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Because inflammation is appreciated as a unifying basis
of many widely occurring diseases, the mechanisms
involved in its natural resolution are of considerable
interest. Using contained, self-limited inflammatory ex-
udates and a systems approach, novel lipid-derived me-
diators and pathways were uncovered in the resolution
of inflammatory exudates. These new families of local
mediators control both the duration and magnitude of
acute inflammation as well as the return of the site to
homeostasis in the process of catabasis. This new genus
of specialized proresolving mediators (SPM) includes
essential fatty acid–derived lipoxins, resolvins, protec-
tins, and, most recently, maresins. These families were
named based on their unique structures and potent
stereoselective actions. The temporally initiated biosyn-
thesis of SPM and their direct impact on leukocyte traf-
ficking and macrophage-directed clearance mecha-
nisms provide clear evidence that resolution is an
active, programmed response at the tissue level. More-
over, SPM that possess anti-inflammatory (ie, limiting
PMN infiltration) and proresolving (enhance macro-
phage uptake and clearance of apoptotic PMN and
microbial particles) actions as well as stimulating mu-
cosal antimicrobial responses demonstrate that anti-
inflammation and proresolution are different re-
sponses of the host and novel defining properties of
these molecules. The mapping of new resolution cir-
cuits has opened the possibility for understanding
mechanisms that lead from acute to chronic inflam-
mation, or to the resolution thereof, as well as to
potential , resolution-based immunopharmacologi-
cal therapies. (Am J Pathol 2010, 177:1576–1591; DOI:
10.2353/ajpath.2010.100322)

New Solution for Resolution of Acute
Inflammation

Surgical interventions, tissue injury, and microbial inva-
sion each evoke acute inflammation that is ideally pro-
tective for the host and should be “self-limited.” Resolu-
tion of this inflammatory response was believed to be
passive and defined earlier by histopathology.1– 4 It is
now also widely accepted that uncontrolled inflammation
is a unifying component in many diseases,5 including
vascular diseases,6 neurological disorders,7 and host
defense.2,5 Because resolution was believed to be pas-
sive, our initial contributions8 –10 and those of other
groups worldwide provided new evidence indicating that
resolution is a biosynthetically active process.11–16 When
we considered the routes between acute inflammation,
chronic, or resolved, as decision paths, the self-limited
response appeared to hold a solution to what endoge-
nous mechanisms control the magnitude and duration of
the acute response, including the cardinal signs of in-
flammation (Figure 1). Specifically, the author and col-
leagues systematically identified a novel genus of spe-
cialized pro-resolving mediators (SPM) that include
nonredundant, distinct, new families of molecules that are
locally acting mediators, namely resolvins, protectins,
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and their aspirin-triggered forms.17,18 By definition, SPM
are potent local-acting mediators and bioactive markers
for this genus. Each limits PMN infiltration and enhances
selective macrophage responses in a nonphlogistic (ie,
not inducing inflammation or fever) fashion.

It has now become evident that the resolution program
of acute inflammation remains largely uncharted and is
critically needed to understand the pathophysiology of
inflammation-resolution as well as to direct new therapeu-
tic approaches.11,18,19 This review gives an overview and
update on the systematic elucidation of resolution com-
ponents activated in self-limited inflammation using an
unbiased mediator-lipidomics approach in the author’s
lab, coupled with exudate proteomics, trafficking of leu-
kocytes, and determination of the action of new chemical
mediators in this milieu. Using this approach, we found
resolvins (Rv), protectins (PD)8,9,20 (Figure 2), and, re-
cently, a new family of mediators produced by macro-
phages (M�) coined maresins (macrophage mediators
in resolving inflammation [MaR]) that also regulate both
neutrophil (PMN) and M� responses key for timely
resolution.21

Although we are accustomed to thinking about the time
required for recovery of tissues from acute inflammation as
reflective of a local microenvironmental excess of proinflam-
matory mediators, it is evident that similar states can arise
from diminished host resolution mechanisms.10 Failure to
clear apoptotic PMN and cellular debris can lead to recur-
ring inflammation and immune diseases.22–30 With new find-
ings from disease models,17,28,31–34 it is possible that stim-
ulating resolution pathways could improve treatment of a

wide range of human disorders. Resolution of inflam-
mation involves many cellular and tissue processes,
including apoptosis, phagocytosis, cytokine/chemo-
kine profiles and their scavenging mechanisms, as well
as lymphatic drainage;22 these will not be addressed
herein (for these, interested readers are directed to
refs. 22–30). This review focuses on new concepts
relevant in the pathophysiology of the fundamental
process of resolution of acute inflammation born from
uncovering novel endogenous lipid mediators in the
author’s laboratory that are controllers that activate
endogenous anti-inflammation and proresolution cir-
cuits. For current reviews covering the biosynthesis of
lipoxins, resolvins, and protectins, readers can con-
sider references17,18 and references within.35

Programmed Resolution of Acute
Inflammation: Active Resolution versus
Collateral Damage?

If the ideal outcome of acute inflammation is complete res-
olution,1,36 it is now widely appreciated that uncontrolled
inflammation can lead to tissue injury, chronic inflammation,
scarring, and fibrosis.36 Controlled responses of phago-
cytes include destroying invading microbes and clearing
sites of debris and apoptotic neutrophils (PMN).1 In an
ungoverned host’s response, PMN-mediated tissue injury
leads to irreversible organ damage and associated dis-
eases that are a major public health concern and financial

Figure 1. Decision paths in acute inflammation: resolution or chronic inflammation? Lipid mediators such as prostaglandins and leukotrienes play specific roles
in the physiology of the acute inflammatory response. They can regulate many of the cardinal signs of inflammation. Self-limited inflammatory exudates permitted
the identification and study of specialized pro-resolving mediators that stimulate the return to homeostasis.
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burden. Because PMN are the first line of host defense37,38

and rapidly respond to microbes as well as to soluble exo-
and endogenous stimuli (bacterial peptide chemoattrac-
tants, lipid mediators, for example, LTB4, chemokines, and
complement components1), we considered it important to
learn the host’s mechanisms that control resolution. From
ancient times, in the war of acute inflammation, pus/exudate
was thought to passively retreat with the neutralization of the
offending agents or microbes or dissipation of the chemo-
tactic signals for leukocytes.39 The importance of pus as a
noble substance was known to ancient physicians, hence,
the Latin phrase Pus bonum et laudable or “good and laud-
able pus.” This, according to Prof. Guido Majno, referred to
whitish creamy pus (enriched with leukocytes), which was a
“good or preferable” response, whereas a thin or malodor-
ous pus suggested to the practitioner a poor defense
and/or highly vicious bacteria.39 Today it is well appreciated
that PMN play an essential role in host defense; their aber-
rant and prolonged activation can give rise to tissue injury
observed in many chronic diseases.1,37,40 Trauma and sur-
gical treatments can also lead to injury from within, where
activated PMN are central in exacerbating the injured tis-
sues by releasing noxious agents. Although intended for
host defense from invading organisms/microbes, phago-

cytes can amplify injury via the release of proinflamma-
tory mediators, reactive oxygen species (ROS), and
enzymes (Figure 1). This is well appreciated and helps
explain the pathophysiologies observed in many clini-
cal scenarios.41– 44

