
Redox Regulation of the NPR1-TGA1 System of Arabidopsis
thaliana by Nitric Oxide W OA

Christian Lindermayr,a,1 Simone Sell,a,1 Bernd Müller,b Dario Leister,c and Jörg Durnera,d,2

a Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health,

D-85764 Neuherberg, Germany
bMass Spectrometry Unit, Department Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
c Botany, Department Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
d Lehrstuhl füt Biochemische Pflanzenpathologie, Technische Universität München, D-85354 Freising, Germany

The role of reactive oxygen and nitrogen species in local and systemic defense reactions is well documented. NPR1 and

TGA1 are key redox-controlled regulators of systemic acquired resistance in plants. NPR1 monomers interact with the

reduced form of TGA1, which targets the activation sequence-1 (as-1) element of the promoter region of defense proteins.

Here, we report the effect of the physiological nitric oxide donor S-nitrosoglutathione on the NPR1/TGA1 regulation system

in Arabidopsis thaliana. Using the biotin switch method, we demonstrate that both NPR1 and TGA1 are S-nitrosylated after

treatment with S-nitrosoglutathione. Mass spectrometry analyses revealed that the Cys residues 260 and 266 of TGA1 are

S-nitrosylated and S-glutathionylated even at GSNO concentrations in the low micromolar range. Furthermore, we showed

that S-nitrosoglutathione protects TGA1 from oxygen-mediated modifications and enhances the DNA binding activity of

TGA1 to the as-1 element in the presence of NPR1. In addition, we observed that the translocation of NPR1 into the nucleus

is promoted by nitric oxide. Taken together, our results suggest that nitric oxide is a redox regulator of the NPR1/TGA1

system and that they underline the importance of nitric oxide in the plant defense response.

INTRODUCTION

Nitric oxide (NO) was identified as an important messenger in

plant defense signaling against microbial pathogens in the late

1990s (Delledonne et al., 1998; Durner et al., 1998). Subse-

quently it was shown to be a crucial regulator of many physio-

logical processes in plants, including stomatal closure and plant

growth and development (Neill et al., 2002a, 2002b; Pagnussat

et al., 2003; Bethke et al., 2004; Zhang et al., 2006; Lee et al.,

2008; Seligman et al., 2008). However, less is known about how

this redox-active molecule regulates these different events.

NO can regulate physiological processes directly by affecting

gene transcription. Transcriptional analyses in response to NO

have been done using different techniques, such as cDNA-

amplified fragment length polymorphism, microarray analysis,

and real-time PCR (Huang et al., 2002; Polverari et al., 2003;

Parani et al., 2004). NO-regulated genes are involved in different

functional processes, such as signal transduction, defense, and

cell death, transport, basic metabolism, and reactive oxygen

species production and degradation. Analysis of NO-regulated

genes revealed seven families of transcription factor binding

sites, including WRKY, GBOX, and OCSE elements; these bind-

ing sites are enriched in the promoter region of the NO-regulated

genes (Palmieri et al., 2008).

As a readily diffusible free radical, NO reacts with a variety of

intracellular and extracellular targets. In this way, NO can act as

activator or inhibitor of enzymes, ion channels, or transcription

factors and regulate specific processes during abiotic or biotic

stress situations in plants (Beltran et al., 2000; Kim et al., 2002;

Zhang et al., 2005; Sayed et al., 2007; Asada et al., 2009). In

addition to the formation of protein Tyr nitrates (Tedeschi et al.,

2005) and metallonitrosyls (Brandish et al., 1998; Russwurm and

Koesling,2004),NOcanalso formS-nitrosothiols (viaS-nitrosylation)

(Stamler, 1994; Stamler et al., 2001; Gaston et al., 2003). The

majority of all NO-affected proteins seem to be regulated by

S-nitrosylation, which occurs either by oxygen-dependent

chemical reactions or by the transfer of NO from a nitrosothiol

to a protein sulfhydryl group (transnitrosylation). A very important

low molecular weight nitrosothiol is S-nitrosoglutathione

(GSNO), which is a general physiological transport and storage

form of NO in plants and animals (Zhang and Hogg, 2004). The

endogenous GSNO concentration is estimated to be in the low

micromolar range, but it cannot be exclude that higher concen-

trations occur locally (Gaston et al., 1993; Kluge et al., 1997). The

stability of S-nitrosothiols has been the result of much confusion

due to the fact that the presence of traces of contaminatingmetal

ions (especially copper and iron) enhances their degradation.

Without impurities, the half-lives for dissolved S-nitrosothiols are

in the range of several hours (Hogg, 2000). The decomposition

rate is;5% per hour in water at room temperature. GSNO and

S-nitrosothiol levels are controlled by the activity of GSNO
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reductase (GSNOR), an enzyme that was previously identified

as GSH-dependent formaldehyde dehydrogenase (Fliegmann

and Sandermann, 1997; Liu et al., 2001). Depending on the

conditions, GSNOR metabolizes GSNO to a mixture of prod-

ucts, including GSSG, hydroxylamine, NH3, and GSH sulfinic

acid (Jensen et al., 1998), and as a consequence the likelihood of

enhanced protein nitrosylation reactions is reduced.

In plants, we are just at the beginning of understanding the

regulatory function of protein S-nitrosylation. So far, only a few

plant proteins are known to be regulated by S-nitrosylation,

including S-adenosylmethionine synthetase (SAMS), metacas-

pase, peroxiredoxin, and NPR1 (for nonexpresser of pathogen-

esis-related gene1) (Lindermayr et al., 2006; Belenghi et al.,

2007; Romero-Puertas et al., 2007; Tada et al., 2008). SAMS, for

example, was shown to be differentially inhibited by NO in

Arabidopsis thaliana (Lindermayr et al., 2006). Incubation with

GSNO resulted in a blunt, reversible inhibition of SAMS1,

whereas SAMS2 and SAMS3 were not significantly affected.

Since SAMS catalyzes the synthesis of the ethylene precursor

S-adenosylmethionine and NO is known to influence ethylene

biosynthesis, this enzyme probably mediates the crosstalk be-

tween ethylene and NO signaling.

Furthermore, it was demonstrated that S-nitrosothiols play

an important role in plant disease resistance (Feechan et al.,

2005). Increased S-nitrosothiol levels disable plant defense re-

sponses conferred by distinct resistance gene subclasses, and

both basal and nonhost disease resistance are also compro-

mised. Conversely, reduced S-nitrosothiol levels enhance pro-

tection against ordinarily virulent microbial pathogens.

It was also shown that GSNOR activity is necessary for the

acclimation of plants to high temperature and for normal devel-

opment and fertility under optimal growth conditions (Lee et al.,

2008). The GSNOR mutant shows pleiotropic phenotypes, in-

cluding failure to grow on nutrient plates, increased numbers of

reproductive shoots, and reduced fertility. In wild-type and

mutant plants, heat sensitivity is enhanced by NO donors, and

the heat sensitivity of GSNORmutants can be rescued by an NO

scavenger. Also, a NO-overproducing mutant is defective in

thermotolerance. Although we know that S-nitrosothiol homeo-

stasis is very important for plant growth and development as well

as for reactions to abiotic and biotic stress, the exact regulation

mechanism is still unclear.

