Growth factor stimulation induces
a distinct ERa cistrome underlying
breast cancer endocrine resistance
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Estrogen receptor o (ERa) expression in breast cancer is predictive of response to endocrine therapy; however,
resistance is common in ERa-positive tumors that overexpress the growth factor receptor ERBB2. Even in the
absence of estrogen, ERa can be activated by growth factors, including the epidermal growth factor (EGF). EGF
induces a transcriptional program distinct from estrogen; however, the mechanism of the stimulus-specific
response is unknown. Here we show that the EGF-induced ERa genomic targets, its cistromes, are distinct from
those induced by estrogen in a process dependent on the transcription factor AP-1. The EGF-induced ER« cistrome
specifically regulates genes found overexpressed in ERBB2-positive human breast cancers. This provides

a potential molecular explanation for the endocrine therapy resistance seen in ERa-positive breast cancers that
overexpress ERBB2. These results suggest a central role for ER« in hormone-refractory breast tumors dependent
on growth factor pathway activation and favors the development of therapeutic strategies completely antagonizing

ERq, as opposed to blocking its estrogen responsiveness alone.
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More than two-thirds of human breast cancers overexpress
the estrogen receptor a (ERa), where it is both a target of
endocrine therapy and a predictor of response (Sorlie et al.
2001, 2003). Upon activation by estrogen, ERa is recruited
to thousands of sites across the genome of human breast
cancer cells, defining its cistrome (Carroll et al. 2005,
2006; Lin et al. 2007; Hua et al. 2008; Hurtado et al. 2008;
Liu et al. 2008; Lupien et al. 2008; Fullwood et al. 2009).
This process is highly organized through specific epige-
netic events that restrict the recruitment of the receptor to
a subset of its potential binding sites (Lupien et al. 2008).
Accordingly, this ERa cistrome guides the response to
estrogen in breast cancer cells by favoring the implemen-
tation of an ERa-positive breast tumor-specific transcrip-
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tional program (Carroll et al. 2006). The importance of the
cistrome in defining a specific transcriptional program is
further supported by work in osteosarcoma cells. Indeed,
estrogen stimulation in these cells results in a distinct
expression profile (Monroe et al. 2003; Krum et al. 2008)
that is directly related to a unique ERa cistrome (Krum
et al. 2008). Such lineage-specific recruitment patterns
were also reported recently for other factors. Indeed, cell
type-specific transcriptional programs associated with
FoxAl and p300 are linked to their lineage-specific cis-
tromes (Lupien et al. 2008; Visel et al. 2009). Thus, the
contribution of a given transcription factor to the execu-
tion of a specific transcriptional program is highly de-
pendent on its cell type-specific cistrome.

In addition to cell type-specific transcription programs,
ERa can also respond to a variety of stimuli in a given cell
type. In breast cancer cells, ERa can be stimulated even in
the absence of estrogen by a variety of growth factors,
including epidermal growth factor (EGF) (Kato et al. 1995;
Bunone et al. 1996; Joel et al. 1998; Smith 1998; Kato 2001;
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Kurokawa and Arteaga 2003). Indeed, growth factor-stim-
ulated breast cancer proliferation as well as normal uterine
growth is dependent on ER« (Ignar-Trowbridge et al. 1992;
Kato et al. 1995; Lee and Yee 1995; Curtis et al. 1996; Lupu
et al. 1996; Knowlden et al. 2003; Schiff et al. 2005).
However, the transcriptional response induced by growth
factor pathway stimulation in breast cancer cells differs
from that of estrogen (Cunliffe et al. 2003; Dudek and
Picard 2008). Furthermore, ERa-positive breast cancers
that overexpress the EGF receptor-2 (ERBB2/HER2.) are re-
sistant to endocrine therapies that disrupt the estrogen-
dependent ERa program. In the present study, we
addressed the role of growth factor-specific ERa-dependent
transcriptional responses in breast cancer cells.

