and

genome-wide17 comparisons showed that exonic sequences

between authentic and aberrant splice sites that were
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activated by splice-site mutations have lower frequencies of

ESEs and higher densities of ESSs than average exons.

Conversely, intronic sequences between authentic and

cryptic/de novo splice sites have more enhancers and less

silencers than average introns.16,17 Although the relative

importance of various auxiliary signals in the development

of aberrant splice-site activation in vivo is poorly understood,

silencers, and putative octamer ESSs (PESSs)12 in particular,

were identified as stronger predictors of aberrant splice-site

activation than ESEs,16–18 consistent with a dominant role

of repressive elements that keep highly abundant decoy

splice-site signals in check.

Splicing mutations play a major role in the development

of hereditary diseases and may represent up to B50% of

disease-causing alterations in genes with a large number of

introns.19,20 This figure is likely to be an underestimate,

because current mutation-screening policies are biased

towards coding DNA, leaving aberrant splicing undetected

in many cases, particularly de novo splice sites in introns.

Pre-mRNA splicing can be impaired by mutations located

anywhere in the gene, but most have been found in GT and

AG dinucleotides that define 50 and 30 intron ends,21

reflecting their highest level of conservation among splice-

site consensus sequences.22 Although accurate description

of the resulting abnormal transcripts is important for

predicting the degree of severity and the age of onset of

both Mendelian and complex traits, RNA samples from

affected individuals or their family members are often not

available and functional splicing assays are costly and time-

consuming. Computational prediction of these outcomes

from genomic sequences would therefore provide a useful

alternative, but such methods have not been available.

Here, we describe the development of a method that can

distinguish exons that are skipped and exons that activate

cryptic splice sites as a result of splicing mutations. The

new procedure was capable of predicting the correct

outcome in 72% of the cases and was implemented as an

easy-to-use web application termed CRYP-SKIP, which is

freely available at http://www.dbass.org.uk/cryp-skip/.

Materials and methods
To distinguish exon skipping and aberrant splice-site

activation from pre-mRNA sequences, we set out to

compare both traditional and auxiliary splicing elements

between two well-defined groups of sequences. The first

group (dataset termed EXSK) contained a set of 250 exons

that were skipped as a result of disease-causing splicing

mutations but did not activate cryptic splice sites in

flanking exons or introns.17 We used the same ascertain-

ment criteria17 to obtain 47 additional EXSK sequences

from recently published reports (Supplementary Table 1).

For the second group, we analyzed a total of 204 exonic

sequences that sustained cryptic splice-site activation as a

result of germ-line or somatic splicing mutations. This

dataset (termed CR-E) is available from the updated

Database of Aberrant Splice Sites (DBASS) maintained at

http://www.dbass.org.uk23,24 and includes all mutation-

induced cryptic splice sites reported in peer-reviewed

journals between 1981 and June 2008.

In each exonic sequence, we determined the location and

strength of predicted (decoy) 30 and 50ss, and counts and

densities of previously identified auxiliary splicing sequences.

For decoy splice sites, we employed a neural network (NN)

splice-site prediction algorithm and the NN Splice server

(http://www.fruitfly.org/seq_tools/splice.html).25 ESSs discov-

ered by a fluorescence-activated screen (FAS-ESSs)13 were

computed using the FAS-ESS server (http://genes.mit.edu/fas-

ess/). Putative enhancers and silencers obtained by compa-

ring non-coding exons and pseudoexons or untranslated

regions of intron-less genes (PEXSs) were identified with the

PEXS algorithm12 (http://cubweb.biology.columbia.edu/pesx/).