As a possible mechanism, themodification of the DNA binding

activity of transcription factors is discussed. The DNA binding

affinity of transcription factors can be altered posttranslationally

either by phosphorylation or by redox-dependent modifications.

The activity of the thiol-containing transcriptional activator OxyR,

whose oxidation controls the expression of genes involved in

H2O2 detoxification, is modulated by different redox-dependent

modifications, includingS-nitrosylation (S-NO), S-glutathionylation

(S-SG), and the formation of sulfenic acids (S-OH) (Hausladen

et al., 1996; Kim et al., 2002). Interestingly, these modified forms

of OxyR are transcriptionally active but differ in structure, coop-

erative properties, DNA binding affinity, and promoter activities.

In this way, OxyR can process different redox signals into distinct

transcriptional responses (Kimet al., 2002). Furthermore, a group

of plant homeodomain transcription factors contains a set of

conserved Cys residues that are important for activation of these

proteins (Tron et al., 2002). In the oxidized state, the homeodo-

main transcription factors form intermolecular disulfide bonds,

resulting in inefficient DNA binding activity. By contrast, under

reducing conditions, the DNA binding activity of these proteins is

clearly enhanced.

Another important family of plant transcription factors that is

regulated in a redox-dependent manner is the R2R3MYB family.

These proteins have a single Cys residue and this Cys must be

reduced to promote DNA binding and transcriptional activity

(Heine et al., 2004). Interestingly, NO can also inhibit the DNA

binding activity of transcription factors. Posttranslational NO-

dependent modification of the Cys residue 53 of Arabidopsis

MYB2 results in reduced DNA binding activity of this transcrip-

tion factor (Serpa et al., 2007). S-Nitrosylation of the Cys residue

53 was detected by biotin switch assay, and as expected for this

type of modification, the NO-mediated inhibitory effect was

reversed by DTT.

In several cases, transcription factors need to interact with

other proteins and bind to the promoter region as multiprotein

complexes. NPR1 interacts with members of the TGACG motif

Figure 1. Analyses of Intramolecular Structures of TGA1.

Recombinant purified proteins of TGA1/WT (left four lanes, CCCC) and three Cys mutants were treated either with 250 mM GSNO, 1 mM H2O2, or both

for 30 min, with water treatment as a control. Afterwards, the proteins were separated by nonreducing SDS-PAGE and transferred onto nitrocellulose

membrane. Top panel: His-tagged TGA1 proteins were detected with anti-His antibodies. Bottom panel: Ponceau S staining was done to demonstrate

equal loading. The position of low mobility (LM) and high mobility (HM) proteins is marked with arrows.
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binding factor (TGA) family, which bind to elements of the PR1

promoter (Després et al., 2000; Zhou et al., 2000; Fobert and

Despres, 2005). NPR1 is a critical component of the salicylic acid

(SA)–mediated signal transduction pathway and is a key regula-

tor of systemic acquired resistance (Klessig et al., 2000; Zhou

et al., 2000; Durrant and Dong, 2004). The TGA transcription

factors belong to the group of bZIP factors. Interestingly, the

DNA binding sites for several bZIP factors were enriched in

promoter regions of NO-regulated genes (Palmieri et al., 2008). A

change in the cellular redox status during the SA-mediated

activation of defense leads to reduction of NPR1 to its active

monomeric form. Subsequently, the NPR1 monomers are trans-

located into the nucleus, where they interact with the reduced

form of the transcription factor TGA1 (Despres et al., 2003;

Pieterse and Van Loon, 2004). This interaction results in an

enhancedDNAbinding activity of TGA1 to the promoter region of

the PR-1 gene and stimulates its expression.

In this article, we report the effect of the physiological NO

donor GSNO on the NPR1/TGA1 regulation system. We dem-

onstrated that GSNO enhances the DNA binding activity of TGA1

in presence of NPR1 and that both proteins, NPR1 and TGA1, are

S-nitrosylated after treatment with the NO donor. Additionally,

we observed that the nuclear translocation of NPR1 is promoted

by NO. Taken together, these results underline the importance of

Figure 2. DNA Binding Activity of TGA1/WT and TGA1 Mutants.

(A) and (B) EMSAs were done to analyze the DNA binding activity of the treated TGA1 proteins. The asterisks indicate the position of the free probe. LM

and HM mark low and high mobility DNA/protein complexes, respectively. The arrows on the right sides indicate the running direction.

(A) Recombinant TGA1/WT was treated with H2O2 and different concentrations of GSNO in the presence of the as-1 DNA element as a probe.

(B) Recombinant TGA1/WT and TGA1 mutants were treated with either H2O, 1 mM GSNO, 1 mM H2O2, or a combination of 1 mM GSNO and 1 mM

H2O2.
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NO as a redox regulator of transcription in plant defense re-

sponse.

RESULTS

C172 and C287 of TGA1 Are Involved in the Formation of

Intramolecular Structures

The formation or reduction of intra- or intermolecular disulfide

bonds is an important mechanism to regulate the function and

activity of proteins. TGA1 has four Cys residues, of which C260

and C266 form an intramolecular bond under oxidative condi-

tions (Despres et al., 2003). We generated several Cys TGA1

mutants (C172S/C287S, C260S/C266S, and C172S/C260S/

C266S/C287S) to analyze the effect of GSNO on the formation

of intramolecular disulfide bonds. GSNO is a physiological NO

donor that is able to S-nitrosylate and S-glutathionylate sulfhy-

dryl groups of Cys residues. TGA1 wild-type proteins and the

different Cys mutants were treated with water, GSNO, and/or

H2O2 and separated by nonreducing SDS-PAGE. Slight changes

of the mobility are diagnostic for the presence of disulfide bonds

(Benezra, 1994; Mahoney et al., 1996; Delaunay et al., 2002). In

the case of TGA1, lowmobility proteins are a sign of formation of

disulfide bonds, whereas reduced or modified Cys residues

appear as high mobility proteins (Despres et al., 2003). Oxidized

forms of wild-type TGA1 proteins occurred in water-treated and

H2O2-treated samples (Figure 1). Surprisingly, GSNO-treatment

results exclusively in the formation of high mobility proteins. The

same tendency can be observed with TGA1-C260S/C266S

mutants. By contrast, the TGA1-C172S/C287S double mutants

and the TGA1-C172S/C260S/C266S/C287S quadruple mutants

do not form low mobility proteins after any treatment. To con-

firm that the molecular weight difference is due to the redox

status of TGA1, recombinant TGA1 and TGA1-C260S/C266S

mutants were separated by reducing SDS-PAGE (see Supple-

mental Figure 1 online). Under these conditions, only high mo-

bility proteins can be observed.