Results

Growth factor-induced unique ERa-dependent
transcriptional program

Given that growth factor pathway stimulation activates
a number of transcription factors (Moasser 2007), we first
assessed the contribution of ERa in EGF-mediated breast
cancer cell proliferation. ERa depletion using the full
antagonist fulvestrant (100 nM) or siRNA against ERa
(Lupien et al. 2007, 2008) abrogated the EGF-mediated
proliferation of MCF7 breast cancer cells (Fig. 1A; Sup-
plemental Fig. S1A,B). Partial depletion using a lower
dose of fulvestrant had reduced effects (Fig. 1A). ERa
depletion also completely abrogated cellular proliferation
triggered by activation of ERBB2 by heregulin in the ERa-
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positive BT474 breast cancer cell line (Supplemental Fig.
S1C). Hence, ERa contributes significantly to growth
factor pathway-mediated proliferation of breast cancer
cells, including those overexpressing ERBB2.

While EGF induced proliferation of MCF7 breast cancer
cells to the same extent as estrogen, this involved a distinct
transcriptional program (Fig. 1A,B; Cunliffe et al. 2003;
Dudek and Picard 2008). ERa depletion using fulvestrant
in EGF-treated cells revealed that >39% and 24% of EGF
up-regulated and down-regulated genes in MCF7 cells,
respectively, were fully or partially dependent on ER« (Fig.
1B,C). Similar results were obtained when silencing ERa
expression using siRNA (Supplemental Fig. S1D,E). Note-
worthy, by defining the EGF up-regulated transcriptional
program in MCF7 cells, we found, using Oncomine
Concepts Map analysis (Rhodes et al. 2007), that this
program was correlated with the most highly expressed
genes in ERBB2-positive breast tumors (odds ratio =2, P <
le-2) (Fig. 1D). Conversely the EGF down-regulated genes
in MCF7 cells correlated with the most repressed genes
from ERBB2-positive breast tumors (Supplemental Fig. S2).
Importantly, these associations were also observed for
the ERa-dependent EGF up-regulated or down-regulated
transcriptional program (Fig. 1D; Supplemental Fig. S2). In

Figure 1. ERa is required for growth factor-mediated breast
cancer cell proliferation. (A) Proliferation of MCF7 breast cancer
cells pretreated or not with the full anti-estrogen fulvestrant
(Ful) was measured following EGF stimulation. (*) P = 0.05; (**)
P = 0.01; (***) P = 0.001. (B) Comparison of estrogen-up (E2),
EGF-up, and ERa-dependent EGF up-regulated as well as down-
regulated transcriptional programs in MCF7 breast cancer cells.
(C) mRNA levels derived from RT-qPCR of the ERa-dependent
EGF target genes LIF and ACP6 are presented under EGF
stimulation in MCF7 cells pretreated or not with Ful (100
nM). TFF1 is used as a negative control. (D) Oncomine Concepts
Map analysis (Compendia Biosciences, Inc.; https://www.
oncomine.com) was used to compare the EGF-induced gene
signature in MCF7 breast cancer cells against all published gene
signatures from primary breast tumors. This revealed significant
correlations between EGF-up as well as ERa-dependent EGF-up
gene signatures from MCF7 cells with gene signatures from
poor-outcome (metastasis, recurrence, death, and high grade) as
well as ERBB2-positive breast tumors (P < 1e-2, odds ratio [O.R.]
=1). No significant correlations were revealed between EGF-up
or ERa-dependent EGF-up gene signatures and expression sig-
natures from ERa-positive primary breast tumors. Each green
circle in the left figure corresponds to the gene signature from
primary breast tumors established in an independent study. The
red circle corresponds to the EGF-up gene signature in MCF7
breast cancer cells. The purple circle corresponds to the ERa-
dependent EGF-up gene signature from MCF7 breast cancer
cells. Genes signatures significantly correlated with each other
are linked to each other by a straight line. The right figure
presents an example of how significant correlation between
EGF-up and ERa-dependent EGF-up gene signatures with the
ERBB2-positive breast cancer gene signature were established in
one published study (Richardson et al. 2006). Specifically, the
expression profile established in primary breast tumors from
different patients (vertical axis) is presented for the genes found
in the EGF-up and ERa-dependent EGF-up gene signature from
MCF7 breast cancer cells (horizontal axis).



addition, both the EGF-up and ERa-dependent EGF-up
transcriptional programs were associated with poor-outcome
expression signatures such as relapse, death, metastasis,
and high tumor grade (Fig. 1D). Overall, these new results
reveal the capacity of ERa to elicit stimuli-specific tran-
scriptional programs in breast cancer cells. Furthermore,
the association of the ERa-dependent EGF-up gene expres-
sion signature with ERBB2-positive and poor-outcome
breast tumors suggests a role for ERa in these tumors
and with endocrine therapy-resistant breast cancers de-
pendent on growth factor pathway activation.

