Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 18;64(Pt 1):o273. doi: 10.1107/S1600536807065798

5-[(9H-Fluoren-9-yl­idene)meth­yl]furan-2-carbonitrile

Lucia Perašínová a,*, Anita Andicsová b, Daniel Végh b, Jozef Kožíšek a
PMCID: PMC2947777  PMID: 21200838

Abstract

The title compound, C19H11NO, is stabilized by one intra­molecular C—H⋯O hydrogen bond. The compound can be synthesized in good yield (49%), by transformation of functional groups [starting with 5-(fluoren-9-ylidenemeth­yl)furan-2-carbaldehyde]. The flourene and furan ring systems are nearly coplanar, with a dihedral angle of 6.36 (7)°.

Related literature

For a related structure, see: Britten et al. (2001). For related literature, see: Allen (2002); Leclerc (2001).graphic file with name e-64-0o273-scheme1.jpg

Experimental

Crystal data

  • C19H11NO

  • M r = 269.29

  • Monoclinic, Inline graphic

  • a = 15.899 (3) Å

  • b = 5.6109 (11) Å

  • c = 15.664 (3) Å

  • β = 103.69 (3)°

  • V = 1357.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.32 × 0.07 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995) T min = 0.921, T max = 0.987

  • 27628 measured reflections

  • 2746 independent reflections

  • 1524 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.179

  • S = 0.94

  • 2746 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065798/bx2120sup1.cif

e-64-0o273-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065798/bx2120Isup2.hkl

e-64-0o273-Isup2.hkl (134.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1 0.93 2.27 3.034 (3) 140

Acknowledgments

The authors thank the Grant Agency of the Slovak Republic (grant Nos. 1/2449/05, 1/4453/07 and APVT-20-007304), as well as Structural Funds, Interreg IIIA for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

Our synthetic research efforts have been focused to a set of multi-ring monomer systems based on furan and fluorene. Fluorene containing oligomeres are an important class of electroactive and photoactive materials. These compounds possesses exceptional electrooptical properties for applications in polymer light emitting diodes (PLEDs) and nanocomposite materials with advanced anticorrosive properties (Leclerc, 2001).

In the title compound the O1—C15 [1.359 (2) Å] and O1—C18 [1.381 (2) Å] bond lengths, are in a quite good agreement with similar furan compounds in the Cambridge Structural Database (CSD; Version 5.27, 2006 release; Allen, 2002)2-(1,2,3,5-Diselenadiazol-4-yl)-5-cyanofuran (Britten et al., 2001; CSD refcode YIFHUQ) as representative example. The flourene moiety is almost planar with maximun deviation of 0.030 (2)Å for C13. The flourene and furan rings are nearly coplanar with a dihedral angle of 6.36 (7)°. In the crystal structure the molecular packing is stabilized by intramolecular hydrogen bond (Fig. 1).

Experimental

A solution of 5-fluoren-9-ylidenemethyl-furan-2-carbaldehyde (0.0033 mol, 0.91 g), NH2OH.HCl (0.0039 mol, 0.3 g, 1.12 eq.) in N-Methyl-pyrrolidinone (5.5 ml) was heated at 110 - 115°C. Progress of the reaction was followed by TLC and after 8 h the mixture was poured into H2O (100 ml) and extracted with EtOAc (2 x 50 ml). The combined layers EtOAc were dried (Na2SO4) and the solvent was evaporated in vacuo. Crude product could be purified by collumn chromatography using silikagel Merck 60 in toluene as eluent (40% yield) Rf = 0,51 (toluen). M.p.: 167–169°C.

1H NMR (300 MHz, DMSO – d6, p.p.m.): δ= 6.78 (d, 1H, J = 3.6 Hz), 7.15 (s, 1H), 7.31 - 7.29 (m, 1H), 7.45 - 7.33 (m, 4H), 7.72 - 7.66 (m, 3H), 8.51 (d, 1H, J = 7.65 Hz).

13C-NMR (75 MHz, DMSO – d6, p.p.m.) δ= 109.99, 111.77, 114.62, 119.80, 119.87, 120.33, 123.91, 125.74, 125.82, 127.20, 127.69, 129.69, 129.23, 129.88, 135.25, 138.06, 139.37, 139.62, 141.75, 156.19.