Scores for SF2/ASF, which was confirmed as the most

important SR protein for aberrant splice-site activation

in vivo,17 were computed using the updated matrix26 and a

standard threshold implemented in the ESEFinder

(version 3; http://rulai.cshl.edu/tools/ESE/).27 In addition,

we employed a recently published set of 1131 and 708

exon and intron identity elements (EIEs and IIEs, respec-

tively) and their Z-scores derived from DNA-strand asym-

metry patterns.28 Finally, we examined both datasets using

the Neighborhood Inference (NI) method29 that predicts

the activity of splicing regulatory elements based on the

local density of known sites in sequence space. For each

potential predictor variable, we computed the total

number of ESSs/ESEs per exon and, where applicable, the

sum of their scores. Each count and score density was

calculated for 100 nucleotides as described earlier.17

To model the relationship between the predictor variables

and a dichotomous response (either EXSK or CR-E), we used

multiple logistic regression to estimate the probability of

cryptic splice-site activation (PCR-E; defined below for the

final model) and exon skipping (1�PCR-E). Eighty per cent of

EXSK (n¼238) and CR-E (n¼163) sequences were randomly

chosen as a training set, whereas the remaining EXSK and

CR-E sequences were used as a test set to validate the

performance of our discrimination procedure. Competing

models were compared by the likelihood ratio test and the

likelihood-based Akaike’s information criterion. The discri-

mination ability of each model was assessed using leave-one-

out cross-validation with the training dataset. For data

handling and statistical analysis, we employed the

R-statistical software (http://www.r-project.org).30

Results
Algorithm

Median values of the predictor variables in EXSK and CR-E

datasets and their distribution are shown in Table 1 and

Supplementary Figure 1; full datasets are available in
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Supplementary Table 2. After comparing univariate models

(Supplementary Table 3), we built an initial multivariate

model using appropriately transformed predictor variables

(Supplementary Figure 2). The NI and IIE score densities were

omitted from this model, as they did not improve the

model fit in the presence of the remaining variables

(P-value of the likelihood ratio test was 0.83). Count densities

were also left out, because they were highly correlated with

the score densities and provided less information (for

example, Pearson’s correlation coefficients for EIEs and IIEs

count/score densities were 0.86 and 0.94, respectively). The

EIE score density was retained in the model despite its non-

significance, as this predictor appeared to improve discrimi-

nation of EXSK and CR-E (Supplementary Table 4).

On the basis of our final multivariate model, we define

PCR-E as:

expð�5:6 þ 1:2InL � 0:13PESS þ 4:6 minðNN5;0:2Þ þ 0:1 minðSF2;10Þ � 0:35 maxðFAS;6:5Þ þ 0:001EIEÞ
1 þ expð�5:6 þ 1:2InL � 0:13PESS þ 4:6 minðNN5;0:2Þ þ 0:1 minðSF2;10Þ � 0:35 maxðFAS;6:5Þ þ 0:001EIEÞ

ð1Þ

where L is exon length (in nucleotides), PESS is the PESS

density, NN5 is the density of decoy 50ss, SF2 is the SF2/ASF

score density, FAS is the FAS-ESS hex2 density and EIE is the

EIE score density (Supplementary Table 2). Coefficient

estimates of the final model, their standard errors and

significance are shown in Table 2.

We next evaluated our discrimination procedure using

an independent set of exons. Figure 1 shows the PCR-E

distribution computed separately for the training and

independent set. In the independent dataset, 54% of

CR-E sequences had the PCR-E value 40.5, whereas 85%

of EXSK sequences had the estimated PCR-E value r0.5.

Conversely, 72% of exons with the PCR-E value r0.5

underwent exon skipping, whereas 71% of exons with

the PCR-E value 40.5 sustained cryptic splice-site activa-

tion. Taken together, 72/100 (72%) sequences in the test set

were correctly classified.

The dependence of the PCR-E on predictor variables can

be described in terms of the odds of a cryptic splice-site

activation (OCR-E), defined as PCR-E/(1�PCR-E). Assuming the

above model, a 33% increase in exon length would increase

the estimated OCR-E by 42% if the values of the remaining

predictors are kept unchanged. The same increase in the

estimated OCR-E would require a rise in NN5 by 0.076, or in

SF2 by 3.4, or in EIE by 346.6, with the values of the

remaining predictors fixed. Conversely, a 42% decrease in

the estimated OCR-E would result from an increase in PESS

by 4.1 or from an increase in FAS density by 1.54, again

without changing the values of the remaining five

predictors. The OCR-E value was not much influenced by

NN5 higher than 0.2, SF2 higher than 10 and FAS lower

than 6.5 (Supplementary Figure 2). Together, these results

illustrate how the values of some predictors influence the

odds of cryptic splice-site activation, with practical

implications for predicting aberrant splice-site activation

ab initio.