GSNO Promotes DNA Binding Activity of TGA1

Although it has been described that redox changes do not

directly regulate the DNA binding activity of TGA1 (Despres et al.,

2003), we analyzed the influence of GSNO on the DNA–TGA1

interaction. The DNA binding ability of the TGA1 proteins was

analyzed by electrophoretic mobility shift assays (EMSAs). Re-

combinant, purified, wild-type TGA1 was incubated with differ-

ent concentrations of GSNO and 1 mM H2O2 in the presence of

the activation sequence-1 (as-1) DNA element as a probe. As

shown in Figure 2A, GSNO considerably enhances DNA binding

activity of TGA1. Furthermore, wild-type and mutated TGA1

proteins were treated with water, GSNO, H2O2, or a combination

of GSNO and H2O2 (Figure 2B). Similar to the formation of

structurally different TGA proteins after GSNO treatment (Figure

1), different DNA-TGA complexes are formed under oxidizing

conditions (high and low mobility complex). Addition of GSNO,

however, resulted exclusively in the formation of high mobility

complexes. The same was observed for the C260S/C266S

double mutant. Moreover, the TGA1/wild-type (WT) proteins as

well as the double mutants C260S/C266S bind the as-1 element

with a higher activity after GSNO treatment compared with

untreated or H2O2-treated proteins. Interestingly, with the

C172S/C287S and the quadruple mutants, mostly high mobility

complexes are formed regardless of the treatment. To demon-

strate that the observed shifted bands are specific for TGA1–

DNA interaction, several control experiments, including super

shift and competition analyses, were done (see Supplemental

Figure 2 online). Furthermore, S-nitrosylation of TGA1 under the

Figure 3. EMSA of TGA1/WT and TGA1 Double Mutants under Oxidizing

Conditions (1 mM H2O2).

Recombinant proteins were pretreated with water and/or 1 mM GSNO in

the presence or absence of NPR1. After incubation with the labeled as-

1 element, the samples were separated electrophoretically. The asterisk

indicates the position of the free probe. LM and HM mark low and high

mobility DNA/protein complexes, respectively. The arrow on the right

side indicates the running direction.

Figure 4. S-Nitrosylation of Recombinant TGA1.

Ten micrograms of purified recombinant TGA1 was treated with in-

creased concentrations of GSNO (0.05, 0.1, 0.25, and 0.5 mM; lanes 3 to

6) and underwent the biotin switch method. Additionally, TGA1 was

S-nitrosylated with 0.5 mM GSNO and reduced again with 10 mM DTT

before and after biotinylation (lanes 7 and 10, respectively). Furthermore,

GSNO-treated TGA1 underwent the biotin switch method without

biotin-HPDP (lane 8) or without ascorbate (lane 9). Control treatments

were done with water (lane 1) and 0.5 mM GSH (lane 2). Proteins were

separated under nonreducing conditions by SDS-PAGE and blotted onto

nitrocellulose membrane. Biotinylated proteins were detected using

antibiotin antibodies. Ponceau S staining demonstrated equal loading.

Redox Control of NPR1-TGA1 by NO 2897



conditions used for EMSAs was shown using the biotin switch

assay, which allows specific detection of S-nitrosylated proteins

(see Supplemental Figure 3 online).

GSNO Enhances the Binding Activity of TGA1 in the

Presence of NPR1

Because NPR1 stimulates the DNA binding activity of TGA1

factors under reducing conditions (Despres et al., 2003), we

investigated the effect of GSNO on NPR1’s ability to stimulate

TGA1 DNA binding activity. EMSAs demonstrated that under

oxidizing conditions, DNA binding activity of TGA1 is very weak

(Figure 3, H2O2 treatment). Addition of GSNO or NPR1, however,

improves TGA1’s binding activity. More interestingly, the most

effective DNA binding activity of TGA1 was observed in the

presenceofNPR1andGSNO.ThisenhancedDNAbindingactivity

could also be observed with both double mutants (C172S/C278S

and C260S/C266S).

S-Nitrosylation of NPR1 and TGA1

As demonstrated, GSNO enhances the DNA binding activity

of TGA1 alone and also in the presence of NPR1. This raises

the question as to which kind of modifications resulted from

the GSNO treatment of TGA1 and NPR1. GSNO is able to

S-nitrosylate and S-glutathionylate thiol groups of Cys residues.

For detection of S-nitrosylated thiol groups, we used the biotin

switchmethod, whichwas developed by Jaffrey et al. (2001), and

specifically detects S-nitrosylated proteins. As shown in Figure 4

and in Supplemental Figure 4 online, TGA1 wild type and both

double mutants (CSSC and SCCS) are S-nitrosylated after

GSNO treatment, whereas treatment with GSH did not give a

signal in the biotin switch assay. Furthermore, S-nitrosylation of

TGA1 and the double mutants can be abolished by adding a

reducing agent such as DTT to the S-nitrosylated proteins. No

S-nitrosylation can be demonstrated for the quadruple mutant

because these proteins no longer have any Cys residues. Addi-

tionally, recombinant and purified NPR1 were also subjected to

the biotin switch assay, and S-nitrosylation could be detected

only after GSNO treatment, while exposure to GSH gave no

signal. Addition of DTT abolished S-nitrosylation of NPR1 (Fig-

ure 5).

Mass Spectrometry Analyses of GSNO-Treated TGA1

In parallel with the biotin switch assay, we used mass spectro-

metric analyses to detect GSNO-mediated modifications of the

Cys residues of TGA1, as this method also allows the detection

of S-glutathionylation. We treated recombinant purified TGA1

with 10, 100, and 500mMGSNO for 10min, digested the proteins

with trypsin, and analyzed the Cys-containing peptides for

their modifications (Table 1). C260 and C266 were found to be

S-nitrosylated and S-glutathionylated after all treatments.

By contrast, C287 was S-nitrosylated and S-glutathionylated

just after treatment with 500 mM GSNO, and C172 was

S-glutathionylated after treatment with 10, 100, and 500 mM

GSNO. At the highest GSNOconcentration, C172was also found

to be S-nitrosylated. The mass spectrometric analysis of the

peptide 170QICNOELR175, containing an S-nitrosylated Cys res-

idue, is shown in Figure 6. MS2 analysis of the S-nitrosylated

peptide (396.2) results in loss of the NO group (381.3) (Figure 6A).

The amino acid sequence was verified with the following

MS3 analysis (Figure 6B). In Table 2, expected and observed

mass-to-charge (m/z) values of the analyzed peptides containing

unmodified, S-nitrosylated, or S-glutathionylated Cys residues

are summarized. In some cases, we observed a mass difference

of60.98, which is due to modification during trypic digestion. An

increase or loss of 0.98 mass units results from an N-terminal

amidation and deamidation, respectively.