Stimulus-specific ERa cistrome leads to unique
transcriptional program

To address whether differential ERa recruitment to the
genome mediates the stimulus-specific transcriptional
responses under growth factor stimulation, we compared
EGF and estrogen-induced ERa cistromes from MCF7
breast cancer cells (Fig. 2A; Supplemental Figs. S3-S5;
Carroll et al. 2005, 2006; Lupien et al. 2008). Although
both estrogen and EGF induced ERa recruitment to shared
sites (Fig. 2A), growth factor pathway activation induced
ERa recruitment to a significant number of unique sites
(Fig. 2A; Supplemental Fig. S5A). In keeping with the
central role of FoxAl in ERa-positive breast cancer,
the Forkhead (FKH) motif was highly enriched in both
the estrogen and EGF-induced ERa cistromes (Fig. 2B). In
fact, >45% of the EGF-unique ERa cistromes overlapped
with the previously characterized FoxAl cistromes in
MCEF7 cells (Supplemental Fig. S6; Lupien et al. 2008).
However, the EGF-unique sites were more highly
enriched for the AP-1 as opposed to estrogen-responsive
element (ERE) motif (Fig. 2B). This suggests that recruit-
ment of ERa following growth factor stimulation is
occurring preferentially through an indirect tethering
mechanism involving AP-1 family members. Chromatin
immunoprecipitation (ChIP}-reChIP assays directed
against ERa and AP-1 demonstrate that these two tran-
scription factors are corecruited upon EGF stimulation to
ERa-binding sites (Fig. 2C). Proliferation assays in the
presence of a dominant-negative AP-1 mutant (TAMG67)
(Dhar et al. 2004) reveal the central role of AP-1 in EGF-
mediated MCF7 breast cancer cell proliferation and in
ERa-dependent EGF target gene regulation (Fig. 2D,E).
Taken together, these results suggest that AP-1 is a critical
partner in ERa signaling favorable to the growth of breast
cancer cells under growth factor stimulation.

Of interest, EGF up-regulated genes were significantly
associated with EGF-unique but not estrogen-unique ERa-
binding sites (Fig. 3A). In fact, the estrogen-unique ERa-
binding sites did not associate with the estrogen-responsive
genes (Fig. 3A). This is in agreement with their poor
overlap with FoxAl-binding regions (Supplemental Fig.
S6), which we previously showed is typical of sites not
driving an estrogen response in breast cancer cells (Lupien
et al. 2008). The role of EGF-unique ERa-binding sites on
the EGF-induced transcriptional response is exemplified by
analyzing ERa recruitment in MCF7 breast cancer cells
near the EGF-responsive TNFRSF21 and LIF genes (Fig.

Stimulus-specific ER« cistromes
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Figure 2. AP-1 is central to the growth factor-induced ERa
cistromes. (A) Genome-wide ChIP-on-chip analysis following
EGF stimulation in MCF7 breast cancer cells reveals 12,550
ERa-binding sites (false discovery rate [FDR] 1%), 31% over-
lapping with the estrogen (E2)-induced ERa cistrome. (B) Se-
quence analysis of EGF-unique (orange), shared (purple), or E2-
unique (green) ERa-binding sites reveals the preferential enrich-
ment of EREs in the center of the E2-unique and shared binding
sites, while the FKH and AP-1 motifs are preferentially enriched
in the center of the shared and EGF-unique ERa cistromes. (C)
ChIP-reChIP assays directed against ERa and AP-1 were per-
formed to reveal the corecruitment of these factors following
EGF stimulation on ERa-binding sites. (*) P = 0.05; (**) P =
0.01; (***) P = 0.001. (D) Proliferation of MCF7 breast cancer
cells transfected with the mock (pcDNA3.1) or AP-1 dominant-
negative (TAMG67) vectors was measured following EGF stimu-
lation (*) P = 0.05; (**) P = 0.01; (***) P = 0.001. (E) mRNA
levels of EGF target genes were measured following EGF
stimulation in MCF7 breast cancer cells transfected with the
mock (pcDNA3.1) or AP-1 dominant-negative (TAMG67) vectors.
(*] P = 0.05; (**) P = 0.0L; (***] P = 0.001.

