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Demyelinating diseases, such as multiple sclerosis, are characterized by inflammatory demyelination and neurodegeneration of

the central nervous system. Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms

are central goals for future therapy of multiple sclerosis. Oestrogens and oestrogen receptor ligands are promising treatments to

prevent multiple sclerosis-induced neurodegeneration. In the present study we investigated the capacity of oestrogen receptor b

ligand treatment to affect callosal axon demyelination and stimulate endogenous myelination in chronic experimental autoim-

mune encephalomyelitis using electrophysiology, electron microscopy, immunohistochemistry and tract-tracing methods.

Oestrogen receptor b ligand treatment of experimental autoimmune encephalomyelitis mice prevented both histopathological

and functional abnormalities of callosal axons despite the presence of inflammation. Specifically, there were fewer demyeli-

nated, damaged axons and more myelinated axons with intact nodes of Ranvier in oestrogen receptor b ligand-treated mice. In

addition, oestrogen receptor b ligand treatment caused an increase in mature oligodendrocyte numbers, a significant increase in

myelin sheath thickness and axon transport. Functional analysis of callosal axon conduction showed a significant improvement

in compound action potential amplitudes, latency and in axon refractoriness. These findings show a direct neuroprotective effect

of oestrogen receptor b ligand treatment on oligodendrocyte differentiation, myelination and axon conduction during experi-

mental autoimmune encephalomyelitis.
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Introduction
Inflammatory infiltration and demyelination of the CNS leading

to axonal loss and neurological impairments are hallmarks of

multiple sclerosis and experimental autoimmune encephalomyelitis

(EAE) (Lassmann et al., 2007; Trapp and Nave, 2008). Despite

the ability of the adult brain to generate oligodendrocytes with

myelination capacity, remyelination in multiple sclerosis and

EAE are incomplete (Lassmann et al., 1997; Chang et al., 2002;

Frischer et al., 2009). Current anti-inflammatory or immuno-

modulatory treatments, while partially effective in the relapsing

stage of the disease, have only modest-to-minimal effects on

the development of neurodegeneration and clinical disability in

the secondary progressive phase of disease (Molyneux et al.,

2000; Filippi et al., 2002). Therefore, it is important to find

novel treatments that could prevent demyelination and/or en-

hance remyelination.

EAE is used to understand neurodegenerative mechanisms

that occur in the setting of immune-mediated demyelination

(Bannerman et al., 2005; Steinman and Zamvil, 2006; Jones

et al., 2008). EAE has been extensively used to address immune

mechanisms of currently approved drugs for multiple sclerosis

(Gasperini and Ruggieri, 2009) and to screen various compounds

including oestrogens as future therapeutic drugs (Tiwari-Woodruff

and Voskuhl, 2009). Oestrogen-based treatments are promising

as neuroprotective agents in multiple sclerosis due to the fact

that oestrogen is known to be neuroprotective in other diseases,

including spinal cord injury (Sribnick et al., 2005; Chaovipoch

et al., 2006), stroke (Dubal et al., 2006; Wang et al., 2009),

Alzheimer’s disease (Yue et al., 2005; Wilson et al., 2006),

Parkinson’s disease (Xu et al., 2006; Quesada et al., 2008), amyo-

trophic lateral sclerosis (Groeneveld et al., 2004) and acoustic

trauma (Meltser et al., 2008). A multicentre clinical trial is current-

ly underway using oestriol treatment in female patients with

multiple sclerosis.

Our investigations in EAE have shown differential effects

of oestrogen receptor a ligand treatment, which reduced CNS

inflammation versus oestrogen receptor b ligand treatment,

which preserved axon and myelin despite having no effect

on CNS inflammation in spinal cords (Morales et al., 2006;

Tiwari-Woodruff et al., 2007; Tiwari-Woodruff and Voskuhl,

2009). In light of this putative direct neuroprotective effect of

oestrogen receptor b ligand treatment in EAE, it was of interest

to investigate its ability to affect the primary targets of the EAE/

multiple sclerosis pathological process: oligodendrocytes, myelin

and axons.

EAE has generally been thought to predominantly target

the spinal cord, leading to sensory and motor impairments, while

multiple sclerosis targets both the brain and spinal cord, and re-

sults in a variety of impairments including sensorimotor, cognitive

and difficulty with information processing. However, recently it

was recognized that EAE may involve other CNS structures

(Hobom et al., 2004; Wensky et al., 2005; Brown and

Sawchenko, 2007; Rasmussen et al., 2007; MacKenzie-Graham

et al., 2009; Ziehn et al., 2010). In the present study, we inves-

tigated the possible therapeutic effect of oestrogen receptor

b ligand treatment on EAE-induced decreases in oligo-

dendrocyte numbers and demyelination, as well as decreases in

axon-conduction and axon-transport deficits in the corpus callo-

sum. The corpus callosum is a critical white matter structure that

is impacted early in the course of multiple sclerosis and corpus

callosum abnormalities are associated with fatigue, motor impair-

ment and cognitive changes (Manson et al., 2006, 2008; Bonzano

et al., 2008). Integrity of the corpus callosum in multiple sclerosis

reflects both discrete white matter lesions and diffuse

normal-appearing white matter changes, making it a potentially

useful surrogate marker of clinically significant brain abnormalities

in multiple sclerosis (Boroojerdi et al., 1998; Ozturk et al., 2001;

Warlop et al., 2008).

We report here that oestrogen receptor b ligand treatment

during EAE stimulated an increase in the mature myelinating oligo-

dendrocyte population and increased myelin thickness, thereby

decreasing axon damage, ameliorating callosal axon conduction

and improving axon transport deficits. This is the first description

of an agent that can be neuroprotective in the setting of inflam-

mation in the EAE model.

Materials and methods

Animals
Breeding pairs of proteolipid protein-enhanced green fluorescent pro-

tein (PLP-EGFP) transgenic mice in the C57BL/6J background were a

kind gift from Dr Wendy Macklin (University of Colorado, Denver,

CO, USA). The generation, characterization and genotyping of

PLP-EGFP transgenic mice have been reported previously (Fuss

et al., 2001; Mallon et al., 2002). Mice were bred in-house at the

University of California, Los Angeles animal facility. All procedures

were conducted in accordance with the National Institutes of Health

and were approved by the Animal Care and Use Committee of the

Institutional Guide for the Care and Use of Laboratory Animals at

University of California, Los Angeles.

Reagents
Diarylpropionitrile was purchased from Tocris Bioscience (Ellisville,

MO). Miglyol 812 N liquid oil was obtained from Sasol North

America (Houston, TX). Myelin oligodendrocyte glycoprotein, amino

acids 35–55, was synthesized to498% purity by Mimotopes (Clayton,

Victoria, Australia).

Hormone manipulations
Female mice (6-weeks-old) were ovariectomized two weeks prior to

induction of EAE. Ovariectomized mice were treated with subcuta-

neous injections of diarylpropionitrile at 8 mg/kg per day or vehicle

(10% ethanol and 90% Migylol) every other day beginning 7 days

before EAE induction and throughout the entire disease duration. The

diarylpropionitrile dose was chosen based on uterine weight measure-

ments for biological response and on previous EAE experiments using

this compound (Tiwari-Woodruff et al., 2007).
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Experimental autoimmune
encephalomyelitis induction
We have routinely induced chronic EAE in female C57BL/6 mice

(Morales et al., 2006; Tiwari-Woodruff et al., 2007). Transgenic

PLP-EGFP mice immunized with myelin oligodendrocyte glycoprotein

show a similar disease course. On post-inoculation Day 0 (and again

on Day 7), each mouse received subcutaneous inoculation with both

myelin oligodendrocyte glycoprotein peptide 35–55 (300 mg/mouse)

in CFA H37 Ra (1 mg/ml Mycobacterium tuberculosis H37 Ra)

and an intraperitoneal inoculation of Bordatella pertussis toxin

(500 ng/mouse). A second inoculation of B. pertussis toxin was ad-

ministered on post-inoculation Day 2. Mice were monitored

and scored daily for clinical disease severity according to the standard

0–5 EAE grading scale: 0 = unaffected; 1 = tail limpness; 2 = failure

to right upon attempt to roll over; 3 = partial hindlimb paralysis;

4 = complete hindlimb paralysis and 5 = moribund. EAE clinical signs

began at Days 9–10. Mice were sacrificed at either Day 20 or

Day 36 after disease induction.