NO-Dependent Transport of NPR1-GFP into the Nucleus

As already mentioned, NPR1 is retained in the cytosol in its

inactive oligomeric form. To interact with TGA1, NPR1 mono-

mers must be translocated into the nucleus. For this reason, we

investigated whether GSNO causes the accumulation of NPR1

in the nucleus. We treated Arabidopsis mesophyll protoplasts

harboring a 35S:NPR1-GFP (for green fluorescent protein)

Figure 5. S-Nitrosylation of Recombinant NPR1.

Ten micrograms of purified recombinant NPR1 was treated with 0.1

mM GSNO, and S-nitrosylation was analyzed using the biotin switch

assay (lane 2). Furthermore, NPR1 was treated with 0.1 mM GSNO and

reduced with 10 mM DTT before undergoing the biotin switch method

(lane 3). Control treatment was done with water (lane 1). Proteins were

separated by nonreducing SDS-PAGE and blotted onto nitrocellulose

membrane. Biotinylated proteins were detected using antibiotin anti-

bodies. Ponceau S staining demonstrated equal loading.

Table 1. Determination of Cys Modifications of TGA1

10 mM GSNO 0.1 mM GSNO 0.5 mM GSNO

S-NO S-SG S-NO S-SG S-NO S-SG

C172 � + � + + +

C260 + + + + + +

C266 + + + + + +

C287 � � � � + +

Purified recombinant TGA1 was treated with different concentrations

of GSNO for 10 min. Residual GSNO was removed by gel filtration. After

tryptic digestion, the Cys-containing peptides were analyzed for their

modification by nano-liquid chromatography tandem mass spectrometry.
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Figure 6. Mass Spectrometry Analysis of S-Nitrosylated 170QICNOELR175.
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construct withGSNOand analyzed the distribution of NPR1-GFP

within the cells by fluorescent microscopy. As shown in Figure 7,

we could observe the translocation of NPR1 into the nucleus,

while in the control treatment with H2O, the NPR1-GFP fusion

protein is distributed in the cytosol. Scavenging of NO with 2-(4-

carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

(cPTIO) prevented the translocation into the nucleus. Treatment

with SA was used as positive control. Addition of the NO

scavenger cPTIO alone did not induce nuclear transloction of

NPR1-GFP. Taken together, these results indicate that a NO-

dependent mechanism is responsible for the translocation into

the nucleus.

TGA1 Cys Mutants Exhibit Altered PR-1, PR-2, and

PR-5 Expression

Arabidopsis tga1 and tga4 double knockout plants are impaired

in PR-1, PR-2, and PR-5 expression and are a optimal tools to

demonstrate the effect of TGA1 Cys mutants on expression of

these SA marker genes. Therefore, double and quadruple TGA1

Cys mutants were transformed into tga1/tga4 double knock-

out plants under control of a 35S promoter. Expression of the

introduced TGA1 variants has been proofed by PCRusing TGA1-

specific primers (see Supplemental Figure 5 online). Transcrip-

tion of the SA marker genes PR-1, PR-2, and PR-5 has been

analyzed by quantitative RT-PCR (Figure 8A). We found, that

tga1/tga4 double knockout plants transformed with TGA1-WT,

TGA1-C172S/C260S/C266S/C287S, or TGA1-C260S/C266S

having similar relative expression levels for the tested SA marker

genes as Columbia-0 (Col-0)/WT and tga1/tga4 double knockout

plants (between 0.2 and 1.5 relative expression). Interestingly,

double knockout plants transformed with TGA1-C172S/C287S

have significant higher transcript levels of PR1, PR2, and PR5 in

comparison to Col-0/WT and tga1/tga4 double knockout plants.

Since tga1/tga4 double knockout plants display enhanced

disease susceptibility, we performed bacterial infection experi-

ments to see whether the different TGA1 constructs can com-

plement the enhanced disease susceptibility phenotype in the

double knockout. As shown is Figure 8B, tga1/tga4 double

knockout plants supported significantly higher pathogen growth

than Col-0/WT plants and none of the different TGA1 variants

could complement susceptibility of the double knockout.

DISCUSSION

In recent years, intracellular redox changes have come into focus

as major regulators of key cellular functions in plant physiology

and pathophysiology. Redox signaling is a process wherein free

radicals, such as reactive oxygen and nitrogen species, act as

messengers in biological systemsmainly throughmodification of

Cys residues. Transient and reversible redox-mediated modifi-

cation of functional protein Cys residues, such as those located

in the catalytic sites of enzymes or in the DNA binding domains of

transcription factors, and the consequent formation of either

intramolecular disulfide bonds or mixed protein glutathione

disulfides, are major redox-related signaling mechanisms. Re-

active oxygen species and reactive nitrogen species have been

shown to serve as diffusible intra- and intercellular signals for

activation of various physiological reactions in plants (Durner and

Klessig, 1999; Neill et al., 2002a, 2002b; Feechan et al., 2005;

Kotchoni and Gachomo, 2006). For example, NO activates a

number of defense genes and has emerged as one of the pivotal

mediators of disease resistance in plants (Delledonne et al.,

1998; Durner et al., 1998; Huang et al., 2002). Furthermore, it has

been observed that NO production occurs within the same time

frame with that of H2O2, and a critical balance between the two

redox molecules regulates cellular outcomes, such as sensitivity

or resistance to a given stress situation (Delledonne et al., 2001).

NPR1 and TGA1 are well-described redox-regulated signaling

compounds (Despres et al., 2003). Both proteins interact in their

reduced state, which results in enhanced DNA binding of TGA1

and activation of PR gene expression (Despres et al., 2003;

Pieterse and Van Loon, 2004). We demonstrated that TGA1 is

Figure 6. (continued).

(A) and (B) Purified, recombinant TGA1 was treated with 500 mMGSNO for 10 min at room temperature. After removal of excess GSNO by gel filtration

and tryptic digestion for 1 h at 378C, the peptides were analyzed by mass spectrometry.

(A) IT MS2 CID spectra of nitrosylated TGA1 peptide QICNOELR.

(B) IT MS3 CID spectrum of neutral loss fragment (�NO) from (A).

Table 2. Determination of Modified Cys Residues of TGA1 after Treatment with GSNO

Sequence

Unmodified (M+H)+:

Expected/Observed m/z

+NO (M+H)+:

Expected/Observed m/z

+GS (M+H)+:

Expected/Observed m/z

170QICELR175 761.40/761.39 791.39/792.40 1066.48/1066.48
242VLLPHFDVLTDQQLLDVCNLK263 2423.30/2423.30 2453.29/2453.30 2728.38/2728.38
264QSCQQAEDALTQGMEK279 1766.77/1766.77 1796.76/1796.77 2071.85/2071.85
280LQHTLADCVAAGQLGEGSYIPQVNSAMDR308 3044.46/3044.46 3074.45/3074.45 3349.54/3349.54

Purified recombinant TAG1 was treated with 500 mMGSNO for 10 min at room temperature. After tryptic digestion (1 h, 378C) Cys-containing peptides

were analyzed for their modifications (S-nitrosylation and S-glutathionylation) by mass spectrometry. For each peptide, expected and observed m/z

values are shown.
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structurally modified by GSNO and H2O2 (Figure 1). Under

oxidizing conditions (H2O2) or conditions without protection

from oxidation (H2O), TGA1 forms disulfide bonds leading to an

inactive conformation. Diagnostic for the formation of an intra-

molecular disulfide bond is the lower mobility during electropho-

retic separation (Delaunay et al., 2002). After GSNO treatment,

only high mobility proteins can be detected, demonstrating that

GSNO protects TGA1 from oxygen-mediated modifications.