Specialized Anti-Inflammatory and
Pro-resolving Mediators (SPM) in
Programmed Resolution

During acute self-limited inflammation, murine exudate
phagocytes as well as human PMN and M� biosynthesize
specific, functionally distinct profiles of lipid-derived medi-
ators (LM) that are agonist-dependent and temporally dis-
sociated. Those that are proinflammatory include eico-
sanoids, such as classic prostaglandins (PG) and
leukotrienes (LT).45,46 New LM profiles8,9 including SPM
(Figure 2) are generated by leukocyte exudates during
resolution. This new genus, comprising four novel chemical
mediator families, includes lipoxins (LX) from arachidonic
acid, Rv and PD from �-3 essential fatty acids (EFA) (re-
viewed in ref. 18), and the new maresins.21 Rv and PDs

Figure 2. Ideal outcome of acute inflammation: complete resolution. Using a systems approach to mapping resolution, temporal and spatial dissociation of
eicosanoids was uncovered, which is termed lipid mediator class switching. Prostaglandins and leukotrienes are generated early in the response. Prostaglandins
E2 and D2 stimulate the transcriptional regulation in human leukocytes for the production of enzymes required for lipoxin biosynthesis. Unresolved acute
inflammation is associated with increased prostaglandin and leukotriene production and chronic inflammation. Inset: Experimental acute inflammation shows the
temporal theoretical events in edema formation and its decline as well as leukocyte trafficking with nonphlogistic recruitment of PMNs.1,4 During the decline of
PMNs, specialized proresolving mediators are temporally produced in vivo in inflammatory exudates; see text for details.
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have proven to be very potent when administered to a
number of inflammation-associated animal models of hu-
man disease. These include murine colitis,47 peritonitis,9,48

dermal inflammation,9 asthma,49,50 and ocular disease51,52

(Table 1;8,9,20,21,40,42,47,49,51,52,54–69). Of interest, a specific
Rv, RvE1, reduces oral infectious inflammation53 and asso-
ciated bone loss, inhibits ADP-dependent platelet aggrega-
tion,70 and regulates both dendritic cells54 and effector T
cells.71 Recently, in the first human clinical trial, a resolvin
analog effectively reduced dry eye symptoms (http://
eyedocnews.com/002059-resolvyx-announces-positive-
data-from-trial-of-resolvin-rx-10045-for-dry-eye/, last accessed
August 18, 2010),26 providing evidence in humans that SPM
can be useful in a wide range of inflammatory disorders.

During natural resolution as well as experimental
resolution with a fixed time 0, PMN initially defend the
tissue (ie, kill microbes and clear debris) and then are
lost from inflammatory sites; mononuclear cells and
M� are recruited in a nonphlogistic manner; and tis-
sues return to homeostasis.1,4,39 In contained exu-
dates, we found that LM production is temporally dis-
sociated. Initially, PG and LT appear with PMN entry,
followed by LX and Rv biosynthesis in resolution.8,72

These results first demonstrated that the type of eico-
sanoid and/or LM produced locally is both spatial and
temporally regulated (Figure 2). This new concept of
resolution-phase mediators and their potent actions
has been confirmed24,25,66 and extended,73–75 includ-

Table 1. Animal Disease Models*

SPM Disease model Cellular mechanism of action References

Resolvin E1 Skin Stops neutrophil recruitment in dorsal pouch Serhan et al.8

Oral inflammation,
periodontitis

Reduces neutrophil infiltration; prevents
connective tissue and bone loss; promotes
healing of diseased tissues; regenerates lost
soft tissue and bone

Hasturk et al.53

Peritonitis Stops neutrophil recruitment; regulates
chemokine/cytokine production

Promotes lymphatic removal of phagocytes

Bannenberg et al.40;
Arita et al.54;
Schwab et al.55

Asthma Reduces airway inflammation; stimulates LXA4;
reduces SRS-A

Haworth et al.49

Ocular Regulates neovascularization, angiogenesis Connor et al.51;
Jin et al.56;
Tian et al.57

Colitis Limits PMN recruitment and proinflammatory gene
expression; improves survival; reduces weight
loss

Arita et al.47; Ishida
et al.58

Resolvin E2 Peritonitis Reduces PMN infiltration Tjonahen et al.59;
Ogawa et al.60

Resolvin D1 Peritonitis Limits PMN recruitment Hong et al.20;
Sun et al.48

Skin Stops PMN recruitment (air pouch) Serhan et al.9;
Hong et al.20

Kidney ischemia-reperfusion Protects from ischemia-reperfusion-induced
kidney damage and loss of function; regulates
macrophages and protects from fibrosis

Duffield et al.61

Ocular Protects against neovascularization Connor et al.51

Resolvin D2 Peritonitis, sepsis Reduce peritonitis and increase phagocyte
reactive oxygen species bacterial killing

Spite et al.42

NPD1/Protectin D1 Stroke Stop leukocyte infiltration, inhibits NF-�B and
cyclooxygenase-2 induction

Marcheselli et al.62,63

Peritonitis Stops neutrophil recruitment; regulates
chemokine/cytokine production

Promotes lymphatic removal of phagocytes
Regulates T-cell migration

Bannenberg et al.40;
Arita et al.54;
Schwab et al.55;
Ariel et al.64

Asthma Protects from lung damage, airway inflammation
and airway hyperresponsiveness

Protectin D1 in human breath condensates
appears diminished in asthmatics

Levy et al.65

Kidney ischemia-reperfusion Protects from ischemia-reperfusion-induced
kidney damage and loss of function; regulates
macrophages and is anti-fibrotic

Duffield et al.61;
Hassan et al.66

Ocular Protects in neovascularization
Protects in retinal injury

Connor et al.51;
Mukherjee et al.52;
Sheets et al.67;
He and Bazan68

Alzheimer’s disease,
neurodegeneration

Diminished protectin D1 production in human
Alzheimer’s disease

Lukiw et al.69

Maresin 1 Peritonitis Reduces PMN migration and enhances M�
phagocytosis

Serhan et al.21

*The actions of each of the main resolvins and protectins (that is, RvE1, RvD1, and PD1) were confirmed with compounds prepared by total organic
synthesis (see Figure 3, text, and cited references for further details). RvE2 total synthesis and bioactions were recently confirmed.60

SPM, specialized pro-resolving mediators.