Number of mice
There were usually three different treatment ovariectomized groups

(normal, vehicle + EAE and oestrogen receptor b ligand + EAE) per ex-

periment. To assess the effect of ovariectomy in PLP-EGFP C57BL/6

mice we used intact mice (normal, vehicle + EAE and oestrogen recep-

tor b ligand + EAE). There were 10 animals per treatment group (four

animals for electrophysiology recording, three animals perfused for

immunohistochemistry and three animals perfused for electron micros-

copy). The experiment was repeated three times.

Histopathology, immunohistochemistry
and electron microscopy

Perfusion-fixed brain slices and immunohistochemistry

Paraformaldehyde-fixed consecutive sections (Tiwari-Woodruff et al.,

2007; Crawford et al., 2009b) were examined by immunohistochemistry

and various series of cell-type-specific antibodies were used. To

detect axons: anti-Neurofilament 200 (NF200; 1:500, Chemicon and

1 : 1000, Sigma); injured axons: anti-b-amyloid precursor protein

(1:500, Abcam, Cambridge, MA); astrocytes: anti-glial fibrillary

acidic protein (GFAP; 1 : 1000, Chemicon); oligodendrocyte progenitors:

anti-platelet-derived growth factor receptor-a (PDGFR-a; 1:500,

Chemicon) and anti-olig2 (1:500, Chemicon); mature oligodendrocytes:

anti-glutathione S transferase-pi (GST-pi; 1:1000, Chemicon) and

PLP-EGFP fluorescence; myelin: anti-myelin basic protein (1:1000,

Chemicon); microglia/macrophage/monocyte: anti-CD45 (1:1000;

PharMingen, La Jolla, CA); macrophages: Mac3 (1:500; BD

Biosciences, San Diego, CA); T cells: anti-CD3 (1:1000, Abcam); nodal

proteins: Caspr, Nav1.6, Kv1.2 (Alomone Labs, Jerusalem, Israel and

Antibodies Inc, Davis, CA) were used. The second antibody step was

performed by labelling with antibodies conjugated to TRITC and Cy5

(1:1000, Vector Labs Burlingame, CA and Chemicon). Immunoglobulin G

(IgG) control experiments were performed for all primary antibodies and

no staining was observed under these conditions. To assess the number

of cells, a nuclear stain 40,6-diamidino-2-phenylindole (DAPI; 2 ng/ml;

Molecular Probes) was added for 15 min prior to final washes after

secondary antibody addition. The sections were mounted on

slides, dried and coverslipped in fluoromount G (Fisher Scientific,

Pittsburgh, PA).

Electron microscopy

Paraformaldehyde- and glutaraldehyde-perfused brains were cut in

half sagittally. The genu area of the corpus callosum was identified

under a dissecting microscope and 4 mm2 blocks [from the mid-corpus

callosum up to one-third of the splenum, corresponding to the corpus

callosum area of Plate 29-48 from the atlas of Franklin and Paxinos

(2001)] were carefully dissected. These blocks were further cut into

1 mm sections for Epon embedding.

Tract tracing

PLP-EGFP (normal, vehicle-treated and oestrogen receptor b ligand-

treated EAE) mice were anaesthetized with isoflurane and then

mounted in a stereotaxic apparatus on Days 28–29 post EAE induc-

tion. A small craniotomy was made to expose the area above the

targeted region. A glass micropipette (35-mm tip) containing tetra-

methylrhodamine dextran amine (5%, 10 kDa; Invitrogen) was low-

ered using stereotaxic coordinates. After a survival time of 7 days (on

Days 35–36), animals were euthanized with isoflurane and perfused

transcardially with saline followed by 4% paraformaldehyde. Brain and

spinal cord sections were co-immunostained and imaged.

Microscopy and quantification
Immunostained brain sections were divided into rostral (hippocampus

absent) and caudal slices (hippocampus present), examined and photo-

graphed using a spinning disc confocal fluorescent microscope (BX62

DSU; Olympus, Tokyo, Japan) equipped with Plan Fluor objectives,

connected to a camera (Hamamatsu Orca). Digital images were

acquired separately (at �10,�40 or� 60) from delineated corpus cal-

losum regions and analysed using Slide book and ImageJ (NIH). When

showing multiple staining, green pseudo-colour was used to represent

TRITC-labelled protein (without showing the PLP-EGFP-green channel;

e.g. Fig. 7A, Caspr-TRITC shown in red and Nav1.6-Cy5 shown in

green). Image intensities were adjusted evenly for each set. Images

were captured from the same areas of the corpus callosum using

similar light exposure time from delineated regions and quantified as

previously shown (Morales et al., 2006; Crawford et al., 2009b).

Briefly, out of 8–10 optical images acquired for each brain section,

every third optical section image was used for analysis. Fluorescent

coloured images were separated into individual colours and converted

to binary images, manually thresholded and segmented using ImageJ

(v1.41 http://rsb.info.nih.gov/ij/). A grid of bin dimensions of

200�200mm was laid on the image and cells (or Caspr protein

pairs) in at least five squares per optical section and total numbers

of cells (and Caspr nodal pairs and axons) were counted. Similarly

myelin (MBP+), astrocyte (GFAP+) and axon damage (b-amyloid

precursor protein+) were analysed by intensity measurement with

ImageJ. A fixed threshold range of 0–160 was chosen to highlight

the staining signals in normal corpus callosum and all other images

were set to this threshold. The total area within this range was mea-

sured, averaged, compared and presented (numbers/0.1–0.4 mm2).

For electron microscopic quantification, serial ultrathin sections

embedded in Epon were stained with uranyl acetate-lead citrate and

analysed in a similar manner to that previously described (Crawford

et al., 2009b). The ratio of axon diameter to total fibre diameter

(‘g ratio’) was measured by dividing the circumference of an axon

without myelin by the circumference of the same axon including

myelin (Tiwari-Woodruff et al., 2007). For most axons, two encoun-

ters were measured. At least 500 axons were analysed in each treat-

ment group.
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Electrophysiological recording
procedures
Compound action potential recordings, conduction-velocity measure-

ments and axon-refractoriness measurements were performed as pre-

viously described (Crawford et al., 2009a, b). Briefly, each mouse was

anaesthetized with isoflurane, decapitated and the brain rapidly

removed. Coronal slices that were 400-mm thick were cut in ice-cold

artificial cerebrospinal fluid with a vibrating-knife microtome (Leica,

model VT1000S, Wetzlar, Germany). Slices were then transferred to

a holding chamber containing oxygenated artificial cerebrospinal fluid

at room temperature and were allowed to equilibrate under these

conditions for at least 1 h prior to recording. The artificial cerebrospinal

fluid contained (in mM): NaCl 124, KCl 5, NaH2PO4 1.25, NaHCO3

26, MgSO4 1.3, CaCl2 2, glucose 10; pH 7.4; saturated with a 95%

O2/5% CO2 gas mixture.

Brain slices corresponding approximately to Plates 29–48 in the

atlas of Paxinos and Franklin (2001) (Fig. 8A) were used for electro-

physiology recording, as previously described (Crawford et al., 2009b).

Stimulation used for evoked compound action potentials was constant

current stimulus-isolated square wave pulses. For analyses of

the compound action potential amplitude, standardized input–output

functions were generated for each slice by varying the intensity of

stimulus pulses (200 ms duration, delivered at 0.2 Hz) in steps

from approximately threshold level to an asymptotic maximum

(0.3–4.0 mA) for the short-latency negative compound action potential

component. To enhance the signal-to-noise ratio, all quantitative elec-

trophysiological analyses were conducted on waveforms that were the

average of four successive sweeps. Evoked callosal compound action

potential field potentials were amplified and filtered (bandpass = DC to

10 kHz) using an Axopatch 200A amplifier (Molecular Devices,

Sunnyvale, CA), digitized at 200 kHz and stored on disk for offline

analysis.