Different electrophoretic mobility of oxidized and reduced TGA1

was also demonstrated by Després et al. (2003). They showed

that in vitro–translated TGA1 treated with diamide forms an

intramolecular disulfide bond, whereas the C260N mutant has

the same electrophoretic mobility under reducing and oxidizing

conditions. Furthermore, a C260N+C266S mutant and the treat-

ment of wild-type plants with SA, which leads to the reduction of

TGA1 Cys residues, enables the TGA1/NPR1 interaction in yeast

and Arabidopsis. This suggests the presence of a disulfide bond

between C260 and C266 under oxidizing conditions.

Surprisingly, in the TGA1 double mutant C172S/C287S, we

could not observe a disulfide bond formation between C260 and

C266. Probably the mutation of the two Cys residues results in

enormous steric alterations that prohibit the formation of an

intramolecular disulfide bond between C260 and C266. In the

TGA1 C260S/C266S mutant, however, low mobility proteins

could be observed under oxidizing conditions, demonstrating

that disulfide bond formation also occurs between C172 and

C287. Interestingly, tga1 tga4 knockout plants transformed with

the TGA1-C172S/C287Smutant showed hyperexpression of the

defense-related genes PR-2 and PR-5 (Figure 8). These results

demonstrate that reduction of theseCys residues is important for

TGA1 activity, since the mutations mimic their reduced status.

Under oxidizing conditions, TGA1 forms a high and a low

mobility complex in the EMSA, whereas only high mobility

complexes appeared after treatment with GSNO. Obviously, the

binding activity of TGA1 is altered under oxidizing conditions,

resulting in the binding of more than one TGA1 protein per as-1

fragment. Addition of GSNO probably alters the conformation of

TGA1. This results in a different DNA binding behavior, and the

formation of low mobility complexes is not possible any more.

This would suggest that different structural conformations of

TGA1 resulting from the different redox conditions have different

functions. Different redox modifications of a protein can have

unique functional effects as it is described for the bacterial

transcription factor OxyR (Kim et al., 2002). In this case, expo-

sure of OxyR to GSNO or S-nitrosylated Cys and H2O2 results in

formation of disulfide bonds, S-OH, S-NO, and S-SG. Interest-

ingly, these alternatively modified proteins have different activ-

ities. S-hydroxylation, S-nitrosylation, and S-glutathionylation

produce unique conformational changes in OxyR, which result in

different DNA binding activities in the following order: OxyR-

SSG > OxyR-SOH > OxyR-SNO. Furthermore, the fact that dif-

ferentmultiple active forms of the transcription activator produce

distinct alterations in the same DNA structure suggests that

varied motifs or binding sites for OxyR forms with different

Figure 7. NO-Dependent Transport of NPR1-GFP into the Nucleus.

Protoplasts of plants stably transformed with a 35S:NPR1-GFP construct were isolated and treated with double-distilled water, 100 mMGSNO, 100 mM

cPTIO, 100 mMGSNO + 100 mM cPTIO, or 250 mMSA for 20 h. Localization of NPR1-GFP fusion protein was analyzed with a fluorescence microscope

(top row,3200). Center row shows the same cells in a bright-field micrograph. Protoplasts of plants stably transformed with a 35S:GFP construct were

used as control to demonstrate that the different treatments have no effect of GFP (bottom row, 3200). Bars = 10 mm.

Redox Control of NPR1-TGA1 by NO 2901



affinities exist and have different consequences for activation of

alternative genes.

We demonstrated that GSNO treatment has an effect on NPR1

and TGA1 activity (Figures 2, 3, and 7) and that NPR1 and TGA1

are both S-nitrosylated by GSNO (Figures 4 and 5). In the

presence of GSNO, TGA1 DNA binding activity is considerably

enhanced. This is quite surprising, since DNA binding of TGA1

is described to be not redox regulated (Despres et al., 2003).

Apparently, the GSNO-dependent modifications results in con-

formational changes of TGA1, which allow a better DNA binding

ability. However, since GSNO is able to both S-nitrosylate and

S-glutathionylate Cys residues, we cannot say exactly which

type ofmodification is responsible for the increased DNAbinding

activity of TGA1. The covalently attached NO or glutathione have

various different features, such as size and hydrophobicity,

which influence their environment in different ways and altered

the chemical features of themodified protein. Different effects on

protein function after S-glutathionylation or S-nitrosylation of the

same Cys residue are described for several proteins (Aracena

et al., 2003, 2005; Martinez-Ruiz and Lamas, 2007).

Systemic acquired resistance involves the production of SA.

SA induces NO production through a NOS-dependent route in

Arabidopsis, concluding that NO is a downstream signal in the

SA-induced plant defense response (Zottini et al., 2007). A

potential target for the produced NO is the transcription factor

TGA1. As mentioned before, DNA binding activity of TGA1 is

improved in the presence of the NO donor GSNO, probably due

to S-nitrosylation of critical Cys residues. Alteration of the redox

conditions influences the DNA binding activity of several tran-

scription factors (Tron et al., 2002; Heine et al., 2004; Toledano

et al., 2004). However, the ability of TGA1 to bind its cognate

promoter element in vitrowas unchanged even in the presence of

amolar excess of several redox-regulating compounds (Despres

et al., 2003). Instead, reducing conditions are required for inter-

action of TGA1 with NPR1, which acts as a cofactor to stimulate

TGA1’s DNA binding activity.

Redox-dependent interaction with NPR1 is only described for

TGA1 and TGA4, while TGA2, TGA3, TGA5, TGA6, and TGA7

interact with NPR1 independently of the cellular redox status

(Zhang et al., 1999; Zhou et al., 2000; Despres et al., 2003). The

Cys residues C260 and C266 of TGA1 form a disulfide bond

under oxidizing conditions, which precludes interaction with

NPR1. These two redox-sensitive Cys residues are also con-

served in TGA4, but not in the other TGA isoforms. Site-directed

mutagenesis of both Cys residues enables the interaction with

NPR1, concluding that both residues are controlling the interac-

tion (Despres et al., 2003). Furthermore, the redox status of C260

and C266 of TGA1 and TGA4 is shifted considerably after SA

treatment to become predominantly reduced. However, tga1/

tga4 knockout plants transformed with the TGA1-C172S/C287S

mutant showed hyperexpression of the defense-related genes

PR-1, PR-2, and PR-5 (Figure 8A), suggesting that reduction of

these Cys residues is also important for TGA1 activity, since the

mutations mimic their reduced status.