Resolving Inflammation 1579
AJP October 2010, Vol. 177, No. 4



ing the temporal relationship between LT and LX in
human disease.76 –78

Initial acute inflammation can also progress to an ab-
scess or become chronic, which may lead to fibrosis.1,79

The same sets of LM initially made (ie, PG and LT) were
believed to amplify recurring bouts of acute inflammation
that evolve to chronic disease.1,80 Specific Rv and LX ad-
ministered early can circumvent fibrosis.35,61,81,82 These
new findings raise the very likely possibility that chronic
human diseases, such as arthritis, Crohn’s disease, and
even certain cancers,11,79,83 may in part reflect diminished
local biosynthesis of proresolving signals. Among such en-
dogenous resolution signals, identification of SPM remained
unknown, likely because, once produced at the site, these
autacoids are relatively short-lived and are generated often
via transcellular biosynthesis routes within exudates8,9 to
act locally (Figures 3 and 4).

What is Proresolving? A New Bioaction for
Chemical Mediators

Resolution is the outcome when the initial injury or microbial
invasion is limited, and the injurious stimuli or microbes are
successfully neutralized, enabling the site to return to nor-
mal.1 Steps in resolution include the following: i) cessation

of PMN infiltration (see Figure 2, left corner); ii) vascular
permeability/edema returns to normal; iii) dead PMN (mostly
via apoptosis) leave the site; iv) nonphlogistic infiltration of
monocytes/M�84; and v) M� removal of apoptotic PMN,
foreign microbes/agents, and necrotic debris.55,81,85

Assigning molecular events in resolution in human tis-
sues was hindered until relatively recently.18,86 – 88 Us-
ing new, unbiased, liquid chromatography-mass spectrom-
etry–based approaches, namely LM-lipidomics–coupled
proteomics with informatics, we identified novel mediators and
introduced resolution indices40,55,89 that can now translate this
fundamental process between experimental systems and to
humans (see below).

With this strategy using LM-lipidomics, genetically en-
gineered murine and human cell systems (human PMN
and exudates), we obtained the first evidence that reso-
lution is actively “turned on,”8,9,72 challenging the notion
believed for more than 100 years that resolution was a
passive process.39,90 These new SPM possess unique
multilevel actions that include limiting PMN entry, en-
hancing M� clearance of apoptotic cells and mi-
crobes,55,91 fighting infection,43,92 but yet apparently not
being immunosuppressive.31,42 A gene array approach
with LX and Rv uncovered previously unknown links be-
tween LM and host antimicrobial responses that stimulate

Figure 3. The genus of specialized proresolving mediators: structures and actions. The SPM genus is defined by reduction or limiting further PMN infiltration and
reduction of lipid mediators and cytokines. SPM also stimulate the nonphlogistic recruitment of mononuclear cells and the stimulation of macrophages to
phagocytose apoptotic PMN microbes and microbial particles. The family precursors are substrates for their respective conversion to lipoxins, E-series resolvins,
D-series resolvins, and protectins. The main structures of key SPM genus members are depicted; the complete stereochemistry of each has been determined, and
their physical properties and bioactions have been confirmed by total organic synthesis; see text for details.
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mucosal epithelial cells to produce antimicrobial pep-
tides.43,92 Because LX and Rvs control inflammation by
stimulating resolution without immune suppression, limiting
local inflammation by reducing PMN, and enhancing the
M� cleanup, a new chemical mediator function for SPM
was introduced to describe their temporal biosynthesis and
novel functional roles. Figure 3 illustrates the actions and
structure of the key family members of the SPM genus.

SPM in Resolution: Agonist of Nonphlogistic
Responses

Lipoxin A4 (LXA4) and LXB4 were the first anti-inflamma-
tory and proresolving lipid mediators recognized.35 Li-
poxins are lipoxygenase-derived eicosanoids, derived
enzymatically from arachidonic acid, an �-6 fatty acid

that is released and mobilized during inflammation.45,93

In human systems, lipoxins are biosynthesized predom-
inantly via transcellular metabolic events engaged during
leukocyte interactions with mucosal cells, that is, epithelia
of the gastrointestinal tract or bronchial tissue and within
the vasculature during platelet-leukocyte interactions (re-
viewed in refs. 18, 35).

Contained, self-limited inflammatory exudates were ini-
tiated in the murine dorsal air pouch and used to deter-
mine the formation and roles of endogenous lipoxin A4

(LXA4) in resolution.72 TNF-� gives a typical acute-phase
response with rapid PMN infiltration and local generation
of prostaglandins and leukotrienes. In this setting of con-
tained exudates, the eicosanoid biosynthesis underwent
temporal changes we termed a “class switch.” As exu-
dates evolved, the eicosanoid profiles switched and the

Figure 4. SPM-regulated processes in resolution and a new role for edema in delivering essential fatty acids. This illustration depicts a self-limited evolving
exudate with the key roles of specialized proresolving mediators (SPM), substrate delivery, and leukocyte trafficking. i) Lower right-hand corner: microbial
invasion in injury initiates chemotactic signals that initially summon neutrophils from postcapillary venules. Neutrophils arrive to the site via diapedesis and
chemotaxis. A key chemoattractant of the eicosanoids in the process is leukotriene B4. There is also a wide range of cytokines and chemokines that stimulate
neutrophil recruitment in this important and fundamental process. ii) As neutrophils congregate in the contained inflammatory exudate, cell–cell interactions (eg,
with platelets in transcellular biosynthesis generated between PMN and platelets) initiate the transcellular biosynthesis of lipoxins. Newly arrived and older PMN
within the exudate interact to produce resolvins and protectins via transcellular biosynthesis. During this process, edema carries the �-3 essentially fatty acids EPA
and DHA from the blood into the exudate for their utilization. iii) Once resolvins and protectins are produced, these SPM stimulate macrophages to take up
apoptotic PMN and cellular debris. Additionally, the corpses of apoptotic PMN can serve to bind chemokines and cytokines for their disposal. SPM enhance
macrophage uptake and clearance. iv) Macrophages phagocytose apoptotic PMN. This process is stimulated by SPM and is an anti-inflammatory and nonphlogistic
process. Rather than producing proinflammatory mediators during phagocytosis, such as LTB4, TNF, and IL-1, these macrophages produce lipoxins, resolvins, and
NPD1/PD1 that, in turn, inhibit further edema through a feedback mechanism. This hypothetical course of events and time course help the contained inflammatory
exudate to resolve as well as efficiently combat infection and return to homeostasis from local tissue injury.
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lipid mediators made within that milieu changed with
time,72 also observed in the resolution of Lyme disease
infections in mice75 and in humans76,77 with poststrepto-
coccal nephritis.76 Arachidonate-derived eicosanoids
changed from the initial production of prostaglandins and
leukotrienes to lipoxins. The appearance of lipoxins within
inflammatory exudates was concomitant with the loss of
PMN and resolution of inflammation.72 Because this class
switch was driven in part by prostaglandins E2 and D2

that regulate the transcription of enzymes involved in
lipoxin biosynthesis in human leukocytes,72 we intro-
duced the concept that “� signals omega.”10 Thus, initial
events in the acute response govern the magnitude and
duration to resolution.