Conduction velocity

Corpus callosum conduction velocity can be estimated by changing

the distance between the stimulating and recording electrodes from

0.5 to 2.5 mm, while holding the stimulus intensity constant as previ-

ously described (Crawford et al., 2009b). Recordings are performed

using the protocol described above for standard compound action

potential measurements. For analysis, the peak latency of the N1

and N2 components are measured at each point and graphed versus

this distance. Linear regression analysis can then be performed for

each compound action potential component to yield a slope that is

the inverse of the velocity, followed by statistical comparison of the

velocities.

Axon refractoriness

Axon refractoriness is defined as the reduced excitability of an axon

following an action potential. Axon damage can modify refractoriness

and its measurement represents a diagnostic tool to measure axon

health. To quantify refractoriness, the suppression of a second com-

pound action potential response in paired stimulus trials is determined

as previously described (Reeves et al., 2005; Crawford et al., 2009a).

Initially, a single stimulating pulse is given at a defined strength to

establish a control response (C1). Following this response, two pulses

of equal intensity and duration are generated that are separated by a

variable time window, starting with an interpulse interval of 8 ms and

decreasing in 0.5 ms steps down to 1.5 ms. For analysis, the control

response is subtracted from the paired stimulus responses at each

interpulse interval. This results in the response, which can be attributed

to the second pulse (C2). The estimated N1 and N2 responses for C2

are then measured. Refractoriness is calculated for both N1 and N2 by

dividing these C2 compound action potential component amplitudes

by their respective C1 compound action potential amplitudes and

multiplying by 100%. The results are then graphed versus the inter-

pulse interval and analysed using non-linear regression analysis, with

specific use of the Boltzmann sigmoid function. The interpulse interval

that results in a 50% reduction in the compound action potential

component is then used as a standard measure when making statistical

comparisons between groups.

Statistical analysis
Quantification of immunostaining results was similar to previous stu-

dies (Tiwari-Woodruff et al., 2007; Crawford et al., 2009b). At least

six caudal sections from brains electrophysiologically recorded from

(two sections each from n = 3–5 mice) and 16 mid-to-caudal corpus

callosum sections from perfusion-fixed brain (four sections from n = 4

mice) were immunostained for a total of 18–22 sections per treatment

group. At least 8–10 sections were analysed. To quantify electrophysi-

ology results from each treatment group, recordings from two to three

caudal slices (n = 4–8 mice) for a total of 8–16 recordings were ana-

lysed. For electron microscopy, 4500 axons from 8 to 10 random

caudal area fields per animal at �4800 and �14 000 were used to

quantify the ‘g ratio’. Results from the same experimental protocols

were pooled together and expressed as mean � SEM, with n = number

of animals. Statistical analysis of mean values was carried out using

ANOVA and Friedman Test (only for clinical scores) or Bonferroni’s

multiple comparison post test. Differences were considered significant

at the P50.05 level. Statistics were performed using Microcal Origin

(Northampton, MA) or Prism 4 (GraphPad Prism Software Inc., La

Jolla, CA).

Results

Treatment reduces clinical
disease-severity scores in experimental
autoimmune encephalomyelitis
To visualize and characterize oestrogen receptor b ligand treat-

ment effects on demyelination and axon degeneration, active

EAE was induced in PLP-EGFP transgenic C57BL/6 mice (Mallon

et al., 2002). To obtain a steady level of oestrogen receptor b
ligand, a diarylpropionitrile dose of 8 mg/kg per day (Carswell

et al., 2004), oestrogen receptor b ligand or vehicle treatment

was administered in ovariectomized mice every other day, starting

1 week prior to active EAE induction. Ovariectomized mice

showed similar EAE disease time course and clinical scores as

intact animals (Supplementary Fig. 1A). Oestrogen receptor b
ligand treatment during EAE had no significant effect early on,

that is prior to Day 20, but thereafter demonstrated a significant

protective effect throughout the later stages of disease, P50.001

(Fig. 1A). These results are consistent with our previous findings

that treatment with an oestrogen receptor b ligand is clinically

protective only during the later phase of the disease (Tiwari-

Woodruff et al., 2007).
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Inflammation and reactive astrocytosis
in the corpus callosum of mice
with experimental autoimmune
encephalomyelitis
The corpus callosum that connects both cerebral hemispheres is

by far the largest fibre tract in the brain and is preferentially

involved in multiple sclerosis (Ozturk et al., 2001; Warlop et al.,

2008). It is widely believed that rodent EAE rarely affects the brain

and is mostly limited to pathology of the spinal cord. Contrary

to this belief, we have discovered extensive callosal and cortical

pathology, in addition to spinal cord pathology, of both intact

and ovariectomized EAE mice (Supplementary Figs 1 and 2).

PLP-EGFP fluorescing green cells and myelin in the corpus callo-

sum (delineated region in Fig. 1B) stained with the nuclear stain

DAPI allowed us to easily visualize inflammatory and demye-

linating lesions in the callosal white matter (arrows in Fig. 1C)

and thoracic spinal cord (Supplementary Figs 1B and 2).

Demyelinating lesions in vehicle-treated EAE lacked normal

expression of PLP-EGFP oligodendrocytes and myelin tracts,

whereas in oestrogen receptor b ligand-treated EAE, the corpus

callosum and spinal cord indicated increased numbers of PLP-EGFP

oligodendrocytes and myelinated tracts along with pockets of

infiltrating DAPI nuclei (arrows in Fig. 1C and Supplementary

Figs 1 and 2).

Similar to inflammatory cells seen in the spinal cord from EAE

mice (Supplementary Fig. 2), the corpus callosum of early and

late vehicle-treated EAE mice had many CD45+ cells with activated

microglia morphology, along with Mac3+ macrophage and CD3+ T

lymphocytes surrounding lesions and vessels (Fig. 2A showing

only the late time point). In addition, there was a marked increase

in the immunoreactivity intensity of GFAP+ astrocytes in vehicle-

treated EAE animals (Fig. 2A). Oestrogen receptor b ligand

treatment did not reduce inflammatory cells or reactive astrocyte

levels (Fig. 2A). Quantitative analysis of CD45+, Mac3+, CD3+ and

GFAP+ cells showed a significant increase in the corpus

callosum of vehicle-treated EAE compared to normal that was

also observed in EAE mice treated with oestrogen receptor b
ligand (Fig. 2B).

Figure 1 Treatment with oestrogen receptor b ligand significantly improves disease in late chronic EAE. (A) Ovariectomized PLP-EGFP

C57BL/6 female mice were given subcutaneous injections of diarylpropionitrile, an oestrogen receptor b (ERb) ligand, during active EAE

and scored using the standard EAE grading scale. Oestrogen receptor b ligand-treated mice, compared with vehicle-treated mice, were not

significantly different early in disease (up to Day 20 after disease induction), but then became significantly improved later during EAE,

(starting at Days 22–25 after disease induction, **P50.001, ANOVA Friedman test). Normal mice did not show any disease and their

clinical scores remained zero throughout the experiment. Data are representative of experiments repeated three times. (B) Brain slices for

immunohistochemistry corresponded approximately to Plates 29–48 in the atlas of Franklin and Paxinos (2001). (C) Representative

PLP-EGFP expressing (green) and DAPI nuclei (blue) stained corpus callosum sections (�10 magnification) from normal (healthy control),

vehicle-treated EAE and oestrogen receptor b ligand-treated EAE mice all sacrificed at Day 36 (late) post disease induction. Compared to

normal controls, the corpus callosum of vehicle-treated EAE and oestrogen receptor b ligand-treated EAE had an increase in the total

number of infiltrating cells (represented by DAPI+ cells) after induction of EAE. This was accompanied by a reduction in PLP-EGFP+ cells, as

well as PLP-EGFP white matter intensity (white arrows). Scale bar is 100 mm. CC = corpus callosum; Hip = hippocampus; M = motor cortex;