Surprisingly, hyperexpression of these defense-related genes

could not complement enhanced disease susceptibility pheno-

type in these plants (Figure 8B). It is likely that the expression

level of these defense genes, and consequently the amount of

synthesized PR-1, PR-2, and PR-5 proteins, is just not high

enough to increase basal resistance in the double knockouts. As

shown in Figure 8A, the expression levels of the analyzed

defense-related genes are just about twofold higher in the

tga1/tga4 plants complemented with TGA1-C172S/C287S than

in the double knockout plants. Furthermore, mutation of these

two Cys residues might negatively influences the stability of the

protein in planta. Taken together, we could demonstrate that the

Figure 8. Analyses of PR-1, PR-2, and PR-5 Expression and Basal

Resistance in tga1/tga4 Double Knockout Plants Complemented with

Different TGA1 Variants.

All experiments were done with Col-0 wild type, tga1/tga4 double

knockout (tga1,4) plants, and tga1,4 complemented with TGA1-WT

(CCCC), TGA1-C172/260/266/287S (SSSS), TGA1-C260/266S (CSSC),

and TGA1-C172/287S (SCCS).

(A) Quantitative RT-PCR analysis of the amount of PR-1, PR-2, and PR-5

transcripts. Pools of three plants were used for each analysis. Experi-

ments were repeated three times with up to three independent lines per

construct. Data represent the average of all experiments per lines. The

error bars represent SE.

(B) For infection experiments, leaves of 4-week-old plants were infil-

trated with virulent P. syringae DC3000 (105 colony-forming units/mL).

Samples were collected 2 h (gray) and 3 d (black) postinfection. The

experiment was repeated three times with similar results. Data represent

values of one experiment averaged from nine leaf samples per genotype.

Error bars represent SE.
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redox status of C172 and C287 is important for the intramole-

culare structure of TGA1 and that opening of the disulfide bond

and GSNO-dependent modification of the Cys residues posi-

tively affect DNA binding activity of this transcription factor.

Interestingly, NPR1 enhances not only theDNAbinding activity

of the reduced TGA1 (Despres et al., 2003) but also the DNA

binding activity of the GSNO-treated TGA1 (Figure 3). Appar-

ently, the GSNO-dependent modifications result in conforma-

tional changes of TGA1 and/or NPR1, which allow a more

effective TGA1–NPR1 interaction and as consequence a more

effective DNA binding of TGA1. Furthermore, it is possible that

the GSNO-dependent modifications just protect TGA1 from

formation of disulfide bonds, which would result in lower DNA

binding activity of TGA1.

As already mentioned, the SA-dependent SAR signaling path-

way involves NPR1 as master regulator, which interacts with

TGA1 and further improves its DNA binding activity. NO pro-

motes the ability of NPR1 to enhance DNA binding activity of

TGA1 (Figure 3). Furthermore, it was shown that treatment of

Arabidopsis wild-type and transgenic 35S:NPR1-GFP plants

with SA induces S-nitrosylation of endogenous NPR1 and the

NPR1-GFP proteins and accumulation of GFP-labeled NPR1 in

the nucleus (Tada et al., 2008). The NO-mediated enhanced

activity of NPR1 is quite surprising since S-nitrosylation of NPR1

facilitates its oligomerization, which keeps it in the cytosol and is

essential for NPR1 homeostasis upon SA induction (Tada et al.,

2008). The monomerization of NPR1 is catalyzed by thiore-

doxins, which reduce NPR1 and allow the transloction into the

nucleus. This nuclear translocation of NPR1 is required for

interaction of NPR1 with TGA transcription factors and for PR

gene expression. Interestingly, the nuclear translocation of

NPR1 is also induced by GSNO/NO (Figure 7). However, the

S-nitrosylation–mediated oligomerization is not seen as an in-

hibitory effect of NPR1 signaling but rather as a step prior to

monomer accumulation. From this point of view, the observed

NO-mediated nuclear transloction of NPR1 is not contradictory

to the results described by Tada et al. (2008). It is conceivable

that NPR1 monomers are just the transport form of this protein.

Since we demonstrated a positive effect of GSNO/NO on the

NPR1-mediated DNA binding activity of TGA1, it is possible that

NPR1 is S-nitrosylated again in the nucleus. Interestingly, it is

also described that NO can induce SA production (Durner et al.,

1998; Huang et al., 2004). As a consequence, the observed

nuclear translocation of NPR1 after GSNO treatment would be

just a result of the SA-induced redox changes.

In addition to pathogen-mediated SAR, a nonpathogen-

induced systemic resistance (ISR) has been described. Interest-

ingly, the signaling pathway of ISR involves also NPR1, but it is

independent of SA (Pieterse et al., 1996, 1998). Furthermore,

many of the known defense-related genes, such as SA-inducible

PR-1, PR-2, and PR-5 and the ethylene- and jasmonate-induc-

ible genes HEL, CHIB, PDF1.2, ATVSP, LOX1, LOX2, and PAL1,

were not found to be upregulated in Arabidopsis inoculated with

the nonpathogenic Pseudomonas fluorescens WCS417r (Wang

et al., 2005a). More interestingly, NO seems to be also involved in

manifesting the ISR in plants (Heil, 2001; Wang et al., 2005b).

However, neither the signaling mechanism of NO nor the func-

tion of NPR1 in this pathway is known. Probably NPR1 is also

S-nitrosylated like in SAR, but in the case of ISR, it is not

interacting with TGA1, but probably with another TGA isoform,

another transcription factor, or just another signaling partner.

Taken together, NPR1-dependent signaling seems to be much

more complex than assumed so far, and the participation of

NPR1 in two different signaling pathways makes it quite difficult

to analyze the function of NPR1 for both resistance reactions

separately. This complexity could also be an explanation for the

contradictory observations that NO induces on one hand nuclear

translocation of NPR1 (reported in this article) and on the other

hand NPR1 oligomerization, which keeps NPR1 in the cytosol

(Tada et al., 2008).

In sum, we could demonstrate that both proteins, TGA1 and

NPR1, are redoxmodified byGSNOand that thesemodifications

enhance the DNA binding activity of TGA1. More interestingly,

we observed that the translocation of NPR1 into the nucleus is

promoted by NO. These results suggest a regulatory role of NO

for the NPR1/TGA1 system and add an important aspect to the

described redox control of plant defense response (Despres

et al., 2003).

METHODS

Production of TGA1 and NPR1 in Escherichia coli and Purification

of Recombinant Protein

E. coli strain BL21 DE3 pLysS (Invitrogen) harboring the plasmids pDEST-

42 (Invitrogen) was grown in Luria-Bertani medium supplemented with

100 mg/mL ampicillin until A600;0.5 was reached. Production of recom-

binant 6xHis-tagged proteins was induced with 1 mM isopropyl-b-D-

thiogalactopyranoside. After overnight incubation at 108C (NPR1) or 208C

(TGA1), bacterial cells were harvested by centrifugation. For protein

isolation, the cells were resuspended in an appropriate volume of ex-

traction buffer (50 mMNaH2PO4, pH 7.5, 2 mM EDTA, 20% [v/v] glycerol,

20 mM b-mercaptoethanol, 1 mM DTT, and 1 mg/mL lysozyme) and

incubated on ice for 30 min and disrupted by sonication. Cellular debris

was removed by centrifugation (20,000g, 20 min, 48C). The recombinant

6xHis-tagged proteins were purified by immobilized metal chelate affinity

chromatography using the Ni-NTA metal affinity matrix (Qiagen) accord-

ing to the instructions of the manufacturer. Adsorbed proteins were

washed with 20 volumes of washing buffer (50 mM NaH2PO4, pH 7.5,

300 mM NaCl, 20 mM imidazole, 0.5% [v/v] Triton X-100, 20 mM

b-mercaptoethanol, and 1 mM DTT) and eluted from the affinity matrix

with extraction buffer (50 mM NaH2PO4, pH 7.5, 300 mM NaCl, and

250 mM imidazol)

EMSAs

The EMSAs were performed as described previously (Ausubel et al.,

1989; Carey, 1991). The as-1 element [consensus sequence 59-TGACG

(N7)TGACG-39] represents an important DNA binding site within the

promoter regions of various stress-related genes, such as the PR-1 or the

GST gene (Garreton et al., 2002; Despres et al., 2003). In addition, it is a

well-studied target sequence for the TGA1 transcription factor, and for

this reason, a DNA sequence representing as-1 was used as probe. The

oligonucleotides as-1F (59-GGTCGAGCTGACGTAAGGGATGACGCACG-39)

and as-1R (59-GGCGTGCGTCATCCCTTACGTCAGCTCGA-39) were

combined at a final concentration of 100 mM, denatured at 958C for 5

min, and annealed at 208C for 30min. One hundred nanograms of double-

stranded DNA were radioactively labeled with [a-32P]dCTP by Klenow

exo2. The addition of 20mMEDTA stopped the fill-in reaction. Finally, the
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radioactively labeled DNA fragments were separated from nonincorpo-

rated radionucleotides by filtration through a Micro Biospin P6 column

(Bio-Rad). Approximately 1.5 3 108 cpm/mg double-stranded DNA

resulted as specific activity. The recombinant purified TGA1 and NPR1

were reduced in the presence of 10 mM DTT on ice for 30 min before the

DTT was removed by gel filtration. The following procedures were

performed at dark conditions. Freshly reduced proteins were pretreated

with 1 mM GSNO or left untreated at room temperature for 30 min.

Subsequently, 250 ng TGA1 and 500 ng NPR1 were incubated with 120

pg radioactively labeled as-1 fragment (2 3 104 cpm). These binding

assays were performed in 15 mL of binding buffer [20 mM HEPES-KOH,

pH 7.9, 100 mM KCl, 20% (v/v) glycerol, and 0.05 mg/mL poly(dI-dC)] in

the absence or presence of 1 mM H2O2 for a further 30 min. After the

addition of 2 mL loading dye (50 mM EDTA, pH 8.0, 50 mM Tris/HCl, pH

8.0, 1.25 mg/mL bromphenolblue, and 1.25 mg/mL xylencyanol), the

reactions were separated on a native polyacrylamide gel (4%) in 13 Tris/

glycine/EDTA at 48C. The gel was dried under vacuum and autoradio-

graphed between intensifying screens at 2808C.

Gel Electrophoresis and Immunoblot Analysis

Proteins were separated by SDS-PAGE on 12% polyacrylamide gels

(Laemmli, 1970), transferred onto polyvinylidene fluoride membranes,

and blocked with 1% nonfat milk powder and 1% BSA. The blots were

incubated with antibiotin mouse monoclonal antibody conjugated with

alkaline phosphatase at a dilution of 1:10,000 for 1 h. Cross-reacting

protein bands were visualized using 5-bromo-4-chloro-3-indolyl phos-

phate and nitro blue tetrazolium as substrates.

Biotin Switch Method

The in vitro S-nitrosylation and subsequent biotinylation of S-nitrosylated

proteins were done as described by Jaffrey et al. (2001) with minor

modifications. Recombinant and purified NPR1 and TGA1 were treated

with GSNO for 20 min at room temperature. Blocking of non-nitrosylated

free Cys residues was done by incubation with 20 mM methyl methane-

thionsulfonate and 2.5%SDSat 508C for 20minwith frequently vortexing.

Residual methyl methanethionsulfonate was removed by precipitation

with 5 volumes of2208C acetone, and the proteins were resuspended in

0.1 mL HENS buffer (HEN buffer containing 1% SDS) per mg protein.

Biotinylation was achieved by adding 2 mM N-[6-(biotinamido)hexyl]-39-

(29-pyridyldithio)propionamide (biotin-HPDP) and 1 mM ascorbate and

incubating at room temperature for 1 h.

Biotin-labeled proteins were separated by nonreducing SDS-PAGE on

12% polyacrylamide gels (Laemmli, 1970), transferred onto polyvinyli-

dene fluoride membranes, and blocked with 1% nonfat milk powder and

1% BSA. The blots were incubated with antibiotin mouse monoclonal

antibody conjugated with alkaline phosphatase (Sigma-Aldrich) at a

dilution of 1:10,000 for 1 h. Cross-reacting protein bands were visualized

using 5-bromo-4-chloro-3-indolyl phosphate and nitro blue tetrazolium

as substrates.

Nano-HPLC-MS2/3 and Data Analysis

For mass spectrometry analyses, proteins were treated with 500 mM

GSNO for 10 min at room temperature. After removal of excess GSNO

using Micro Bio-Spin 6 columns (Bio-Rad), proteins were digested with

trypsin at 378C for 1 h in 50 mM NH4HCO3, pH 5.5. The reaction was

performed in darkness to avoid light-dependent decomposition of the

modifications. The trypsin:protein ratio was 1:20.

All nano-HPLC-MS2/3 experiments were performed on a Flux Rheos

2200 nanoflow system connected to a linear ion trap-Fourier transform

mass spectrometer (LTQ-Orbitrap; Thermo Fisher Scientific) equipped

with a nanoelectrospray ion source (Proxeon Biosystems).

Protein digests were analyzed by online nano-liquid chromatography-

MS/MS. The samples were separated on an in-house made 10-cm

reversed phase capillary emitter column (inner diameter 75 mm, 5 mm

ProntoSIL 120-5-C18 ace-EPS; Bischoff) using 120-min linear gradients

from 0 to 40% acetonitrile/0.1% formic acid at a flow rate of 270 nL/min.

The mass spectrometer was operated in the data-dependent mode to

automatically switch betweenMS, MS2, andMS3 acquisition. Survey full-

scan MS spectra (m/z 350 to 1800) were acquired in the Orbitrap with

resolution R = 7500 at m/z 400. The six most intense ions were then

sequentially fragmented in the linear ion trap using collisionally induced

dissociation at a normalized collision energy of 35 V. In the case of a

resulting neutral loss of 9.7 and 14.5m/z, respectively, in theMS2 spectra

of the three most abundant peaks (indicating the loss of NO), these

fragments were selected for further fragmentation (MS3). Former target

ions selected forMS2were dynamically excluded for 30 s. Total cycle time

was ;3 s. The general mass spectrometry conditions were as follows:

spray voltage, 1.4 kV; no sheath and auxiliary gas flow; and ion transfer

tube temperature, 2008C. Ion selection thresholds were 500 counts for

MS2 and 500 counts for MS3. An activation q = 0.25 and activation time

of 30 ms were applied in both MS2 and MS3 acquisitions.

Peptides and proteins were identified via automated database search-

ing (Bioworks 3.3.1, SP1) of all MS2 and MS3against an in-house curated

database containing the protein entries from The Arabidopsis Information

Resource proteome database (TAIR, version 7), E. coli, porcine trypsin,

and thehumankeratins (36,361protein sequences). Spectrawere searched

with a mass tolerance of 1.5 atomic mass unit for the parent mass and

1 atomic mass unit for the MS2 and MS3 fragment masses with semi-

tryptic specificity allowing two miscleavages. All modifications were set

to be variable: oxidation of Met and nitrosylation and glutathionylation

of Cys.

Preparation of Arabidopsis thaliana Protoplasts

Arabidopsis protoplasts were isolated as described by Abel and Theo-

logis (1994) with some modifications. In brief, leaves of 4-week-old

Arabidopsis plants were cut in 1-mm strips and incubated in a cellulase/

macerozyme solution (1.25% cellulase [Serva], 0.3% macerozyme

[Serva], 0.4 M mannitol, 20 mM KCl, and 20 mM MES, pH 5.7). The

protoplast solution was vacuum infiltrated to reduce the protoplasting

time and to increase the viability of the protoplasts. After infiltration, the

leaf tissueswere gently shaken (40 rpm) for 100min at room temperature,

and the protoplasts were harvested by filtration through nylon membrane

(71 mm). After centrifugation (100g, 2 min, 48C), the protoplasts were

washed two times with 48C cold W5 solution (154 mM NaCl, 125 mM

CaCl2, 5 mM KCl, and 2 mM MES, pH 5.7). The quality of the isolated

protoplasts was analyzed by microscopy, and the concentration was

adjusted to ;50 protoplasts per mL.

Site-Directed Mutagenesis

The modification of single nucleotide residues was performed as previ-

ously described (Lindermayr et al., 2003). Briefly, for mutation, a pair of

oligonucleotides was synthesized harboring the desired alterations. The

size of the primers was adjusted to yield a melting temperature of 688C

using the following formula: Tm = 81.5 + 0.41 x GC (%) – 675/number of

bases – sequence deviation (%). For amplification, 20 ng plasmid DNA

was used in a total volume of 15 mL, including 1 mM each primer, 200 mM

deoxynucleotide triphosphate, and 1 unit of PfuTurbo DNA polymerase

(Stratagene). After denaturation (2 min at 948C), 18 cycles were con-

ducted, consisting of 45 s at 948C, 30 s at 558C, and 15 min at 728C,

followed by a final extension step at 728C for 10 min. Subsequently, the

parental and hemiparental template DNAwas digestedwithDpnI, and the

amplified plasmids were transformed into E. coliDH5a. Themutation was

verified by sequencing.
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Plant Transformation

Transformation ofArabidopsis plantswas done by the floral dip technique

(Clough and Bent, 1998). Inflorescences of Arabidopsis plants were

dipped into Agrobacterium tumefaciens solution (OD600 ;0.8) with 5%

sucrose and 0.05% Silvett L-77. To increase the infection efficiency,

plantswere coveredwith a plastic wrap for 2 d to guarantee high humidity.

Real-Time Quantitative RT-PCR

Total RNA extractions were performed from 200 mg leaf tissue using the

TRIzol reagent according to the supplier’s instructions (Invitrogen). Each

mRNA sample was reverse transcribed using Superscript II reverse

transcriptase (Invitrogen) according to the protocol of the supplier.

Inactivation of the reverse transcriptase was done by incubating the

mixture at 708C for 15 min, and the cDNA solution was stored at 2208C.

For real-time quantitative RT-PCR, the following gene-specific primer

pairs were designed for PR-1 (PR1-f, 59-GTGCCAAAGTGAGGTGTAA-

CAA-39; PR1-r, 59-CGTGTGTATGCATGATCACATC-39), PR-2 (PR2-f,

59-GTCTGAATCAAGGAGCTTAGCC-39; PR2-r, 59-GATGGACTTGGCA-

AGGTATCG-39), and PR-5 (PR5-f, 59-ATGTGAGCCTCGTAGATGGT-

TAC-39; PR5-r, 59-GATCCATGACCTTAAGCATGTCG-39). All primer pairs

were checked for amplification specificity and an efficiency superior to

80% using a serial cDNA dilution. Real-time quantification was performed

using a 7500 real-time PCR system (Applied Biosystems). Individual PCR

reaction mixtures contained 4 mL of diluted cDNA (1:15), 10 mL of Sybr

Green Mastermix (Thermo Fisher Scientific), and 250 mMof each primer in

a final volume of 20 mL. In all experiments, three biological replicates of

each sample and two technical (PCR) replicates were performed. Normal-

ization of real-time quantitative RT-PCR data was done by geometric

averaging of multiple internal control genes (Ubiquitin 9 [At5g18380] and

S16 [At5g18380 andAt2g09990]) (Vandesompele et al., 2002). The stability

of the reference genes was tested and normalization was performed using

GeNorm (Vandesompele et al., 2002).

Pathogen Infection

Virulent Pseudomonas syringae DC3000 was grown on King’s B medium

and infiltrated with a syringe into leaves of 4-week-old plants at a

concentration of 105 colony-forming units mL21 in 10 mM MgCl2. Mock

inoculation was performed using 10 mM MgCl2. In planta bacterial titers

were determined by shaking leaf discs from infected leaves in 10 mM

MgCl2 supplemented with 0.01%Silwet-L77 at 288C for 1 h. The resulting

bacterial suspensionswere serially diluted, and spots of 20mL per dilution

were grown on King’s B medium and counted.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data

libraries or the Arabidopsis Genome Initiative database under the following

accession numbers: NM_105102 (At1g64280), NM_125919 (At5g65210),

and NM_121041 (At5g10030). The tga1-1 and tga4-1mutants were iden-

tified in the T-DNA insertion collection from the SALK Institute Genomic

Laboratory (http://signal.salk.edu) (SALK_082821 and SALK_127923

for tga1-1 and tga4-1, respectively). tga1/tga4 double knockouts were

provided by X. Dong (Duke University, Durham, NC) (Kesarwani et al.,

2007).
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