To further validate the performance of the algorithm using

experimental data, we compared a previously observed

outcome of splicing mutations in the RB1 gene 31 with

PCR-E values for each exon (Supplementary Table 5). This

comparison showed that 13/14 (93%) exons that were

skipped as a result of mutation were correctly predicted by

the CRYP-SKIP algorithm. The only exception was exon 25,

in which the predicted cryptic 50ss activation (ATG/GTATGT

in the middle of the exon) was not observed, despite a

relatively high PCR-E value of 0.64. A failure to activate this

splice site in vivo (mutation IVS25þ1G4A31) may be

explained by the small size of reduced exonic segment

(33 nt), which may need additional splicing enhancer

elements in flanking intronic sequences.

Finally, we calculated PCR-E values for 43 243 constitu-

tively spliced human exons32 and for a set of 1909

alternatively spliced exons that are conserved between

mouse and humans.33 As expected, the average PCR-E values

were higher in the former group (0.39 vs 0.34, t-test,

Po10�15), suggesting that alternatively spliced or weakly

included exons are less likely to sustain cryptic splice-site

activation when their authentic site is mutated. This is

probably attributable mainly to a smaller average exon size

of the latter group (139 vs 128 nt).

CRYP-SKIP

Our final regression model was incorporated in a new

algorithm termed CRYP-SKIP, which was implemented as a

Table 1 Median values of potential predictors of the splicing outcome

Group
Mutation
outcome

Number of
sequences

Exon
length PESS density

NN splice
density of

50ss
SF2/ASF

score density

FAS-ESS
density
(hex2)

NI score
density

EIE score
density

IIE score
density

Training set EXSK 238 116 1.22 0.03 10.02 3.46 30.31 440.83 313.16
CR-E 163 154 0.65 0.14 12.36 3.06 36.86 460.18 274.81

Test set EXSK 59 102 1.01 0.02 10.52 3.24 31.69 449.46 316.58
CR-E 41 131 0.69 0.10 12.23 3.45 37.41 431.27 251.75

All EXSK 297 111 1.09 0.03 10.12 3.42 31.19 443.11 313.70
CR-E 204 148 0.65 0.14 12.30 3.08 37.29 453.41 273.06

Abbreviations: EXSK, exon skipping; CR-E, cryptic splice-site activation.
Predictor variables are defined in the text.
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common gateway interface script on a public server

available at http://www.dbass.org.uk/cryp-skip/ or http://

cryp-skip.img.cas.cz. The algorithm determines the exon

length for each submitted sequence and performs a search

for PESSs with the Z-score cut-off value of �2.6212, FAS-

ESSs hex2 set13 and EIEs.28 For the analysis of decoy splice

sites and SF2/ASF scores, the script (programmed in Perl)

interacts with the NN splice server and the ESEFinder,

respectively. The web application computes count and

score densities of these elements and employs the logistic

regression model as described above to calculate the PCR-E

value (Equation (1)) for each submitted sequence.

CRYP-SKIP users submit a DNA sequence (FASTA format)

consisting of one exon (in upper case) and B100 nt of

flanking intervening sequences (in lower case). Pairs of

wild-type and mutated sequences or multiple FASTA

sequences are permitted, as long as the total sequence

does not exceed a limit of 4000 bp. The server output is a

single page with a summary table containing a list of

predictors, their calculated values and PCR-E, which is

graphically shown as a pointer next to the table (Figure 2).

PCR-E takes values between 0 and 1, with higher values

speaking in favor of cryptic splice-site activation and lower

values in favor of exon skipping (Figure 1). Finally, CRYP-

SKIP shows predicted cryptic splice sites as vertical marks in

the input sequence; their size reflects the relative intrinsic

strength of decoy splice sites and sums to the PCR-E value of

the submitted exon.

Discussion
CRYP-SKIP is a comprehensive computational tool that

predicts whether inactivation of authentic splice sites by

mutation is more likely to result in exon skipping or

aberrant splice-site activation. As the two events represent

the vast majority of pathogenic transcripts induced by

splice-site mutations, the algorithm will facilitate predic-

tion of aberrant splicing outcomes for most splicing

mutations in human genes. Because cis-acting splicing

signals and spliceosome components are generally well

conserved in higher eukaryotes, the same algorithm should

discriminate the two aberrant splicing outcomes in other

mammalian or vertebrate species as well, although this

remains to be tested.