S1 = somatosensory cortex.
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Oestrogen receptor b ligand
treatment during experimental
autoimmune encephalomyelitis
maintains a robust
oligodendrocyte population
To address the possible cause of the improved state of PLP-EGFP

cells and myelin tracts in oestrogen receptor b ligand-treated

EAE mice, cells of oligodendrocyte lineage were quantified in the

delineated corpus callosum. The PLP-EGFP fluorescent oligo-

dendrocyte population in the corpus callosum of vehicle-treated

EAE mice showed patches of decreased intensity, retracted cell

processes and smaller cell bodies [Figs 2A, 3A(i) and 3A(ii)]

compared to normal mice. Oestrogen receptor b ligand-treated

EAE mice had increased numbers of highly processed cells with

normal-sized cell bodies [Figs 2A, 3A(i) and (ii)]. Quantification of

PLP-EGFP+ cells indicated a significant decrease in the corpus cal-

losum of vehicle-treated EAE mice compared to normal controls.

In contrast, PLP-EGFP+ cell numbers in oestrogen receptor b
ligand-treated EAE mice were not decreased (Fig. 3B).

The PLP-EGFP cell populations in the corpus callosum are a

mixture of oligodendrocyte progenitors and mature oligodendrocyte

(Mallon et al., 2002). Therefore, we quantified oligodendrocyte pro-

genitors by immunostaining with olig2 or PDGFR-a antibody and did

not observe significant differences between vehicle- and oestrogen

receptor b ligand-treated groups (Fig. 3A and B). The mature oligo-

dendrocyte population was quantified by counting cells that express

the mature oligodendrocyte marker, glutathione-S transferase-pi

(GST-pi). Compared to normal mice, the corpus callosum of

vehicle-treated EAE mice had�25% fewer GST-pi+ cells. In contrast,

oestrogen receptor b ligand-treated EAE mice had significantly more

Figure 2 Treatment with oestrogen receptor b ligand did not reduce inflammation or reactive astrocytosis in the corpus callosum of mice

with EAE. (A) Consecutive corpus callosum sections were also immunostained with antibodies against the common leukocyte

antigen-CD45 (red, at �10 magnification), the macrophage-Mac3 (red, at �40 magnification), the T cell-CD3 (red, at �40 magnification)

or the astrocyte marker glial fibrillary acidic protein (red, at �10 magnification). Shown are images from normal control, vehicle-treated

EAE and oestrogen receptor b ligand-treated EAE corpus callosum at Day 36 after disease induction. Vehicle-treated EAE and oestrogen

receptor b ligand-treated corpus callosum had large areas of CD45+, Mac3+ and CD3+ cells in the corpus callosum as compared to the

normal control, as well as large areas of hypertrophic-reactive GFAP+ astrocytes. (B) Quantification of number of CD45+, Mac3+ and

CD3+ cells and the relative fluorescence intensity of glial fibrillary acidic protein immunostaining demonstrated an increase in both

vehicle-treated EAE and oestrogen receptor b ligand-treated EAE as compared to normal mice. Statistically significant compared to normal

(**P50.001 ANOVAs; Bonferroni’s multiple comparison post test; n = 8–10 mice in each treatment group).
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GST-pi+ cells than vehicle-treated mice and were similar to normal

oligodendrocyte numbers (Fig. 3A and B).

Increased myelin thickness and
decreased g ratio of callosal axons in
oestrogen receptor b ligand-treated
experimental autoimmune
encephalomyelitis
An increased number of myelinating cells could lead to improved

myelination. Therefore, the degree of myelination was first

determined by analysing myelin by immunohistochemistry.

Myelin basic protein fluorescence intensity measurements indi-

cated significant callosal demyelination of vehicle-treated EAE

mice compared to normal (Fig. 4A and B and Supplementary

Figs 1 and 2). In contrast, oestrogen receptor b ligand-treated

EAE mice had significantly improved myelination that was similar

to normal mice (Fig. 4A and B). To assess the integrity of myelin-

ation ultrastructure, calculation of axon diameter, myelin thickness

and mean g ratio of myelinated and unmyelinated axons was per-

formed by electron microscopy analysis (Fig. 5). Vehicle-treated

EAE mice at Day 36 of EAE had increased numbers of unmyeli-

nated and thinly myelinated callosal fibres compared to normal

Figure 3 Treatment with an oestrogen receptor b ligand preserved mature myelinating oligodendrocytes in corpus callosum of mice

with EAE. (A) Representative corpus callosum sections with PLP-EGFP+ cells (green) from normal, vehicle-treated and oestrogen receptor b
ligand-treated EAE mice all sacrificed at Day 36 (late) post disease induction [(i) �10 magnification, (ii) �40 magnification of the

white dashed boxes in panel (i)]. Compared with the corpus callosum of vehicle-treated EAE mice, the number of PLP-EGFP+ cells was

significantly increased in oestrogen receptor b ligand-treated EAE. PLP-EGFP++DAPI+ cells had more processes and were in clusters of

43 cells in oestrogen receptor b ligand-treated corpus callosum compared to cells that were smaller and with fewer processes in

vehicle-treated EAE corpus callosum. Consecutive brain slices were also immunolabelled with olig2 (red) +DAPI or GST-pi (red) +DAPI [(iii)

(iv) �10 magnification, inset �40 magnification]. Olig2+ cell density under all three conditions showed no obvious difference (iii).

The GST-pi+ mature oligodendrocyte cell population decreased in vehicle-treated EAE compared to normal control corpus callosum. There

is a dramatic increase in the GST-pi cell population in oestrogen receptor b ligand-treated EAE corpus callosum. PDGFRa (red) is a specific

marker for oligodendrocyte progenitors. Similar to olig2, PDGFRa+ oligodendrocyte progenitors did not show a significant difference

among normal, vehicle-treated EAE and oestrogen receptor b ligand-treated EAE groups (iv). (B) Quantification of the number of

PLP-EGFP+, olig2+ and GST-pi+ cells per 400mm2 indicated a significant decrease in the number of PLP-EGFP+ cells, no change in olig2+

cells and a significant decrease in GST-pi+ cells in vehicle-treated EAE mice compared to normal controls. Oestrogen receptor b ligand

treatment caused a significant increase in PLP-EGFP+ cells, no change in olig2+ and a significant increase in GST-pi+ cells compared with

vehicle-treated EAE (*P50.05, ANOVAs; Bonferroni’s multiple comparison post test; n = 8–10 mice in each treatment group).
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mice. Activated microglia and astrocytes present in the corpus

callosum were accompanied by vacuoles and enlarged mitochon-

dria in axons (Fig. 5A). The corpus callosum of oestrogen receptor

b ligand-treated EAE mice appeared to have increased numbers of

myelinated fibres as compared to vehicle-treated EAE mice, with

the continued presence of activated microglia and some axons

with vacuoles and enlarged mitochondria (Fig. 5A). The most dra-

matic effect of oestrogen receptor b ligand treatment was on the

myelin sheath thickness. The callosal axons of oestrogen receptor

b ligand-treated EAE mice had significantly thicker myelin than

vehicle-treated mice and occasionally thicker myelin than normal

mice (Fig. 5A). Even though there were similar demyelinated re-

gions in the perivascular regions due to continued infiltration,

nearby axons in oestrogen receptor b ligand-treated mice had

thicker myelin compared with axons of vehicle-treated mice

(Fig. 5B). Quantitative measurement of myelin sheath thickness

of all axons within a given field showed nearly 2-fold increase in

oestrogen receptor b ligand-treated EAE mice (0.065� 0.002mm)

over vehicle-treated EAE mice (0.027� 0.001 mm), and essentially

the same thickness as normal mice (0.060� 0.002 mm) [Fig. 5C(i)].