Within exudates, PMN undergo either apoptosis or
necrotic cell death. As part of resolution, lipoxins signal
macrophages to enhance engulfment of apoptotic
PMN.81 Lipoxins are potent chemoattractants for human
monocytes but in a nonphlogistic fashion as they promote
infiltration of mononuclear cells without stimulating re-
lease of proinflammatory chemokines or activation of
proinflammatory gene pathways and products.84 LX have
specific actions in the pico- to nanogram range, limiting
PMN recruitment, chemotaxis, and adhesion, acting es-
sentially as a braking signal for PMN-mediated tissue
injury, which have now been established in vivo in hu-
mans.25,35 Notably, a stable lipoxin analog, 16-phenoxy-
LXA4, stimulates mononuclear cells to produce IL-1Ra,
the endogenous receptor antagonist.94

Anti-inflammatory Versus Proresolution

Endogenous anti-inflammation alone is different and only
part of the cellular processes linked to proresolution that
are regulated by SPM. Proresolving actions can also
encompass anti-inflammatory and are newly defined via
SPM. For example, SPM stimulate macrophages to clear
cytokines-chemokines and cellular debris as well as ap-
optotic PMN.95 These are not actions classified with anti-
inflammatory substances, that is, NSAIDs, which reduce
prostaglandin biosynthesis by inhibiting enzymatic path-
ways in inflammation,96,97 hence reducing the classic
signs of inflammation.1 SPM possess anti-inflammatory
actions in that they reduce PMN infiltration, which in turn
limits PMN-mediated tissue damage and resulting local
amplification of proinflammatory signals (illustrated in
Figure 4). Frequently, classic anti-inflammatory com-
pounds do not stimulate phagocytosis. In this regard,
SPM are agonists that stimulate cytoskeletal/shape
changes in PMN, limiting diapedesis and tissue accumu-
lation but not interfering with their antimicrobial activity
(see below). This fundamental difference for SPM actions
opened a new appreciation of active resolution as a
programmed tissue response that involves separate reg-
ulation of PMN and macrophage activities in vivo.55 An
international consensus report has defined these differ-
ences and their potential contribution in chronic disease
as a failure in resolution mechanism.11

Aspirin-Triggered Lipid Mediators: Resolution
and Omega-3 EFA Connection

The molecular terrain of resolution offers new insights into
disease pathogenesis and many opportunities for target-
ing new therapeutics.88,98 SPM not only serve regulatory
roles in the physiological events of inflammation, but
specific enantiomeric or R (epi) forms triggered by aspi-
rin, termed aspirin-triggered forms of LX and Rv, may
also be effectors of well-established anti-inflammatory
therapies, such as aspirin, glucocorticoids, and st-
atins.18,99 –102 The first, uncovered in coincubations of
human PMN and endothelial cells,103 AT-LX, have now
been documented in humans in a randomized trial.104

Production of AT-LXA4 shows both gender and age de-
pendence, that is, higher in females and reduced in older
males.105 Given the potent AT-LX actions in reducing
PMN-mediated tissue injury, vascular permeability, and
local inflammation,106,107 AT-LX were recently demon-
strated in humans and regulated PMN influx in forearm
blisters, accounting for low-dose aspirin’s anti-PMN ac-
tions.25 This is of interest because LX and AT-LX reduce
inflammatory pain processing.108 Hence, aspirin has an
unexpected impact on resolution. In humans, aspirin
“jump-starts” this process via its ability to trigger the
endogenous biosynthesis of lipid mediators.25,54,104

As early as 1929, the importance of dietary EFA was
demonstrated in maintaining health in rodents and re-
duced incidence of infection and inflammation.109 Many
human studies,110 –112 including the GISSI in cardiovas-
cular disease, show potential benefits of �-3 (n-3) EFA,
including docosahexaenoic acid (DHA) and eicosapen-
taenoic acid (EPA), in human health. Recent evaluations
establish the positive odds ratio for n-3 EFA in reducing
cardiovascular disease,113 and the Jupiter trial confirms
the importance of inflammation in cardiovascular dis-
ease.6 The mechanisms for the beneficial effects of n-3
EFA are of interest and remain to be fully established in
humans. Rv, PD, and maresins are biosynthesized in
exudates from n-3 EFA (EPA and DHA).

Resolvins and Protectins

Resolvins are enzymatically biosynthesized within resolv-
ing exudates. They were initially identified and elucidated
using LC-MS-MS-based lipidomics8,9 and informatics114

together with bioassay systems. The term resolvins (res-
olution-phase interaction products) refers to endogenous
chemical mediators that are biosynthesized from the ma-
jor �-3 fatty acids, EPA and DHA, denoted E series (RvE)
and D series (RvD) resolvins, respectively.9 Subse-
quently, the complete structural elucidation of these bio-
active mediators and related compounds was confirmed
by total organic synthesis.8,9,20,54,115 Resolvins can also
be produced via COX-2– dependent reactions in the
presence of aspirin, yielding ‘aspirin-triggered’ (AT)
forms, as well as nonaspirin-dependent biosynthetic
routes.116 Both RvD1 and AT-RvD1, for example, limit
PMN transendothelial migration and infiltration in vivo9,48

and regulate leukocyte trafficking to sites of inflammation
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as well as clearance of neutrophils from mucosal surfac-
es43 in pg-ng amounts.

Because the immune regulatory actions of n-3 EFA and
their roles in human health and diseases, such as car-
diovascular disease, cancer, and inflammation, are
widely considered,111,117 the potent stereoselective ac-
tions of Rv and PD could offer a potential link between
�-3 EFA to molecular functions in resolution and organ
protection. RvE1 is biosynthesized from EPA and inter-
acts with specific receptors to control inflammatory
cells54; mice deficient in these receptors confirm the
anti-inflammatory role of these receptors.118 In addition,
fat-1 transgenic mice producing higher endogenous lev-
els of n-3 EFA show reduced inflammatory status and
elevated levels of Rv and PD.119 When administered,
each SPM reduces disease and stimulate resolu-
tion47,50,51,57 (Table 1;8,9,20,21,40,42,47,49,51,52,54 – 69). The
main biosynthetic route with DHA for Rv and PD pro-
ceeds via a 17S-hydro(peroxy)docosahexaenoic inter-
mediate produced by a lipoxygenase (ie, 12/15-LOX in
mice and 15-LOX type I in human leukocytes).