Our model is based on a comprehensive sample of

carefully selected and well-documented dichotomous

events that gives us a unique opportunity to study splice-

site selection in vivo as opposed to in vitro experiments. This

approach should be instrumental when addressing the

question why a particular decoy splice-site signal was

selected by the spliceosome despite having a lower intrinsic

strength than similar signals in the vicinity that were not

recognized. Both CR-E and EXSK datasets are likely to

expand in future, which will be facilitated by a more

widespread use of RNA-based mutation screening and by

Figure 1 PCR-E distribution of exonic sequences that underwent
cryptic splice-site activation or exon skipping. (a) Training set;
(b) independent set. All exonic sequences, the intrinsic strength of
their authentic and cryptic splice sites, underlying mutations and their
phenotypic consequences are described in the online Database of
Aberrant Splice Sites. Their PCR-E values were determined as in Equation
(1). Each column shows the number of EXSK (gray) or CR-E (black)
events that had the PCR-E value in the interval shown on the x-axis.

Table 2 Multiple logistic regression table

Predictor
variable Coefficient estimate Standard error P-valuea OR (95% CI)

Intercept �5.56 2.08 0.010 –
Log(length) 1.22 0.26 o0.001 3.40 (2.05, 5.64)
PESS density �0.13 0.06 0.030 0.88 (0.77, 0.99)
min(NN5, 0.2) 4.64 1.33 o0.001 103.22 (7.61, 1400.40)
min(SF2, 10) 0.10 0.05 0.035 1.11 (1.00, 1.22)
max(FAS-ESS, 6.5) �0.35 0.20 0.032 0.70 (0.47, 1.04)
EIE score 0.0010 0.00079 0.203 1.00 (9.99, 1.00)

Abbreviations: OR, odds ratio; CI, confidence intervals.
aLikelihood ratio test.
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more rigorous characterization of aberrant transcripts at

the nucleotide level in affected individuals. Published

reports should include estimates of the relative amounts

of RNAs transcribed from mutated alleles and also evidence

for adequate separation of RT-PCR products using poly-

acrylamide gel electrophoresis as many cryptic splice sites

Figure 2 A screenshot of the CRYP-SKIP output. PCR-E is shown on the right as a pointer balancing between exon skipping (EXSK) and cryptic splice-
site activation (CR-E). Values of each predictor variable used in the regression model are summarized in a table on the left. The last row of each table
shows the numerical value of PCR-E for each input sequence. Exonic sequences (highlighted in light blue) are in upper case and flanking introns are in
lower case. Predicted aberrant splice sites are shown as arrows, with their size reflecting their relative predicted strength (scale 0–1 on the right). The
sum of their sizes equals the PCR-E value for the output sequence. The color reproduction of this figure is available on the html full text version of the
manuscript.
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are activated just a few nucleotides away from authentic

sites. Finally, because ins/del polymorphisms represent an

important and underappreciated source of disease-asso-

ciated cryptic splice sites or pseudoexon activation,

particularly in repetitive sequences (Meili et al,34), DNA-

based mutation screening of disease genes should

employ and further develop methods capable of detecting

structural variants.

In the future, it will be desirable to extend this tool to

ab initio prediction of mutation-induced cryptic splice sites

in flanking intronic sequences. Location of aberrant splice

sites in introns is not symmetrical, reflecting the more

complicated pattern of 30ss organization compared with

the 50ss.23,35 The variability of traditional splicing signals at

the 30ss (branch site, polypyrimidine tracts, 30YAG and

upstream AG exclusion zones) from one intron to another

is considerable, and cooperative assembly of spliceosomal

complexes at these signals is further confounded by local

secondary structure and by multiple, distant or non-

canonical branch points. In addition, auxiliary splicing

sequences have been studied less in introns than in exons,

although some of them have recently been characterized in

more detail, such as short G-rich repeats.36 – 38 The

extended datasets should provide more power for building

robust models that include additional predictors, which

did not give significant P-values in the analyzed sample

and/or did not significantly improve our model, including

decoy 30ss, RESCUE-ESE11 and NI.29 Future efforts should

also be facilitated by a more comprehensive dissection of

cooperative interactions between splicing signals upstream

of 30ss, including distant branch sites. Thus, prediction

algorithms discriminating the two aberrant RNA outcomes

from DNA sequences are likely to be further improved,

ultimately leading to better understanding of splice-site

selection in vivo and more accurate characterization of

human mutations and their phenotypic consequences.
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