IR (KBr, cm-1): 3136 (w), 3120 (vw), 3053(w), 2221(s, νC≡N), 1716(s, ν(C=C)), 1633(m), 1611(m), 1600(m, ν(C=C) aromatic), 1494(s, ν(C=C) aromatic), 1469(w), 1448(s), 1354(m), 1297(m), 1290(m), 1274(m, νas (C—O—C)), 1263(m), 1198(w), 1180(m), 1152(m), 1138(w), 1111(m), 1098(w), 1029(s, νs (C—O—C)), 975(m), 966(m), 941(m), 917(m), 882(m), 871(m), 793(νs, γ(CCH)), 781(νs, γ(CCH)), 772(m, γ(CCH)), 737(m, γ(CCH)), 728(νs, γ(CCH)), 724(νs, γ(CCH)), 668(m), 645(m), 625(m), 580(w), 561(w), 524(w), 511(w), 473(m), 455(m), 442(vw), 432(vw), 401(m)

Refinement

H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The numbering scheme of 5-((9H-fluoren-9-ylidene) methyl) furan-2-carbonitrile. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen-bond interactions are indicated by dashed lines.

Crystal data

C19H11NO F000 = 560
Mr = 269.29 Dx = 1.317 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7057 reflections
a = 15.899 (3) Å θ = 3.1–29.1º
b = 5.6109 (11) Å µ = 0.08 mm1
c = 15.664 (3) Å T = 293 K
β = 103.69 (3)º Block, yellow
V = 1357.6 (5) Å3 0.32 × 0.07 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Gemini R CCD diffractometer 2746 independent reflections
Radiation source: fine-focus sealed tube 1524 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.043
T = 293 K θmax = 26.4º
Rotation method data acquisition using ω and phi scans θmin = 4.2º
Absorption correction: analytical(Clark & Reid, 1995) h = −19→19
Tmin = 0.921, Tmax = 0.987 k = −7→7
27628 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062 H-atom parameters constrained
wR(F2) = 0.179   w = 1/[σ2(Fo2) + (0.121P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max < 0.001
2746 reflections Δρmax = 0.24 e Å3
190 parameters Δρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2007)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.17033 (14) 0.6172 (3) 0.88196 (13) 0.0544 (5)
C2 0.23065 (15) 0.6471 (4) 0.96102 (15) 0.0680 (6)
H2A 0.2259 0.7739 0.9978 0.082*
C3 0.29834 (16) 0.4852 (4) 0.98462 (15) 0.0737 (7)
H3A 0.3385 0.5046 1.0380 0.088*
C4 0.30765 (16) 0.2974 (4) 0.93141 (16) 0.0741 (7)
H4A 0.3537 0.1919 0.9484 0.089*
C5 0.24829 (15) 0.2672 (4) 0.85303 (15) 0.0651 (6)
H5A 0.2536 0.1400 0.8166 0.078*
C6 0.17991 (13) 0.4280 (3) 0.82809 (13) 0.0538 (5)
C7 0.10829 (13) 0.4398 (3) 0.75032 (13) 0.0521 (5)
C8 0.08974 (15) 0.2931 (4) 0.67850 (14) 0.0602 (6)
H8A 0.1248 0.1626 0.6747 0.072*
C9 0.01799 (15) 0.3426 (4) 0.61169 (14) 0.0660 (6)