We established the complete stereochemistry of
RvD1,48 confirming its original structural assignment9

and anti-inflammatory actions by total organic synthesis
as well as RvD2 (Figure 3).42 With aspirin therapy, acety-
lated COX-2 produces aspirin-triggered 17R-epimers of
Rvs and PD as well as enhances their formation.9,48

Genetic deficiency or overexpression of murine 12/15-
LOX regulates production of SPM and alters their
responses to both thermal injury120 and extent of ath-
erosclerosis.34 Transgenic rabbits overexpressing 12/
15-LOX give enhanced LX production, reduced inflam-
matory status, and periodontal disease121 as well as
reduced atherosclerotic lesions in mice and rabbits via
elevated production of SPM.34 Recently, the anti-inflam-
matory and tissue protective role of 12/15-LOX and LXA4

axis in regulating TNF� were confirmed and demon-
strated in two murine arthritis models.29 This is also the
initial LOX in the biosynthesis of D-series Rv and PD. The
potent actions of SPM in disease models in vivo are sum-
marized in Table 18,9,20,21,40,42,47,49,51,52,54 – 69 and in-
clude results from our collaborators as well as many
recent findings of other groups worldwide. Of interest,
DPA (C22:5), an intermediate in humans for DHA, is a
substrate for novel Rv-like LM.73

The first evidence was obtained for the conversion of
DHA to unknown DHA-derived products in 1984 in retinal
pigment cells using radiolabeled DHA and inhibitors.122

The structure of 10,17-docosatriene (neuroprotectin D1:
NPD1), the founding member of the family of protectins,
was first disclosed in a report on the isolation and eluci-
dation of the bioactive resolvins.9 Because these DHA-
derived compounds were identified in resolving exu-
dates, additional evidence was obtained for their
biosynthesis from murine brain and vascular endothelial
cells for the new bioactive products.9 These studies ini-
tially focused on aspirin and its impact in the biosynthesis
of 17R-hydroxy-containing resolvins and related struc-
tures. Isolates of the novel DHA-derived products re-
duced cytokine IL-1� production by human glioma cells
stimulated with TNF�. Additionally, exudates obtained

from mice given DHA, after extraction and transfer to
other mice with peritonitis, reduced neutrophil infiltration
in vivo, indicating the presence of potent bioactive prod-
ucts within the original inflammatory exudates.9,20

In parallel, experiments with isolated human cells were
carried out to reconstruct potential biosynthetic routes.
Human endothelial cells held in a hypoxic environment
followed by inflammatory stimuli used DHA and EPA,
converting each to intermediates taken up by human
leukocytes and further transformed to bioactive prod-
ucts.8,9,54 Without aspirin treatment, 17S-HDHA and cor-
responding 17S-hydroxy-containing dihydroxy and tri-hy-
droxy products were identified in murine exudates and
isolated human cells.9,20

DHA is well known for its essential role in neuronal
development123 and, along with arachidonic acid, is a
major PUFA found in the retina.122 As a family within the
SPM genus, protectins are distinguished by the presence
of a conjugated, triene-containing structure and enzy-
matic additions at carbon positions 10 and 17.115 The
name “protectins” was coined from the observed anti-
inflammatory and organ-protective actions and sys-
tems.20,115 In studies in collaboration with Bazan et al,52

the prefix neuroprotectin, such as neuroprotectin D1
(NPD1), was used, giving the tissue location of their
biosynthesis and local actions.115 The protectins stop
PMN infiltration20,115 and are also biosynthesized by and
act on glial cells to reduce cytokine expression20 (Figure
3; Table 1;8,9,20,21,40,42,47,49,51,52,54 – 69). NPD1 reduces
retinal and corneal injury52 and stroke damage from local
tissue inflammation62 and improves corneal wound heal-
ing in mouse models.120

Edema: A New Functional Role in Substrate
Delivery for Resolution

The mechanism of �-3 fatty acid mobilization in vivo dur-
ing inflammation-resolution had not been addressed. Re-
cently, we reported evidence for new mechanisms that
indicate that unesterified or free �-3 fatty acids rapidly
appear within exudates moving directly from the circula-
tion to the site of inflammation.124 The movement of EPA
and DHA parallels those of both plasma albumin proteins
and trafficking leukocytes (Figure 4).

After ingestion, EPA and DHA are distributed through-
out the human body.125 DHA is predominantly distributed
in retina, sperm, cerebral cortex, spleen, and red blood
cells. EPA is present in muscle, liver, spleen, and red
blood cells.126 Of note, DHA is esterified in phospholipids
of microglial cells in culture and on activation of these
cells, DHA is released from the phospholipids for enzy-
matic processing.20,62 The availability of unesterified EPA
and DHA for processing during inflammation-resolution
was of interest. The level of total fatty acids in human
blood is approximately 343 mg/100 ml plasma.127 Based
on this and published values that range between 48 and
490 mg, free/unesterified EPA and DHA exist in human
blood as basal levels (see references within 124).

Although native DHA and EPA themselves are thought
to be anti-inflammatory, the specific mechanisms respon-
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sible are still evolving. The �-3 fatty acids are thought to
replace the sn-2 position in phospholipid stores that are
usually the positional sites of esterified �-6 fatty acids,
such as arachidonic acid.125 The sn-2 position of phos-
pholipids can become substituted with �-3 fatty acids
(eg, DHA and EPA) and is currently thought to simply
“compete” for these enzymatic reactions, thus blocking
or preventing the utilization of arachidonate and produc-
tion of specific eicosanoids that are proinflammatory and
prothrombotic mediators. This view is consistent with re-
sults from both cultured and isolated cells in vitro when
�-3 fatty acids are supplied.125

To address these points in a pathophysiological set-
ting,124 we monitored both deuterium-labeled d5-EPA
and d5-DHA levels from the circulation as well as in-
creases in protein levels within exudates. Both d5-EPA
and d5-DHA were identified in exudates within 1 hour of
challenge, and levels were maintained up to 48 hours. At
48 hours, both d5-EPA and d5-DHA levels were signifi-
cantly greater within the exudates than their levels at 24
hours. Thus, the initial or first peak of deuterium-labeled
fatty acids was directly delivered from the circulation. The
second peak at 48 hours likely reflects recirculation and
expression of specific PLA2 during resolution.

Both cytosolic PLA2 and secretory PLA2 are highly
expressed during the resolution phase.128 The second
peak at 48 hours, well within the resolution phase, could
be from esterified d5-EPA and d5-DHA and released by
PLA2 mechanisms. The main protein component in exu-
dates from zymosan-initiated peritonitis is serum albumin
as demonstrated by 2D-gel electrophoresis and pro-
teomics40; albumin is a well-known carrier of lipids, fatty
acids, and particularly DHA.129 These results in mice
suggest that EPA and DHA are directly mobilized for
resolvin production from the circulation via albumin as the
most abundant and likely main carrier into sites of inflam-
mation. M� phagocytosis of apoptotic PMN releases
RvE1, RvE2, PD1, and LXA4.55 LXA4 can then temporally
limit edema through a feed-back mechanism (Figure 4),
because it is a potent inhibitor of edema.130 This implies
that, in humans, circulating levels of EPA and DHA do not
require storage and subsequent release from complex
lipid or membrane precursors to make important contri-
butions to the control of inflammation and its resolution.

Single-Cell Responses to DHA versus Resolvins

Using a new microfluidic chamber approach to rapidly
isolate human PMN within 5 minutes directly from circu-
lating whole blood (only 5–10 �l) via capture on P-selec-
tin-coated surfaces, we assessed the direct actions of
both precursor DHA versus one of its products, RvD1, on
single neutrophil chemotaxis. Earlier procedures re-
quired the time-consuming isolation of PMN from whole
blood before in vitro analyses. These methods involved
several steps of centrifugation and red blood cell lysis
that usually required several hours to perform and could
lead to changes in the characteristics of the isolated
cells. This short time interval is ideal for assessing the
activation and/or inhibition status of PMN from peripheral

blood of both healthy donors and patients. The combina-
tion of rapid separation as well as assessment of shape
and migration responses within the same chamber is
closely akin to in vivo scenarios on the endothelial sur-
faces via chemotaxis and migration into tissues (see ref.
1). Another key feature of the microfluidic chamber sys-
tem is the ability to record real-time changes in morphol-
ogy of PMN on exposure to chemokines, DHA, and lipid
mediators, such as RvD1, as well as to track migration
through switches. The fast gradient switches in the cham-
ber allowed visual assessment and recording of the ear-
liest events after exposure of cells to RvD1 or native DHA
as well as precise measurement of these changes in
migration direction and velocity. The direct assessment
of DHA with PMN indicates that DHA itself is not a potent
bioactive ‘stop signal’ for PMN but rather requires exu-
date conversion to RvD1 to evoke its signaling effects on
these cells. Hence, following their actions, local tissues
inactivate resolvins, permitting organs to return to
homeostasis.48,131,132

Inactivation of the Resolution Signals: Lessons
from Injury Within

Once formed, resolvins are active on target cells in their
immediate milieu and are then locally inactivated by site-
specific metabolism.131,132 Ischemia-reperfusion is an
event of significant clinical importance. Reperfusion-re-
lated tissue injury often occurs during surgical proce-
dures, particularly those involving extremities, causing
both local and remote organ injury as well as increasing
costs associated with prolonged postoperative recov-
ery.133 Given the clinical importance and pathophysiol-
ogy of this type of organ injury, we investigated the direct
actions of DHA, resolvins, and related stable analogs,
that is, directly comparing the actions of RvD1, its 17-(R/
S)-methyl analog, RvE1, and its 19-p-fluorophenoxy ana-
log, in ischemia-reperfusion second organ injury. Of in-
terest, at equivalent doses, DHA was not protective, while
RvD1 and its analog as well as the stable analog of RvE1
showed potent anti-leukocyte actions, each reducing in-
filtration into lung tissues.124

Native RvE1 itself was not able to protect the lung at
these low doses, likely because of local inactivation. Both
RvD1 and RvE1 undergo site-specific metabolic inactiva-
tion.131,132 Thus, the RvD1 and RvE1 analogs that display
potent organ protective actions may provide new ap-
proaches to reduce organ damage characterized by ex-
cessive PMN infiltration.

GPCR and Not Nuclear Receptors for SPM in
Resolution

At least two GPCRs are involved in transducing RvE1
signals, namely ChemR23 and BLT1.54,134 Because
RvD1 biosynthesis and structure were established9 as
well as its stereochemistry assigned48 (Figure 3) to iden-
tify sites of RvD1 action, we prepared synthetic [3H]-
RvD1 and obtained evidence for specific RvD1 surface
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recognition on human leukocytes and identification of two
GPCRs. The presence of RvD1-recognition sites on hu-
man phagocytes is of considerable interest in view of the
potent actions of this autacoid.9,48,124 Two GPCRs de-
noted ALX, a lipoxin A4 receptor, and an orphan, GPR32,
were identified as directly interacting with RvD1. In addi-
tion, RvD1 regulates phagocytosis by human M� in a
receptor-dependent manner.135 Nanomolar concentra-
tions of RvD1 blocked actin polymerization in PMN that
were sensitive to inhibition by pertussis toxin, suggesting
that the recognition sites belong to the family of GPCRs
and most likely are coupled to G proteins of the Gi/o
class. Screening systems used to assess PPAR activa-
tion indicated that neither RvD1 nor RvE1 directly acti-
vates PPAR signaling at concentrations that evoke anti-
inflammatory responses.135 Indeed, nuclear receptors
belonging to the PPAR family have emerged as relevant
in anti-inflammatory signaling mechanisms and may bind
lipids. Oxidized fatty acids at concentrations in the mi-
cromolar range, for example, can activate PPAR�, which
possesses an unusually large ligand-binding cavity that
can accommodate a wide range of molecules rather than
a single ligand.136 Because RvD1 did not activate PPAR
signaling within its bioactive concentration range, it was
reasonable to determine whether the recognition sites
were present on the surfaces of phagocytes belonging to
the family of GPCRs.

We prepared [3H]-RvD1 by total organic synthesis and
used it to identify high-affinity, cell-surface recognition
sites for RvD1 on human leukocytes, giving a kDa of
approximately 0.2 nmol/L (�75 pg/ml), which is within the
range of its levels measured in murine cells and tissues,
that is, greater than 75–300 pg,34,61 and its bioactions.
LXA4 partially displaced [3H]-RvD1-specific binding to
human PMN. A screening system for identifying receptor
candidates, which tests the ability of receptor-ligand cou-
pling to counteract TNF-�–stimulated NF-�B activation,54

gave candidate GPCRs, namely ALX, a LXA4 receptor,137

and an orphan, denoted GPR32. GPR32 consists of 356
deduced amino acids and shares sequence identity of
35–39% homology with members of the chemoattractant
receptor family.138

LXA4 and RvD1 share some anti-inflammatory and pro-
resolving actions in human and murine systems, yet each
is biosynthesized at different time intervals during reso-
lution and via distinct biosynthetic routes.18 Proresolving
lipid mediators exert their actions by interacting with
GPCRs with high affinity and stereospecificity. For exam-
ple, RvE1 binds both ChemR23 and BLT1 and LXA4

binds ALX-FPR2.54,134,139 Interestingly, these ligands
bind to more than one receptor to mediate their actions,
which in most cases are cell-type–specific. Recent re-
sults with ALX/FPR2-deficient mice confirm the interac-
tions of LXA4 with this GPCR and its role in signaling
anti-inflammatory responses.140 RvE1 stimulates pro-
resolution pathways via ChemR23, which is abundantly
expressed in M� and dendritic cells,54 whereas it binds
to BLT1 for its anti-PMN actions.134 Along these lines,
ChemR23-knockout mice are unable to resolve zymosan-
induced peritonitis in the presence of C-15, a peptide
ligand for this receptor, indicating proresolving signaling

by this receptor.118 The major postligand-binding signal-
ing route for RvE1-ChemR23 interactions involves phos-
phorylation, leading to increased phagocytosis.141

Proresolving Receptor Distribution

Proresolving receptors identified thus far include human
and mouse ALX/FPRL2, human and mouse ChemR23,
and human GPR32.54,135,139 The distribution and function
of human ALX/FPRL2 has been recently reviewed.137,142

Human ALX is present on PMN, monocytes, and T cells
as well as resident cells, such as macrophages, synovial,
fibroblasts, and intestinal epithelial cells.137 Its mRNA is
also present in spleen, lung, placenta, and liver.107 In
mouse tissues, ALX mRNA is also abundant in spleen
and lung and, to a lesser extent, in heart and liver.107