Thus, the g ratio was significantly lower in the oestrogen receptor

b ligand-treated EAE corpus callosum (0.85� 0.012), relative to

vehicle-treated EAE corpus callosum (0.94� 0.026) (P50.05).

The g ratio of oestrogen receptor b ligand-treated EAE mice was

similar to that of the normal control group [0.87� 0.004;

Fig. 5C(ii)]. Scatter plots of g ratio versus axon diameter highlight

the fact that the g ratios were higher in the vehicle-treated EAE

corpus callosum than in the oestrogen receptor b ligand-treated

EAE corpus callosum [Fig. 5C(iii)]. Comparing scatter plots of axon

diameter versus g ratio or axon diameter versus myelin thickness

allowed us to identify the cause of g-ratio decrease due to

increased myelin thickness in the oestrogen receptor b ligand-

treated EAE group. Callosal axons of small to medium sizes

showed a more robust increase in myelination with oestrogen re-

ceptor b treatment compared with vehicle-treated EAE or normal

controls [Fig. 5C(iii) and (iv)].

Oestrogen receptor b ligand treatment
reduces experimental autoimmune
encephalomyelitis-induced axon
damage and limits experimental
autoimmune encephalomyelitis-induced
disorganization of nodal proteins in
callosal axons
Chronic EAE-induced demyelination is accompanied by significant

axon damage that could theoretically be reversed by the increased

axon myelination observed in oestrogen receptor b ligand-treated

EAE mice. Decreased axon damage during EAE was confirmed

by performing immunohistochemistry with NF200, a common

axon marker, and b-amyloid precursor protein, a marker of axon

damage. In normal controls, NF200 was visible in small areas

(probably nodes of Ranvier) of myelinated axons that were

co-stained with myelin basic protein [Fig. 6A(i)]. Furthermore,

there was no significant b-amyloid precursor protein

Figure 4 Treatment with an oestrogen receptor b ligand

preserved myelin basic protein (MBP) immunoreactivity in the

corpus callosum of mice with EAE. (A) Brain sections at Day 36

after disease induction were post-fixed, immunostained with

anti-myelin basic protein (red) and imaged at�10 magnification.

Vehicle-treated mice had reduced myelin basic protein

immunoreactivity as compared to normal controls, while

oestrogen receptor b ligand-treated EAE mice showed relatively

preserved myelin basic protein staining. (B) Upon quantification,

myelin basic protein immunoreactivity in the corpus callosum was

significantly lower in vehicle-treated EAE mice as compared to

normal mice, while oestrogen receptor b ligand-treated EAE mice

demonstrated no significant decreases. Myelin intensity is

presented as percent of normal (*P50.05; ANOVAs;

Bonferroni’s multiple comparison post test; n = 8–10 mice in each

treatment group).
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Figure 5 Oestrogen receptor b ligand-treated EAE callosal axons have thicker myelin. (A) Representative electron micrographs of the

corpus callosum from normal control, vehicle-treated EAE and oestrogen receptor b ligand-treated EAE mice show differential levels of

axon myelination [(i)–(iii)]. Compared to normal controls, the corpus callosum of vehicle-treated EAE mice show increased numbers of

unmyelinated axons with enlarged mitochondria. Oestrogen receptor b ligand treatment during EAE resulted in a dramatic increase in

Continued
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immunoreactivity, thereby indicating intact, healthy axons [Fig.

6B(i) and C]. In contrast, vehicle-treated EAE axons had large

areas of NF200 positivity and minimal myelin basic protein stain-

ing, denoting demyelination [Fig. 6A(ii)]. In addition, these

demyelinated axons showed b-amyloid precursor protein immu-

noreactive axonal swelling, axon bulbs and transected axons in

the corpus callosum white matter [Fig. 6B(ii) and C]. Callosal

axons of oestrogen receptor b ligand-treated EAE mice showed

less demyelination and a reduced amount of b-amyloid precursor

protein immunoreactivity than vehicle-treated EAE mice (Fig. 6).

Saltatory conduction of myelinated axons depends on the pres-

ence of nodes of Ranvier on healthy axons (Waxman, 2006).

Demyelination leading to nodal disorganization and axon

damage is prominent in multiple sclerosis lesions and is probably

a major cause of conduction failure. Similar nodal disorganization

and conduction failure has been observed in EAE spinal cord

(Craner et al., 2004). Therefore, the effect of EAE-induced demye-

lination and oestrogen receptor b ligand treatment-induced hyper-

myelination on nodal proteins was analysed in the corpus

callosum. Nodal regions were identified and delineated with anti-

bodies against Caspr, a component of axo–glial junctions that ap-

pears paranodally. In the corpus callosum of normal mice, Nav1.6+

staining was found mostly between Caspr+ staining, clearly iden-

tifying nodes of Ranvier (Fig. 7A). During chronic EAE, Caspr

staining levels were decreased significantly to 560% of normal

corpus callosum (Fig. 7B). Surprisingly, intact Caspr pairs contained

Nav1.6 at the nodes, similar to normal corpus callosum. The re-

maining Nav1.6 protein, instead of being concentrated between

Caspr pairs, had become diffuse over the length of the axons

(Fig. 7A), as previously seen in multiple sclerosis and EAE tissue

(Craner et al., 2004; Black et al., 2007).

Kv1.2 potassium channel proteins appear as juxtaparanodal

pairs in normal myelinated axons (Fig. 7C). Demyelination in vehi-

cle-treated EAE was associated with increased expression of Kv1.2

and a lengthening of Kv1.2 immunostaining across the entire axon

length. Oestrogen receptor b ligand-treated EAE callosal axons

had only a few areas of diffuse Kv1.2 staining, but overall

showed near normal levels of juxtaparanodal Kv1.2 staining

(Fig. 7C).

Oestrogen receptor b ligand treatment
during experimental autoimmune
encephalomyelitis restores callosal
conduction, axon velocity and axon
refractoriness of callosal axons
Callosal axons play a major role in interhemispheric transfer and

integration of sensorimotor and cognitive information (Singer,

1995). To characterize the functional consequences of the neuro-

pathology in the corpus callosum during EAE, compound action

potentials were recorded in callosal axons (Fig. 8). Coronal brain

slices with midline-crossing segments of the corpus callosum, cor-

responding approximately to Plates 29–48 in the atlas of Paxinos

and Franklin (2001), were used for recording. Two downward

phases of the compound action potentials N1 and N2 were

observed, probably representing fast depolarization from large,

myelinated axons and slower depolarization from non-myelinated

axons, respectively (Crawford et al., 2009a). Typical voltage traces

are shown in Fig. 8B. During early EAE (Day 20), both N1 and N2

compound action potential amplitudes were decreased to �50%

of normal (P50.001, Fig. 8C and D). This decrease persisted later

into EAE (Day 36). Treatment with oestrogen receptor b ligand

during EAE induced an increase in N1 and N2 compared with

vehicle-treated mice, which was a trend when examined early,

but became significant when examined late (P50.05, Fig. 8D).

The myelinated compound action potential component N1 of

oestrogen receptor b ligand-treated EAE callosal axons showed a

small but significant shift to the left of vehicle-treated EAE callosal

axons (Fig. 8B). A shift to the left could theoretically be due to an

increase in axon conduction velocity as a consequence of im-

proved myelination. To confirm this we first measured conduction

velocity of EAE callosal axons in the absence and presence of

oestrogen receptor b ligand treatment as previously described

(Crawford et al., 2009a). The peak latency of the N1 and N2

components were measured and graphed versus distance. Linear

regression analysis was performed for each compound action

potential component to yield a slope that is the inverse of the

velocity, followed by statistical comparison of the velocities. The

Figure 5 Continued
myelination of mostly smaller axons as compared with vehicle-treated EAE and normal control. Pictures are at (i) �4800; (ii) �19 000 and

(iii) �48 000 magnification. Scale bar is 1mm. Arrow = de/un-myelinated axons; ^ = thicker myelin sheath; * = enlarged mitochondria;

# = vacuoles. (B) Additional examples of vehicle-treated EAE and oestrogen receptor b ligand-treated EAE callosal axons near a lesion with

infiltrating cells. Notice that there are areas in the oestrogen receptor b ligand-treated corpus callosum that contain many demyelinating

damaged axons similar to those seen extensively in vehicle-treated EAE mice (i). The remaining axons in oestrogen receptor b
ligand-treated EAE mice (ii) have thicker myelin sheath compared with vehicle-treated EAE mice (iii). (C) Measurement of myelin thickness

showed significant decrease in vehicle-treated EAE mice as compared with normal and oestrogen receptor b ligand-treated EAE mice (i).