3B,C; Supplemental Fig. S7A). Indeed, ERa was recruited to
all three regulatory elements associated with TNFRSF21
and LIF following EGF stimulation, while estrogen treat-
ment induced only ERa recruitment to TNFRSF21 enhl
and LIF enh2 (Fig. 3B; Supplemental Fig. S7A). These
results suggest that the stimuli-specific transcriptional
response in a given cell is in part dependent on a unique
ERa cistrome. Furthermore, the increased number of ERa-
binding sites following EGF stimulation near EGF target
genes (Supplemental Fig. S7A) is in agreement with the
notion that genes are more likely regulated when ERa-
binding sites cluster near them (Krum et al. 2008).
Activation of ERa by growth factor pathway stimulation
has been shown to be dependent on its phosphorylation at
specific N-terminal residues, including, predominantly,
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Ser 118 (S118phos) (Kato et al. 1995; Bunone et al. 1996;
Joel et al. 1998; Smith 1998; Kato 2001; Kurokawa and
Arteaga 2003). In contrast, estrogen-mediated activation of
ERa is dependent on an activation domain overlapping its
ligand-binding domain (LBD) located in its C-terminal
region that also leads to S118 phosphorylation (Chen
et al. 2002). We found that recruitment of S118-phos-
phorylated ERa to the genome was detected following
EGF stimulation at EGF-unique as well as EGF-estrogen
shared ERa-binding sites (Supplemental Fig. S7B,C). This
suggests that ERa phosphorylation alone is not sufficient
to explain its stimulus-specific cistromes.

Stimulus-specific ERa coactivation

We demonstrated previously that FoxA1l-binding sites shared
across cells of different lineages can exhibit cell type-specific
activities (Eeckhoute et al. 2009). Here, although a signifi-
cant proportion of the EGF-induced ERa cistrome is
unique, close to 4000 sites are shared with the estrogen-
induced ERa cistrome (Fig. 2A). Furthermore, EGF as well
as estrogen-regulated genes are enriched around these
shared binding sites (Fig. 3A). Hence, this suggests that
different subsets of the shared ERa-binding sites are active
under EGF or estrogen stimulation. We demonstrated
recently that only a fraction of the ERa cistrome undergoes
coactivation and associates with regulated genes following
estrogen stimulation in breast cancer cells (Lupien et al.
2009). Hence, a number of estrogen-induced ERa-binding
events appear to be futile for the establishment of the
estrogen-induced transcriptional response. Furthermore,
coactivators were reported previously to undergo specific
regulation following growth factor stimulation (Font De
Mora and Brown 2000; Lopez et al. 2001). We therefore
addressed the contribution of stimuli-specific coactivation
of the shared ERa-binding sites in the distinct transcrip-
tional response generated in MCF7 breast cancer cells
following EGF or estrogen treatment. In order to address
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Figure 3. Growth factor-induced transcriptional re-
sponse relates to stimuli-specific ERa cistromes. (A)
Correlation between E2, EGF-up, or ERa-dependent
EGF-up target genes with EGF-unique, shared, or E2-
unique ERa-binding sites from MCEF7 breast cancer
cells. The occurrence of ERa-binding sites within 20
kb of the TSS of regulated genes was compared with
that on nonregulated genes. (*) P = 0.05; (**) P = 0.01;
(***) P = 0.001. (B) ChIP-qPCR results against ER«a
performed under EGF or E2 stimulation in MCF7 cells
on the regulatory element associated with the TNFRSF21
and LIF genes. (C) RT-qPCR results measuring expression
of the EGF-specific responsive genes TNFRSF21 and LIF
following 3 h of E2 or EGF stimulation.