Whether these mRNA levels change extensively during
resolution is of interest. Human and mouse ChemR23,
which interacts with RvE1, is abundant in monocytes with
lower amounts in neutrophils and T lymphocytes. Several
other human tissues express ChemR23, including cardio-
vascular system, brain, kidney, gastrointestinal, and my-
eloid.54 Human GPR32, an RvD1 receptor, and its ex-
pression were identified in peripheral blood leukocytes
and arterial and venous tissue using cDNA array. This
receptor appears on most human myeloid cells, PMN,
monocytes, and macrophages as well as on the surfaces
of human umbilical vein endothelial cells. The murine
ortholog of GPR32 is currently unknown. Of interest dur-
ing the course of resolution and disease is the expression
and extent of these receptors,54 because earlier work
indicated that overexpression of human ALX/FPR2 in mu-
rine leukocytes (a functional “knock-in”) decreases the
magnitude of the acute inflammatory response as well as
shortens resolution time.143

RvD2: Resolution and Sepsis

Recently, we determined the stereochemistry of RvD242

with Dr. N. Petasis and colleagues and confirmed its
originally identified and potent actions.9 As little as 0.01 to
0.1 ng RvD2/mouse reduced PMN infiltration greater than
70% in peritonitis (Table 1;8,9,20,21,40,42,47,49,51,52,54–69).
Several geometric isomers of RvD2 were prepared by
total synthesis,42 and only the synthetic stereochemically
defined compounds (confirmed by NMR of the synthetic
materials, as in the case with RvD148 and RvE154)
matched the properties and actions of RvD2 biosynthe-
sized by human PMN (Figure 3). In mice with sepsis
initiated by cecal ligation and puncture (CLP), RvD2
sharply reduced bacterial burden, leukocyte infiltration,
and inflammatory cytokines, while the trans-RvD2 isomer
was inactive.42 These multilevel proresolving actions of
RvD2 gave increased survival and visible behavior im-
provements. These results with synthetic RvD2 confirm
the original RvD2 structure and its potent actions9 as well
as uncover the ability of this Rv to enhance both phago-
cytosis and intraphysosomal vacuole production of ROS
for enhanced killing of bacteria by phagocytes.42
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Targeted Lipidomics in Late Phase,
Self-Limited, Resolving Exudates Maresins

In view of the actions of RvD1 and RvD2,9,20 we next
monitored accumulation of 17S-HDHA as a pathway bi-
omarker for activation of Rv and PD biosynthesis9 and
endogenous conversion of DHA, as well as used targeted
lipidomics to query whether other pathways were op-
erative in resolution. In addition to 17S-HDHA, endog-
enous DHA was converted to 14S-hydroxydocosa-
4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S-HDHA).
The appearance of 14S-HDHA in resolving exudates ac-
companied 17-HDHA throughout the 72-hour time
course, indicating that 14S-HDHA also accumulates in
resolution and suggesting that it may be a marker of a
new pathway.21 M� appear later in resolution to remodel
and clear tissues.1,88 Indeed, human and mouse M�
converted 14S-HpDHA and DHA to new products iden-
tified via MS-based LM-lipidomics to novel bioactive
7,14-dihydroxy-containing products.21 Figure 2 illustrates
the proposed hypothetical scheme for the maresin path-
way and MaR1 biosynthesis. M� LOX converts DHA into
14S-HpDHA, followed by epoxidation to a 13(14)-epox-
ide intermediate that is enzymatically converted to the
new bioactive mediator Maresin 1 or reduction of the
peroxide intermediate to 14S-HDHA. Either 14S-HpDHA
and/or 14S-HDHA is converted via LOX (double dioxy-
genation) to 7S,14S-diHDHA also identified in exu-
dates.21 In addition to reducing PMN infiltration in vivo,
the new M�-derived compounds also enhanced phago-
cytosis. Given its potent actions and novel structure, the
potent M� product was coined Maresin 1 (MaR1). MaR1
proved to be of comparable potency to synthetic RvE1
and PD1/NPD1.

Too Much of a Good Thing? Bugs and SPM

Certain pathogens have learned to use anti-inflammatory
mediators such as LX to evade the host antimicrobial
responses.144 During Toxoplasma gondii infections, local
elevated LX levels block dendritic cell responses.145 The
LX levels are superphysiologic, which enables the para-
site to protect itself from phagocytes by stopping the
recruitment. T. gondii carries its own 15-LO that we iden-
tified with proteomic analysis of tachyzoite-derived ly-
sates, demonstrating peptides homologous to plant-de-
rived type I LOX.146 These findings suggest that the
enzyme can interact with substrates from the host to
elevate LX. This was also independently observed in a
genomic study of Pseudomonas aeruginosa, which car-
ries the first-identified secretable form of 15-LO that can
convert host arachidonic acid to its LX precursor.147

When 15-LOX is injected into mice, it generates endog-
enous LX that reduces inflammation and IL-12 production
in vivo.146 Cystic fibrosis patients have frequent lung in-
fections with P. aeruginosa, and they have a reduced
capacity to biosynthesize LX. Uncontrolled accumulation
of PMN in the lungs of these patients leads to organ
failure.148 In these cases, treatment with LX reduces air-
way inflammation and tissue damage with cystic fibro-

sis,148 as also observed in asthma149 and respiratory
inflammation.78

Candida albicans can produce RvE1 from host nutri-
ents, which enhances phagocytosis, and ROS mediates
killing of Candida while blocking the generation of IL-8
from epithelial cells and reducing the recruitment of
PMN.91 Mycobacterium tuberculosis appears to evade the
host’s immune system by stimulating the biosynthesis of
LX by the host, which assists the replication of M. tuber-
culosis in situ.150 Mycobacteria elimination versus ne-
crotic cell death of the host M� appears to be regulated
by the local production of LXA4 levels and their ratio to
PGE2.151,152 LX signaling for anti-inflammation, that is,
down-regulated TNF�, appears to be critical for myco-
bacteria infection in both humans and zebrafish.153 In
addition, LXA4 given to fish infected with M. marinum
increases replication of the microbe.

On the other hand, RvD2 reduces the bacterial burden
following sepsis from CLP in mice when administered in
very low doses.42 In these cases, the mechanisms of
RvD2 action involves increases in bacterial phagocytosis
and intracellular ROS-mediated killing of the bacteria.
Thus, certain microbes have learned to commandeer
chemical mediators, that is, specific SPM, and the reso-
lution mechanisms of the host to create a favorable
local environment for their own survival, thus avoiding
destruction.

Resolution Indices and Toxicity

To permit quantitative assessment of initiation and the
most relevant parameters of resolution, quantifiable res-
olution indices were introduced.40,55 These indices track
neutrophilic infiltration, their maxima, and the duration of
their presence at inflammatory sites and within exudates.
The use of these indices permitted the first evidence for
demonstrating that resolvins and protectins reduce the
amplitude of neutrophilic infiltration, but also shortened
the resolution interval, which reflects the duration of the
resolution phase. The use of these resolution intervals
also permits assessments between species and organ
systems for given agents.27 Additionally, because many
current therapeutic agents are in use, such as nonsteroi-
dals, anti-inflammatory drugs, etc, they were developed
to reduce the initiation and amplitude of an inflammatory
event, along with reducing the cardinal signs of inflam-
mation, which can actually lead to an enhanced duration
of the inflammatory response.

This is indeed the case with COX-2 inhibitors154 and
aspirin,103 which block prostaglandin formation, which is
relevant to resolution with several sites of action, as well
as the traditional view of these substances in the initiation
of inflammation. We introduced resolution indices to as-
sess the impact of SPM and other agents on anti-inflam-
mation and resolution.40 Most current anti-inflammatory
drugs are inhibitors of pathways in inflammation; thus,
they are not without unwanted side effects.97 These
drugs affect resolution by blocking key resolution steps,
prolonging inflammation,89,154 which can be rescued by
administering LXA4, RvE1, or PD1.55 Stable analogs of
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natural glucocorticoids do stimulate M� uptake of apo-
ptotic PMN155 but are ultimately immunosuppressive.
Thus, the use of resolution indices permits evaluation of
endogenous mediators as in the case of SPM and their
ability to shorten the resolution interval as well as screen-
ing of pharmacological agents for their impact in resolu-
tion, whether deleterious or beneficial.23,40 It appears that
taking resolution into account in the development of new
pharmacological agents will be valuable. The use of the
resolution indices can also screen for agents that are
toxic to resolution.55 Addition of a cyclooxygenase inhib-
itor, for example, can delay resolution by blocking the
formation of resolvins and other proresolving mediators.

Recently, Navarro-Xavier surveyed a number of agents
in zymosan-induced peritonitis and assessed resolution
indices. They were also able to identify agents with pro-
resolving properties. In addition to RvE1 and aspirin-
triggered 15-epi-lipoxin A4, a prostaglandin D2 receptor
agonist appeared to possess proresolving actions in this
proresolution, drug-screening strategy.23 The use of this
type of system also permits discrimination between the
actions of resolving macrophages and processes, such
as efferocytosis. Thus, it is possible that many of the
current therapeutics could be toxic to resolution. Interfer-
ence within resolution mechanisms should be taken into
account when considering new therapeutic approaches.

Are All SPM the Same?

By definition, SPM: i) are generated and/or accumulate
within the resolution phase in vivo, ii) limit and reduce
neutrophilic infiltration, iii) enhance phagocytic activity of
macrophages toward apoptotic leukocytes, cellular de-
bris, and microbes, and iv) stimulate the clearance of
PMN from mucosal surfaces and their anti-microbial ac-
tions. If a mediator fulfills each of these and is produced
in vivo, it then belongs to the genus of proresolving me-
diators. Each endogenous lipid mediator produced, such
as lipoxins, resolvins, and protectins (as well as their
aspirin-triggered forms), possesses additional com-
pound-specific actions along with their general SPM
properties uncovered both in vivo and in vitro that likely
reflect target cell and tissue site biosynthesis and ac-
tions, as outlined in Figure 3.

Although some aspects of these responses appear
redundant, the overall return from the battle of acute
inflammation or catabasis is a critical event in homeosta-
sis of an organ and organism. Therefore, it is not surpris-
ing if some of the biological responses and roles of SPM
appear to overlap at this stage. Along these lines, the
specific receptors identified that are expressed on target
cell types may also answer the degree of selectivity and
specificity of this proresolving system. In experimental
inflammation and resolution model systems in vivo, it has
been established that proresolving lipid mediators, such
as RvE1 and NPD1, can shorten resolution time.23,55

These findings are encouraging, and results along these
lines open the possibility for resolution-based pharmacol-
ogy and new approaches to therapeutics.

Whether the encouraging results observed in animal
disease models translate to human disease and their
treatment remain to be determined. Along these lines,
recent human trials in ocular iritis (dry eye) have yielded
reduced signs and symptoms (http://eyedocnews.com/
002059-resolvyx-announces-positive-data-from-trial-of-
resolvin-rx-10045-for-dry-eye/, last accessed August 18,
2010). Hence, using endogenous proresolving mecha-
nisms, and specifically SPM, as a means for resolution-
based therapeutics may have wide applications in treat-
ment and prevention of human diseases.

The results reviewed herein also provide a potential
mechanism of action for �-3 fatty acids in regulating the
amplitude and duration of acute inflammatory responses via
the formation of SPM (Table 1;8,9,20,21,40,42,47,49,51,52,54–69).
Whether a direct correlation exists in humans between dose
or ingestion of �-3 fatty acids with local production of SPM
at sites of inflammation remains of interest. In this context,
the fat-1 transgenic mouse, which endogenously produces
and stores increased levels of �-3 EPA and DHA in tissues,
on challenge, was found to biosynthesize increased levels
of resolvins and protectins as well as 3-series prostaglan-
dins from endogenous substrates.119 These results along
with those of others22,88,98 emphasize the importance of
endogenous resolution pathways as new approaches for
treatments and clearly delineate the difference between
molecules that can affect endogenous anti-inflammation
versus those that evoke both anti-inflammatory and prore-
solving actions. Whether there are lipid mediators that stim-
ulate only proresolving actions needs to be determined.

Conclusion

In summary, given the fundamental role of the acute
inflammatory response and its natural resolution to ho-
meostasis, it is not surprising that the SPM have proven to
possess actions relevant to many disease models (Table
1;8,9,20,21,40,42,47,49,51,52,54 – 69). Because SPM limit neu-
trophilic infiltration as well as enhance macrophage res-
olution responses (Figures 3 and 4), the new pathways
uncovered are likely to be relevant in maintaining tissue
homeostasis as well as playing a role in diseases char-
acterized by excessive uncontrolled inflammation. The
link between �-3 fatty acids and their roles in resolution
was unexpected and implies that the timing and duration
of acute inflammation and its local resolution are linked to
nutritional genomics and nutrition. Hence, it is intriguing
that a process as fundamental as active resolution could
be regulated by micronutrients and that edema plays a
functional role in regulating the extent and duration of a
resolving exudate. Because SPM are not immunosup-
pressive but rather enhance host defenses, stimulate
resolution, and, hence, are proresolving, they may serve
as agonists for new therapeutic approaches. In addition,
it is clear from these early studies on SPM and endoge-
nous termination programs that programmed resolution
involves many mediators, pathways, and mechanisms
yet to be uncovered and that anti-inflammation and its
control are distinctly separate and not equivalent to the
actions of local proresolving mediators that can also en-
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compass and regulate the magnitude of endogenous
anti-inflammation. Thus, it is fortuitous that the SPM limit
neutrophil entry and tissue damage as well as possess
anti-inflammatory pharmacological actions in addition to
stimulating proresolving pathways and enhancing host
microbial defense mechanisms.
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