H9A 0.0044 0.2436 0.5627 0.079*
C10 −0.03397 (15) 0.5382 (4) 0.61677 (14) 0.0686 (6)
H10A −0.0818 0.5685 0.5709 0.082*
C11 −0.01619 (14) 0.6875 (4) 0.68787 (13) 0.0605 (6)
H11A −0.0512 0.8188 0.6904 0.073*
C12 0.05522 (13) 0.6391 (3) 0.75621 (12) 0.0518 (5)
C13 0.09090 (13) 0.7573 (3) 0.84099 (13) 0.0532 (5)
C14 0.06414 (15) 0.9425 (3) 0.88210 (14) 0.0599 (6)
H14A 0.1013 0.9725 0.9365 0.072*
C15 −0.00743 (14) 1.1057 (3) 0.86312 (14) 0.0577 (6)
C16 −0.02863 (18) 1.2789 (4) 0.91496 (15) 0.0737 (7)
H16A 0.0017 1.3139 0.9720 0.088*
C17 −0.10323 (17) 1.3964 (4) 0.86887 (16) 0.0732 (7)
H17A −0.1314 1.5227 0.8886 0.088*
C18 −0.12551 (15) 1.2896 (4) 0.79073 (16) 0.0647 (6)
C19 −0.19420 (18) 1.3303 (4) 0.7165 (2) 0.0743 (7)
N1 −0.25096 (16) 1.3660 (4) 0.65689 (17) 0.0953 (7)
O1 −0.06784 (9) 1.1091 (2) 0.78554 (9) 0.0624 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0575 (13) 0.0541 (11) 0.0489 (12) −0.0072 (10) 0.0075 (10) 0.0027 (9)
C2 0.0730 (15) 0.0716 (13) 0.0545 (13) −0.0084 (12) 0.0054 (12) −0.0022 (11)
C3 0.0701 (15) 0.0820 (15) 0.0601 (14) −0.0014 (13) −0.0021 (12) 0.0087 (13)
C4 0.0673 (16) 0.0750 (15) 0.0735 (16) 0.0064 (12) 0.0036 (13) 0.0144 (13)
C5 0.0609 (14) 0.0672 (13) 0.0650 (14) 0.0063 (11) 0.0102 (12) 0.0039 (10)
C6 0.0540 (12) 0.0550 (11) 0.0524 (12) −0.0026 (9) 0.0126 (10) 0.0015 (9)
C7 0.0565 (12) 0.0515 (11) 0.0487 (11) −0.0040 (9) 0.0130 (10) 0.0011 (9)
C8 0.0649 (14) 0.0590 (12) 0.0572 (13) −0.0001 (10) 0.0156 (11) −0.0064 (10)
C9 0.0745 (15) 0.0676 (13) 0.0534 (13) −0.0045 (12) 0.0101 (12) −0.0116 (10)
C10 0.0710 (15) 0.0762 (14) 0.0521 (13) 0.0013 (12) 0.0015 (11) −0.0044 (11)
C11 0.0613 (14) 0.0601 (12) 0.0542 (13) 0.0058 (10) 0.0020 (11) −0.0042 (10)
C12 0.0540 (12) 0.0518 (11) 0.0485 (11) −0.0052 (9) 0.0099 (10) 0.0009 (9)
C13 0.0578 (13) 0.0519 (10) 0.0478 (11) −0.0054 (9) 0.0083 (10) −0.0021 (9)
C14 0.0685 (14) 0.0564 (12) 0.0536 (12) −0.0046 (10) 0.0119 (11) −0.0030 (9)
C15 0.0656 (14) 0.0555 (11) 0.0526 (12) −0.0046 (10) 0.0154 (11) −0.0029 (9)
C16 0.0938 (19) 0.0651 (13) 0.0619 (14) 0.0079 (13) 0.0179 (13) −0.0055 (11)
C17 0.0869 (18) 0.0621 (13) 0.0746 (16) 0.0074 (12) 0.0272 (14) −0.0099 (11)
C18 0.0620 (14) 0.0586 (12) 0.0759 (16) 0.0016 (10) 0.0211 (13) −0.0007 (11)
C19 0.0684 (17) 0.0674 (14) 0.0895 (19) 0.0048 (12) 0.0233 (15) −0.0074 (13)
N1 0.0808 (16) 0.0981 (16) 0.0986 (18) 0.0118 (13) 0.0047 (15) −0.0131 (13)
O1 0.0625 (10) 0.0616 (9) 0.0637 (10) 0.0017 (7) 0.0162 (8) −0.0079 (7)