Axon diameter and fibre diameter were measured to further quantify the degree of myelination. Axon diameter/fibre diameter (g ratio)

showed a significant increase in vehicle-treated callosal axons and a dramatic decrease in g ratio was observed in oestrogen receptor b
ligand-treated EAE callosal axons (ii). Scatter plots of axon diameter versus g ratio (iii) and axon diameter versus myelin thickness (iv)

indicated demyelination-induced decreases in myelin thickness in vehicle-treated EAE callosal axons, whereas oestrogen receptor b
ligand-treated EAE mice show increased myelination of small–medium-sized callosal axons. The increase in callosal axon g ratio of

vehicle-treated corpus callosum was due to demyelination of axons, whereas the decrease in g ratio in oestrogen receptor b ligand-treated

callosal axons was due to an increase in myelination of axons. *P50.05. ANOVAs; Bonferroni’s multiple comparison post test. At least

four mice (36 days post EAE induction) from each group were analysed and a minimum of 500 fibres were measured from each mouse.
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conduction velocity of the N1 component for normal callosal

axons was 1.82� 0.15 m/s whereas the N1 conduction velocity

of vehicle-treated EAE decreased to 1.69� 0.10 m/s. Oestrogen

receptor b ligand treatment during EAE induced an increase in

conduction velocity to 1.92� 0.11 m/s, a significant increase com-

pared with both vehicle-treated EAE and the normal group. The

conduction velocity of the N2 component was not different be-

tween normal and treatment groups and was 0.57� 0.012

(normal), 0.55� 0.20 (vehicle-treated EAE) and 0.56� 0.10 (oes-

trogen receptor b ligand-treated EAE) m/s. In conclusion, oestro-

gen receptor b ligand-treated EAE callosal axons showed a slight

but significant improvement in conduction velocity.

Chronic EAE-induced demyelination and conduction deficit is

also accompanied by functional axon deficit. Axonal deficits

were estimated by assaying changes in axon refractoriness as pre-

viously described (Reeves et al., 2005; Crawford et al., 2009a).

Figure 9A shows an example series of the second response evoked

in paired stimulus presentations, after subtracting out the response

to a conditioning pulse. Traces shown are for normal, vehicle-

treated EAE and oestrogen receptor b ligand-treated EAE mice

at interpulse intervals from 2–8 ms. The compound action poten-

tial component-amplitude elicited by the second pulse in each

paired stimulation (C2) divided by the compound action potential

component-amplitude to single pulse stimulation (C1) was plotted.

These C2/C1 ratios were averaged for each analytical group and

mean values fitted to Boltzmann sigmoid curves. Rightward shifts

in these curves correspond to increases in the refractory recovery

cycle in the callosal axons and are indicative of functional axonal

deficit (Reeves et al., 2005; Crawford et al., 2009a).

In the normal group, the N1 component evoked by the second

of a pair of pulses was 50% of the amplitude of a single pulse

presentation when the interpulse interval was 2.2� 0.21 ms. The

interpulse interval for vehicle-treated EAE had slower responses of

3.9� 0.15 ms. Oestrogen receptor b ligand-treated callosal EAE

axons had an interpulse interval of 3.0� 0.11 ms (Fig. 9B), signifi-

cantly better than the interpulse interval of vehicle-treated EAE

callosal axons. The interpulse intervals for the N2 component of

all three groups were not significantly different at 3.1� 0.10 ms

(normal), 3.5� 0.05 ms (vehicle-treated EAE) and 3.1� 0.16 ms

(oestrogen receptor b ligand-treated EAE).

Callosal and corticospinal tracts are
preserved during oestrogen receptor b
ligand treatment
Finally, to assess the extent of EAE-induced axon degeneration

and the effects of oestrogen receptor b ligand treatment during

EAE; the callosal tracts were evaluated by neuronal tract tracing

studies. Using a precise micro-injector, each group of mice was

injected with the tract dye, dextran red (molecular weight of

10 000) in the right hemisphere. The injection site was the primary

motor and sensorimotor cortex near layers II–V to label the pyr-

amidal neurons, thereby establishing a direct labelling method to

evaluate these axon tracts.

Previous studies have shown a disruption of Dil–dye-labelled

corticospinal axonal damage in spinal cord of EAE mice (Liu

et al., 2008). We confirmed our method of labelling by first ana-

lysing the EAE corticospinal tract. In the rodent, the only neurons

in the forebrain that send axons to the spinal cord are those of the

corticospinal tract through the internal capsule and medullary

pyramid. Most of the corticospinal tract decussates to the opposite

Figure 6 Decrease in demyelination and axon damage in oestrogen receptor b ligand-treated EAE callosal axons. (A) High magnification

confocal images (�60) were taken to identify the presence of demyelination and axon damage. Normal myelinated axons (i) had even

myelin basic protein (MBP) immunostaining with small areas that were MBP� and NF200+ and are most likely the nodes of Ranvier (arrow).

Vehicle-treated EAE axons (ii) expressed large areas that were MBP� and NF200+ indicative of demyelination (*). Oestrogen receptor b
ligand treatment during EAE (iii) had myelinated axons similar to normal. (B) Axon degeneration was assessed with b-amyloid precursor

protein accumulation. Unlike the normal control corpus callosum that did not show axonal pathology with b-amyloid precursor protein�

immunostaining (blue), vehicle-treated EAE mice had demyelinated axons that showed swelling, beading (^) and increased areas of

b-amyloid precursor protein accumulation. Oestrogen receptor b treatment during EAE significantly reduced the extent of axon pathology.

(C) Quantification of b-amyloid precursor protein immunostaining intensity in the corpus callosum showed nearly 70% less accumulation

in oestrogen receptor b ligand-treated EAE compared to vehicle-treated EAE. *P50.05; **P50.001, ANOVAs; Bonferroni’s multiple

comparison post test; n = 5 mice in each treatment group.
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side in the medulla oblongata and descends in the most ventral

part of spinal dorsal funiculus. Unilateral labelling of the corticosp-

inal tract located in the internal capsule, medullary pyramids and

at the ventral aspect of the cervical dorsal columns in the cord was

clearly visible in normal mice. These regions were labelled discrete-

ly by dextran red fluorescence and their individual axons were

identifiable (Fig. 10A). However, compared to normal controls,

vehicle-treated EAE mice had reduced and discontinuous tract

dye staining, indicating dysfunction in the corticospinal tract. The

oestrogen receptor b ligand-treated EAE group had significantly

improved dye staining compared with vehicle-treated EAE mice

(Fig. 10A). Very few dye-filled discontinuous and swollen axon var-

icosities were present in the oestrogen receptor b ligand-treated ani-

mals. Quantification of dextran red dye or NF200+ axon intensity

showed a significant decrease in the dorsal column during vehicle

treatment, whereas oestrogen receptor b ligand treatment showed

similar staining to the normal group (Fig. 10B).

Dextran red-labelled axons from layer II/III and layer V descend

and cross in the corpus callosum (Fig. 10C). In normal controls,

bundles of axons that started from the right side of corpus callo-

sum were labelled with dextran red and crossed over to the left

hemisphere. Comparatively, fewer labelled axons crossed over to

the left hemisphere in the vehicle-treated EAE mice. Here, the dye

fluorescence was punctate and discontinuous, indicative of axon

transport deficits. In contrast, oestrogen receptor b ligand-treated

EAE mice showed much better labelling compared with vehicle-

treated EAE. Nearly 80% of callosal axons in oestrogen receptor b
ligand-treated EAE animals were labelled and very few axons

showed punctate dye accumulation (Fig. 10C and D).

Discussion
In multiple sclerosis and EAE, although resident oligodendrocyte

progenitors are found around the lesions, they remain in a quies-

cent state (Prineas and Connell, 1979; Reynolds et al., 2001; Back

et al., 2005). This differentiation block of oligodendrocyte pro-

genitors contributes to failed remyelination (Franklin and ffrench-

Figure 7 Oestrogen receptor b ligand treatment limits EAE-induced disorganization of nodal proteins in callosal axons. (A) Corpus

callosum sections were immunostained with nodal proteins Caspr (red, marked with white arrows) and Nav1.6 (green). A significant

decrease in Caspr and Nav1.6 staining occurred in the corpus callosum of vehicle-treated EAE mice. In addition, extensive regions of axons

(*) were immunostained with Nav1.6 not confined between Caspr pairs. Oestrogen receptor b ligand-treated EAE corpus callosum axons

contained Caspr pairs with Nav1.6 similar to normal control. Note: PLP-EGFP-green channel was dropped and Nav1.6 immunostaining

performed with TRITC conjugated secondary was pseudo-coloured to green for clarity. (B) Quantification of Caspr protein pairs alone and

Caspr protein pair encompassing Nav1.6 protein showed a significant decrease in vehicle-treated EAE callosal axons compared to those

of normal and oestrogen receptor b ligand-treated EAE. **P50.001, ANOVAs; Bonferroni’s multiple comparison post test; n = 5 mice in

each treatment group. (C) Juxtaparanodal Kv1.2 protein (red, arrows) immunostaining increased in the corpus callosum of vehicle-treated

EAE mice. Specifically, Kv1.2 immunostaining was obvious throughout the length of some axons (*). No significant difference was

observed in oestrogen receptor b ligand-treated EAE axons compared with normal.
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Constant, 2008; Kuhlmann et al., 2008). The inefficiency or failure

of myelin-forming oligodendrocytes to remyelinate axons and pre-

serve axonal integrity remains a major impediment in the repair of

multiple sclerosis lesions and is principally responsible for axonal

and neuronal degeneration leading to chronic disability (Pagani

et al., 2005; Trapp and Nave, 2008).

The adult nervous system maintains a pool of undifferentiated

oligodendrocyte progenitors that can migrate to demyelinated

axons, differentiate to mature oligodendrocytes and remyelinate

axons. Remyelination occurs in many multiple sclerosis lesions

early in the disease (Kornek et al., 2000; Patrikios et al., 2006).

Unfortunately, cycles of demyelination apparently exhaust the

capacity for tissue repair and remyelination eventually becomes

less successful (Linington et al., 1992; Patrikios et al., 2006).

Myelin regeneration can be improved either by cell replacement

therapy, as a substitute to the endogenous pool of oligodendro-

cyte progenitors, or by boosting the brain’s intrinsic capacity for

remyelination. The development of neuroprotective treatments

that prevent the loss of progenitors and promote the proliferation

and differentiation of this cell population are theoretical treatment

goals for multiple sclerosis.

The role of oestrogen and oestrogen receptor ligands as neuro-

protective agents in EAE, and recently multiple sclerosis, has been

extensively investigated by our group (Kim et al., 1999; Morales

et al., 2006; Tiwari-Woodruff et al., 2007; Gold et al., 2009).

Evidence suggests that oestrogen receptor b ligand treatment

before active EAE induction is directly neuroprotective since it

preserved spinal cord myelin and prevented axonal loss without

reducing CNS inflammation (Tiwari-Woodruff et al., 2007). The

neuroprotective effects of the oestrogen receptor b ligand are not

mutually exclusive with other effects of treatment on CNS inflam-

matory cells that may not be detectable by assessing levels of CNS

inflammation. One would have to isolate macrophages from EAE

lesions in both treated and untreated CNS and analyse their func-

tion. Notably, in previous studies, we found that oestrogen recep-

tor b ligand of active EAE was neuroprotective without altering

cytokine production in peripheral immune cells (Tiwari-Woodruff

et al., 2007).

Efficacy of oestrogen treatments during EAE or multiple sclerosis

will probably depend on its early administration, before significant

CNS damage has occurred (Brinton, 2005). Oestrogen receptor b
ligand treatment before active EAE induction allowed us to

Figure 8 Treatment with oestrogen receptor b ligand restores callosal conduction of both myelinated and non-myelinated axons of mice

with EAE. (A) Compound action potential (CAP) responses were recorded from slices with midline-crossing segments of the corpus

callosum overlying the mid-dorsal hippocampus. Stimulating (Sti) and recording (Rec) electrodes were each placed �1 mm away from

midline. (B) Typical corpus callosum compound action potentials from normal (black), vehicle-treated EAE (red) and oestrogen receptor b
ligand-treated EAE (blue) brain slices evoked (at a stimulus of 4 mA) at Day 36 after disease induction. There is a decrease in N1 and N2

amplitude in the vehicle-treated EAE group. Treatment with oestrogen receptor b ligand during EAE induced a latency shift in N1 peak, as

well as a muted decrease in N1 and N2 compound action potential amplitude compared with vehicle alone (dashed vertical line represents

compound action potentials beyond the stimulus artefact). (C and D) Quantification of N1 and N2 compound action potential amplitudes

in the corpus callosum of vehicle-treated EAE mice showed a significant decrease early, at Day 20, and late, at Day 36, after disease

induction. Oestrogen receptor b ligand treatment showed a significant improvement in compound action potential response late in

disease. Number of mice = 4 per treatment group, number of corpus callosum sections per mouse = 3, total number of sections per

treatment group = 12. Statistically significant compared with normal at 2–4 mA stimulus strength. *P50.05, **P50.001; ANOVAs;

Bonferroni’s multiple comparison post test; CC = corpus callosum; Hip = hippocampus; M = motor cortex; S1 = somatosensory cortex.
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investigate the potential for oestrogens to prevent against damage

mediated by the first inflammatory attack. In established relap-

sing–remitting multiple sclerosis, this may simulate protection

from damage during the next relapse. Notably, once the oestro-

gen therapy-induced neuroprotective targets have been estab-

lished, we will, in future studies, assess the critical period of

oestrogen treatment at various timepoints during disease.

In the present study, we used a combination of electrophysio-

logical field potentials, electron microscopy, tract tracing and

immunohistochemical analyses to address whether oestrogen re-

ceptor b ligand treatment might provide functional recovery.

Functional recovery of axons during treatments of multiple scler-

osis models has not been previously addressed using such a com-

bination of complementary modalities. We focused primarily in the

corpus callosum since it is commonly targeted in multiple sclerosis

and is amenable to repair by the above modalities (Ozturk et al.,

2001; Pelletier et al., 2001).

Oestrogen receptor b ligand treatment increased the number of

myelinating oligodendrocytes and stimulated axon myelination in

the corpus callosum. This increase in myelination with oestrogen

receptor b ligand treatment during EAE was functionally relevant

as it led to improved axon conduction and decreased axon deficit.

Oestrogen receptor b ligand treatment was not mediated by an

effect on inflammation, as no significant differences in immune

cells and astrocytes between vehicle-treated and oestrogen receptor

b ligand-treated EAE mice were observed. A more direct effect of

oestrogens on oligodendrocytes is likely since oestrogen receptors (a
and b) are present on oligodendrocyte lineage cells (Takao et al.,

2004; Zhang et al., 2004). In addition, oestrogens that bind oestro-

gen receptor a and oestrogen receptor b, notably oestradiol, have

various effects on oligodendrocyte functions including delaying the

exit of oligodendrocyte progenitors from the cell cycle, enhancing

myelin membrane sheath formation (Marin-Husstege et al., 2004)

and enhancing oligodendrocyte synthesis of myelin basic protein in

primary oligodendrocyte cultures. Oestradiol also promotes remye-

lination in dorsal root ganglion and Schwann cell co-cultures (Zhu

and Glaser, 2008), cuprizone demyelination and ischaemia mouse

models (Gerstner et al., 2007; Kipp and Beyer, 2009).

Crosstalk between oestrogen receptor b and other growth

factor receptors such as insulin-like growth factor-1 could be

Figure 9 Treatment with oestrogen receptor b ligand restores refractoriness of callosal axons. (A) Example waveforms shows the second

response in paired stimuli after subtraction of the response to the conditioning pulse (interpulse intervals = 2–8 ms) for normal,

vehicle-treated EAE and oestrogen receptor b ligand-treated EAE callosal axons at later time point (dashed vertical line represents

compound action potentials beyond the stimulus artefact). (B) Average C2/C1 ratios [obtained from plots of mean compound action

potential amplitude elicited by the second pulse in each paired stimulation (C2) divided by the compound action potential amplitude to

single pulse stimulation (C1)] were fitted to Boltzmann sigmoid curves. A rightward shift in curves for N1 shows decreased refractoriness in

vehicle-treated and oestrogen receptor b ligand-treated EAE groups (n = 4). Oestrogen receptor b ligand-treated EAE callosal axons show

a significant increase (a leftward shift in the curve compared with vehicle treatment alone) in refractoriness of N1 compared with those

with vehicle treatment alone. The interpulse interval values (mean � SD) of N1 and N2 component for normal, vehicle-treated EAE and

oestrogen receptor b ligand-treated EAE callosal axons are presented in the table.
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Figure 10 Oestrogen receptor b ligand treatment prevented corticospinal tract and callosal pathology induced by EAE. (A) The

corticospinal tract from layer II/III and layer V neurons were followed through the internal capsule (dextran red only), medullary pyramids

(dextran red and PLP-EGFP) and the spinal cord (dextran red and NF200) in the ventral-most part of the dorsal column (DC). Dextran red

labelling was decreased in these areas in the vehicle-treated EAE compared to those of normal. Oestrogen receptor b ligand-treated EAE

showed improvement, especially in the high cervical spinal cord. Fluorescent red axons were seen only in one side and the axon intensity

was measured from single confocal images of high cervical spinal cord. At the cervical level, the dextran labelled axon number of

vehicle-treated EAE mice was significantly decreased compared to normal mice, while the oestrogen receptor b ligand-treated EAE axons

showed increased numbers similar to normal controls. (B) Cervical spinal cord sections from normal, vehicle-treated and oestrogen

receptor b ligand-treated EAE animals that were injected with dextran red were co-immunostained with NF200 (green). Dorsal column

was delineated and dextran red and NF200 fluorescence intensity were calculated and normalized to normal. Vehicle-treated EAE dorsal

column showed a significant decrease in dextran red and NF200 fluorescence, whereas oestrogen receptor b ligand-treated EAE dorsal

column had similar levels to normal. *P50.05; **P50.001, ANOVAs; Bonferroni’s multiple comparison post test; n = 5. (C)

Representative fluorescent images show callosal tracts of normal, vehicle-treated EAE and oestrogen receptor b ligand-treated EAE mice

7 days post-dextran red injection. Normal corpus callosum shows green PLP-EGFP+ cells and intense, coherent dextran red labelling of

callosal axons. The corpus callosum of vehicle-treated EAE mice had decreased PLP-EGFP+ cells, as well as decreased, punctate and

discontinuous dextran red labelling. Oestrogen receptor b ligand-treated EAE had many more PLP-EGFP+ cells and an increased number of

axons that were dextran red labelled compared with vehicle-treated EAE animals. Scale bar is 100 mm. (D) Quantification of dextran red

intensity in known corpus callosum regions indicated a significant decrease during vehicle-treated EAE compared to normal. Oestrogen

receptor b ligand-treated EAE mice were not significantly different than normal control. *P50.05; **P50.001, ANOVAs; Bonferroni’s

multiple comparison post test; n = 4.

Oestrogen receptor b ligand increases axon myelination Brain 2010: 133; 2999–3016 | 3013



involved in oligodendrocyte differentiation and survival leading to

improved myelination after oestrogen receptor b ligand treatment.

Insulin-like growth factor-1, through its binding to the insulin-like

growth factor-1 receptor, is known to play a vital role in oligo-

dendrocyte development, survival and myelination (McMorris

et al., 1986). Oestradiol is known to induce an increase in

insulin-like growth factor-1 during cuprizone demyelination

(Acs et al., 2009). Further, the insulin-like growth factor-1 recep-

tor promotes sustained phosphorylation of serine/threonine-

specific protein kinases (Akt), which is required for the survival

of oligodendrocyte progenitors (Pang et al., 2007; Romanelli

et al., 2009). Constitutive activation of Akt leads to the activation

of mammalian target of rapamycin, required for oligodendrocyte

differentiation and myelination (Narayanan et al., 2009; Tyler

et al., 2009). Thus, oestrogen receptor b ligand treatment

during EAE may induce a significant increase in the myelination

of axons by activating the Akt pathway and mammalian target of

rapamycin directly.

The rationale for almost all therapies for multiple sclerosis has

been to reduce inflammation. Immunomodulatory therapies, such

as interferon-b, glatiramer acetate and mitoxantrone have consid-

erably improved the therapeutic options for patients with multiple

sclerosis. These agents reduce relapse rates and reduce appearance

of MRI enhancing lesions. However, their efficacy in preventing

accumulation of disability and their impact on disease progression

has been disappointing (Trojano et al., 2006; Van der Walt et al.,

2010). Identifying a drug that stimulates endogenous myelination

and spares axon degeneration would theoretically reduce the rate

of disease progression.

A few agents such as thyroid hormone (triiodothyronine-T3),

leukaemia inhibitory factor and progesterone have shown limited

promise. Triiodothyronine-T3 administration during EAE showed

no clinical improvement but a small improvement in oligodendro-

cyte progenitor number and myelin basic protein intensity (Calza

et al., 2002; Fernandez et al., 2004). Triiodothyronine-T3 therapy

during the remyelination phase after chronic cuprizone demyelin-

ation resulted in improved remyelination and an increase in oligo-

dendrocyte progenitors (Franco et al., 2008; Harsan et al., 2008).

Leukaemia inhibitory factor, a neuronal survival factor with limited

ability to cross the blood–brain barrier and pleiotropic actions out-

side the CNS, when administered exogenously during EAE, re-

sulted in a small decrease in clinical scores and decreased

oligodendrocyte death (Butzkueven et al., 2002; Slaets et al.,

2010). In a more recent study, leukaemia inhibitory factor admin-

istration decreased cuprizone demyelination, but was unable to

show any improvement during remyelination (Emery et al.,

2006). Progesterone therapy moderately delayed disease onset,

reduced the clinical scores, reduced inflammatory response and

reduced the occurrence of demyelination in EAE spinal cord

(Garay et al., 2007), but had no effect in the cuprizone model

(Acs et al., 2009). None of these studies emphasized the effect of

therapy-induced myelination/remyelination on axon conduction

and transport such as those observed with oestrogen receptor b
ligand treatment. To our knowledge, oestrogen receptor b ligand

is the first compound that stimulates myelination and improves

axon conduction in vivo in the presence of inflammation. The

ligand has no known toxicity or blood–brain barrier permeability

issues. These observations are of significant clinical relevance, since

oestrogen receptor b ligand treatment would probably be very

well tolerated as both breast and uterine endometrial cancer are

mediated through oestrogen receptor a, not oestrogen receptor b
(Rossouw and Harlan, 1994; Beral, 2003). In addition, a neuro-

protective agent that enhances myelination such as oestrogen re-

ceptor b ligand could be taken in combination with the currently

available anti-inflammatory agents. Collectively, this represents a

major advance for not only multiple sclerosis, but also other

neurodegenerative diseases characterized by a demyelinating

component.
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