coactivation instead of coactivator recruitment, we decided
to measure a post-translational modification induced by
CBP/p300, a well-established ERa coactivator (Hanstein
et al. 1996). This was accomplished by measuring the level
of histone H3 acetylation on Lys 18 (H3K18ac) following
either EGF or estrogen treatment in MCF7 breast cancer
cells. Comparison of H3K18ac levels with those in control
untreated cells revealed the stimuli-specific coactivation of
shared FRa-binding sites (Fig. 4A). Indeed, a fraction of
shared ERa-binding sites associated with strong induction
of H3K18ac following EGF treatment, while a distinct
fraction associated with the estrogen-induced H3K18ac
(Fig. 4A). Importantly, EGF-regulated genes were specifi-
cally enriched near shared ERa-binding sites preferentially
coactivated under that same treatment (Fig. 4B). Conversely,
estrogen-regulated genes were significantly enriched near
shared ERa-binding sites specifically coactivated following
estrogen treatment (Fig. 4B). This was exemplified by the
ACP6 and LIF EGF-regulated genes and the TFF1 and
XBP1 estrogen-regulated genes (Fig. 4C). Both EGF and
estrogen could induce ERa recruitment to the series of
regulatory elements near these genes in MCF7 breast
cancer cells (Fig. 4D; Supplemental Fig. S8); however, their
coactivation was stimuli-specific. Indeed, histone acetyla-
tion (both H3K18ac and H4K12ac) could be induced only
on the ERa-binding sites near ACP6 and LIF following EGF
treatment (Fig. 4D; Supplemental Fig. S8). Similarly, es-
trogen could induce histone acetylation only on TFF1- and
XBP1-associated ERa regulatory elements (Fig. 4D; Supple-
mental Fig. S8). Hence, this suggests that growth factor
pathway activation leads to the coactivation of a different
set of ERa-binding sites shared with other stimuli.

ERa-dependent growth factor response relates
to poor-outcome breast cancers

To address the relevance of growth factor-dependent ERa
cistrome in breast tumors, we established the correlation
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between the genes with growth factor pathway-specific
ERa-binding sites within 20 kb of their transcription
start sites (TSSs) and breast tumor expression signatures
using Oncomine Concepts Map analysis. Significant cor-
relations were revealed between genes associated with
EGF-ERa-specific sites and gene expression signatures
found in poor-outcome (relapse, death, metastasis, and
high tumor grade) as well as ERBB2-positive breast tumors
(Fig. 5A). Genes with estrogen-associated ERa-binding
sites within 20 kb of their TSSs were not associated with
these gene expression signatures, but were associated with
ERa-positive overexpressed gene signatures (Supplemental
Fig. S9). Therefore, the growth factor pathway-specific ERx
cistrome supports its role in the transcriptional response
associated with breast tumors overexpressing ERBB2 and
with poor outcomes.

Discussion

Taken together, our results demonstrate that differential
recruitment and coactivation of ERa is a fundamental
mechanism allowing for stimulus-specific transcriptional
programs (Fig. 5B). Furthermore, as growth factor path-
way activation is commonly associated with the devel-
opment of hormone-refractory breast tumors (Dowsett

2001), our results suggest that ERa can play a fundamen-
tal role in their proliferation and involves the transcrip-
tion factor AP-1. Indeed, hormone-refractory tumors are
typically dependent on the overexpression of the EGFR or
ERBB2 (Benz et al. 1992; Pietras et al. 1995; Kurokawa et al.
2000; Nicholson et al. 2001; Shou et al. 2004). In addition,
a subset of hormone-refractory breast tumors are respon-
sive to the full ERa antagonist fulvestrant (Howell et al.
1995; Martin et al. 2005). Furthermore, fulvestrant results
in clinical benefits in ERBB2-overexpressing advanced
breast cancers (Robertson et al. 2010). Additionally, in
model systems, treatment of breast cancer cells with the
combination of fulvestrant and growth factor pathway
inhibitors more significantly represses growth than either
treatment alone, and prevents the development of endo-
crine resistance (Kunisue et al. 2000; Gee et al. 2003;
Pietras et al. 2003; Macedo et al. 2008). Considering that
ERa- and ERBB2-positive breast cancers are resistant to
endocrine therapies targeting estrogen stimulation of ERq,
such as aromatase inhibitors or selective ER modulators,
our results provide a mechanistic understanding for this
clinical observation. Our results suggest that complete
ERa antagonists that would block both its estrogen- and
growth factor-stimulated activities would overcome this
problem. Hence, the EGF-induced ERa cistrome reveals
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key features to be considered in the development of
therapeutic strategies for hormone-refractory ERa-positive
breast tumors.

Materials and methods

ChIP-on-chip and ChIP-gPCR and ChIP-reChIP-qPCR

Prior to stimulation, MCF7 cells were maintained for 3 d in
phenol red-free medium (Invitrogen) supplemented with 10%
charcoal dextran-treated fetal bovine serum (CDT-FBS) as de-
scribed previously (Lupien et al. 2008). Cells were stimulated
with the EGF (100 ng/mL) for 90 min and crosslinked using 1%
formaldehyde (Kato et al. 1995; Cunliffe et al. 2003). Samples
were sonicated (Fisher Sonic Desmembrator, model 500) and
immunoprecipitated as described previously (Carroll et al. 2005,
2006) using antibodies against ERa (Santa Cruz Biotechnology,
Inc., HC-20; Neomarkers, Ab-10), and H3K18ac (Millipore, 07-
354). Three independent assays were performed. Purified sam-
ples were labeled and hybridized to microarrays (Affymetrix
GeneChip Human Tiling 2.0R array sets). Genome-wide ChIP-
on-Chip analysis was conducted using the model-based analysis
of tiling arrays program (MAT) based on the latest human
genomic sequence (Hgl8) (Johnson et al. 2006). All ChIP-on-chip
data used in this study can be accessed at http://research.dfci.
harvard.edu/brownlab/datasets. ChIP-qPCR experiments were
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Figure 5. Growth factor ERa cistrome relates to poor-
outcome expression signatures in breast tumors. (A)
Oncomine Concepts Map analysis reveals significant
association between genes specifically associated with
an EGF-specific ERa-binding site within 20 kb of their
TSS and gene expression signatures from ERBB2-posi-
tive, poor-outcome (metastasis, recurrence, death, and
high grade), or ERa-positive breast tumors characterized
in eight independent studies (each represented by in-
dividual circles). Only significantly associated gene lists
are linked by a straight line (P = le-4, O.R. = 1.35). The
gene list associated with estrogen (E2)-induced ERa-
binding sites within 20 kb of their TSS does not
significantly associate with any of the gene expression
signatures linked to EGF-ERa-associated genes. The
right panel presents an example of the expression pro-
file for EGF-ERa-associated genes differentially ex-
pressed in ERBB2-positive breast tumors according to
one independent study. Only genes significantly differ-
entially expressed in ERBB2-positive versus -negative
breast tumors are presented (P = 5e-2). (B) Schematic
representation of mechanisms involved in stimuli-
specific transcriptional response acting through a shared
transcription factor. E2 and the growth factor pathway
(GF) induce a unique transcriptional response depen-
dent on the ERa. This involves stimuli-specific ERa
cistromes and coactivation. Current therapies for ERa-
positive primary breast tumors, including aromatase
inhibitors (Al) or selective ERa modulators such as
tamoxifen (T), block only E2-mediated activation of
the receptor. Full antiestrogens (FA) such as fulvestrant
lead to ERa degradation and can therefore block E2- as
well as GF-mediated activation of ERa. Growth factor
inhibitors (GFI) should also block ERa activation fol-
lowing growth factor pathway activation.

sauab pajeoosse
awounsid ny¥3-493

performed as in Carroll et al. (2005). Antibodies against ERa
(Santa Cruz Boitechnology, Inc.,, HC-20; Neomarkers, Ab-10);
ERa S118P (Millipore, 07-487), H3K18ac (Upstate Biotechnol-
ogies, Inc., 07-354), and H4K12ac (Upstate Biotechnologies, Inc.,
07-595) were used for this assay. ChIP-reChIP was performed as
described previously (Ross-Innes et al. 2010). AP-1 was re-ChIPed
using a mix of anti-AP-1 antibodies (Santa Cruz Biotechnology,
Inc., SC-44 and SC-253). Statistically significant differences were
established using a Student’s t-test comparison for unpaired data.
Primer sequences used in this assay are found in Supplemental
Table 1.

Gene expression profiling

Prior to stimulation, MCF7 cells were maintained for 3 d in
phenol red-free medium (Invitrogen) supplemented with 10%
CDT-FBS as described previously (Lupien et al. 2008). Cells were
pretreated with fulvestrant (100 nM; ICI182,780) or control
vehicle for 3 h and then stimulated with the EGF (100 pg/mL)
for 3 h before RNA extraction using Qiagen RNeasy kit (Qiagen).
Triplicate experiments were performed using Affymetrix
U133Plus2.0 expression microarrays. The Robust Multichip Av-
erage (RMA) algorithm was used to analyze the data as described
previously (Carroll et al. 2006), and level of differential expression
for each time point relative to 0 h was established as in Lupien
et al. (2008). Gene lists are found in Supplemental Table 2A-E.
Statistically differentially expressed genes (t-test, P = le-3) were



defined as EGF-up genes. ERa-dependent EGF-up genes corre-
spond to the EGF-up genes that were no longer significantly
expressed when cells were treated with fulvestrant prior to EGF
stimulation (EGF-responsive genes, t-test P = 1e-3, minus fulves-
trant + EGF-responsive genes, t-test, P = le-2). Estrogen-respon-
sive genes were presented previously (Carroll et al. 2006).

Transfection of MCF7 cells

MCEF7 cells were maintained in phenol red-free medium (Invi-
trogen) supplemented with 10% CDT-FBS as described pre-
viously (Lupien et al. 2008) prior to transfection. MCF7 cells
were transfected with the mock (pcDNA3.1) or AP-1 dominant-
negative (TAMG7) vectors (1 wg per well) using LipoD293 DNA
transfection reagent according to the manufacturer’s instruc-
tions (SignaGen). Forty-eight hours after transfection, cells were
stimulated with control (ddH,0) or the EGF (100 ng/mL). For cell
proliferation assays, cell number was determined every 24 h after
EGF addition. For expression assays, RNA was extracted 3 h
following EGF stimulation.

RT-qPCR

Collected RNA was processed for RT-qPCR as described pre-
viously (Krum et al. 2008). Primer sequences used for in RT-
qPCR are listed in Supplemental Table 1.

Sequence analysis and cluster analysis

Genome-wide distribution as well as sequence conservation
analysis of the different clusters derived from the ERa estrogen
versus EGF cistromes was determined using the Cis-Elements
Annotation Systems (CEAS) (Ji et al. 2006). Enriched motifs
within clusters as well as the association of trends in gene
expression with cluster binding sites were identified as described
in Lupien et al. (2008).

Oncomine Concepts Map

We compared our various gene lists (list of genes in each gene list
can be found in Supplemental Table 3A,B) with expression
profiles from breast tumors compiled on Oncomine (Compendia
Bioscience; http://www.oncomine.org). Using the Oncomine
Concepts Map tools, we established significant association
between our gene lists and Oncomine overexpressed or under-
expressed Gene Expression Signature derived from independent
breast cancer studies. Node connection figures can be generated
with Cytoscape (http://www.cytoscape.org). Gene Expression
Signatures used in Figures 1D and 4A and Supplemental Figure
S2 are derived from van de Vijver et al. (2002), Zhao et al.
(2004), Miller et al. (2005), Minn et al. (2005), Wang et al. (2005),
Chin et al. (2006), Ginestier et al. (2006), Hess et al. (2006),
Ivshina et al. (2006), Richardson et al. (2006), Sotiriou et al.
(2006), Yu et al. (2006), Desmedt et al. (2007), Saal et al. (2007),
Boersma et al. (2008), and Finak et al. (2008).
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