Geometric parameters (Å, °)

C1—C2 1.386 (3) C10—C11 1.368 (3)
C1—C6 1.386 (3) C10—H10A 0.9300
C1—C13 1.497 (3) C11—C12 1.390 (3)
C2—C3 1.390 (3) C11—H11A 0.9300
C2—H2A 0.9300 C12—C13 1.473 (3)
C3—C4 1.373 (3) C13—C14 1.344 (3)
C3—H3A 0.9300 C14—C15 1.436 (3)
C4—C5 1.370 (3) C14—H14A 0.9300
C4—H4A 0.9300 C15—O1 1.359 (2)
C5—C6 1.396 (3) C15—C16 1.359 (3)
C5—H5A 0.9300 C16—C17 1.399 (3)
C6—C7 1.459 (3) C16—H16A 0.9300
C7—C8 1.369 (3) C17—C18 1.333 (3)
C7—C12 1.417 (3) C17—H17A 0.9300
C8—C9 1.381 (3) C18—O1 1.381 (2)
C8—H8A 0.9300 C18—C19 1.413 (4)
C9—C10 1.387 (3) C19—N1 1.152 (3)
C9—H9A 0.9300
C2—C1—C6 119.0 (2) C11—C10—H10A 119.3
C2—C1—C13 130.90 (19) C9—C10—H10A 119.3
C6—C1—C13 110.13 (18) C10—C11—C12 118.7 (2)
C1—C2—C3 119.1 (2) C10—C11—H11A 120.6
C1—C2—H2A 120.4 C12—C11—H11A 120.6
C3—C2—H2A 120.4 C11—C12—C7 119.62 (18)
C4—C3—C2 121.9 (2) C11—C12—C13 132.57 (18)
C4—C3—H3A 119.1 C7—C12—C13 107.81 (17)
C2—C3—H3A 119.1 C14—C13—C12 133.0 (2)
C5—C4—C3 119.2 (2) C14—C13—C1 122.10 (19)
C5—C4—H4A 120.4 C12—C13—C1 104.83 (17)
C3—C4—H4A 120.4 C13—C14—C15 136.0 (2)
C4—C5—C6 119.8 (2) C13—C14—H14A 112.0
C4—C5—H5A 120.1 C15—C14—H14A 112.0
C6—C5—H5A 120.1 O1—C15—C16 107.54 (19)
C1—C6—C5 121.0 (2) O1—C15—C14 123.50 (18)
C1—C6—C7 107.29 (17) C16—C15—C14 129.0 (2)
C5—C6—C7 131.70 (19) C15—C16—C17 109.2 (2)
C8—C7—C12 120.82 (19) C15—C16—H16A 125.4
C8—C7—C6 129.27 (19) C17—C16—H16A 125.4
C12—C7—C6 109.90 (17) C18—C17—C16 105.7 (2)
C7—C8—C9 118.7 (2) C18—C17—H17A 127.1
C7—C8—H8A 120.6 C16—C17—H17A 127.1
C9—C8—H8A 120.6 C17—C18—O1 110.3 (2)
C8—C9—C10 120.78 (19) C17—C18—C19 132.0 (2)
C8—C9—H9A 119.6 O1—C18—C19 117.7 (2)
C10—C9—H9A 119.6 N1—C19—C18 178.7 (3)
C11—C10—C9 121.3 (2) C15—O1—C18 107.23 (16)
C6—C1—C2—C3 −0.8 (3) C8—C7—C12—C13 178.99 (18)
C13—C1—C2—C3 178.4 (2) C6—C7—C12—C13 −1.8 (2)
C1—C2—C3—C4 0.6 (3) C11—C12—C13—C14 3.9 (4)
C2—C3—C4—C5 −0.5 (4) C7—C12—C13—C14 −175.5 (2)
C3—C4—C5—C6 0.5 (3) C11—C12—C13—C1 −178.4 (2)
C2—C1—C6—C5 0.9 (3) C7—C12—C13—C1 2.1 (2)
C13—C1—C6—C5 −178.45 (18) C2—C1—C13—C14 −3.0 (3)
C2—C1—C6—C7 −179.96 (18) C6—C1—C13—C14 176.26 (18)
C13—C1—C6—C7 0.7 (2) C2—C1—C13—C12 179.0 (2)
C4—C5—C6—C1 −0.8 (3) C6—C1—C13—C12 −1.7 (2)
C4—C5—C6—C7 −179.6 (2) C12—C13—C14—C15 −1.0 (4)
C1—C6—C7—C8 179.8 (2) C1—C13—C14—C15 −178.4 (2)
C5—C6—C7—C8 −1.2 (4) C13—C14—C15—O1 −4.3 (4)
C1—C6—C7—C12 0.7 (2) C13—C14—C15—C16 175.6 (2)
C5—C6—C7—C12 179.7 (2) O1—C15—C16—C17 −0.8 (3)
C12—C7—C8—C9 −0.1 (3) C14—C15—C16—C17 179.3 (2)
C6—C7—C8—C9 −179.15 (19) C15—C16—C17—C18 0.5 (3)
C7—C8—C9—C10 0.5 (3) C16—C17—C18—O1 0.0 (3)
C8—C9—C10—C11 −0.2 (3) C16—C17—C18—C19 −179.5 (2)
C9—C10—C11—C12 −0.5 (3) C16—C15—O1—C18 0.8 (2)
C10—C11—C12—C7 0.8 (3) C14—C15—O1—C18 −179.31 (19)
C10—C11—C12—C13 −178.6 (2) C17—C18—O1—C15 −0.5 (2)
C8—C7—C12—C11 −0.5 (3) C19—C18—O1—C15 179.08 (19)
C6—C7—C12—C11 178.63 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11A···O1 0.93 2.27 3.034 (3) 140

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2120).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  3. Brandenburg, K. (1998). DIAMOND University of Bonn, Germany.
  4. Britten, J. F., Clements, O. P., Cordes, A. W., Haddon, R. C., Oakley, R. T. & Richardson, J. F. (2001). Inorg. Chem.40, 6820–6824. [DOI] [PubMed]
  5. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  6. Leclerc, M. (2001). J. Polym. Sci. Part A Polym. Chem.39, 2867–2873.
  7. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  8. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065798/bx2120sup1.cif

e-64-0o273-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065798/bx2120Isup2.hkl

e-64-0o273-Isup2.hkl (134.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES