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Abstract
The analysis of complex mixtures presents a difficult challenge even for modern analytical
techniques, and the ability to discriminate among closely similar such mixtures often remains
problematic. Coffee provides a readily available archetype of such highly multicomponent systems.
The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee
aromas is reported. The color changes of the sensor array were used as a digital representation of the
array response and analyzed with standard statistical methods, including principal component
analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has
exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance.
In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification
by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting
of green coffee beans were readily observed and distinguishable with a resolution better than 10 °C
and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex
systems analysis in real-world applications and provide a novel method for discrimination among
closely similar complex mixtures.

The evaluation and discrimination of complex mixtures remains an important challenge to
chemical analysis. The most common strategy for analysis of mixtures is a complete
component-by-component approach, i.e., fractionation of the mixture and characterization of
the individual components. This generally implies the use of hyphenated techniques, i.e., the
sequential combination of a separation technique (e.g., a chromatography) with single or
multiple spectroscopic techniques (e.g., mass spectrometry).1,2 While gas chromatography/
mass spectrometry (GC/MS) is the most popular of all hyphenated techniques, it often proves
cumbersome for accurate discrimination among similar complex mixtures.2,3 Moreover, even
for high-performance separation techniques, the number of compounds that can be
differentiated is disappointingly small relative to the extremely large number of components
in truly complex mixtures.3,4

For complex mixtures with hundreds of components, there are often multiple analytical goals:
in addition to the occasional requirement for a full component-by-component analysis, more
common needs involve comparisons against a standard, discrimination of subtle differences
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among similar mixtures, or changes in the mixture as a function of time or conditions. For these
other needs, one may also consider a complementary sensor-array approach.5 An alternative
method to discriminate among complex mixtures is to treat the mixture as a single analyte and
to collect a combined response simultaneously on an array of sensors, in analogy with our own
biological sensors, i.e, an electronic nose or tongue. Compared with traditional analytical
technologies, this approach can be less expensive and easier to operate, making it potentially
attractive for many industrial applications. Electronic noses5-16 generally rely on multiple,
cross-reactive sensors that yield a response based either on changes in physical properties (e.g.,
mass, volume, conductivity) or reaction with a surface (i.e., analyte oxidation on heated metal
oxides). Specific examples of the sensors used in prior electronic noses include conductive
polymers and polymer composites, multiple polymers doped with single fluorescent dye,
polymer coated surface acoustic wave (SAW) devices, and metal oxide sensors. These types
of sensors are often successful in discriminating among different single unrelated compounds.
A common limitation in prior electronic nose technology, however, is a general lack of
chemical specificity: this makes differentiation among closely related compounds problematic
and makes it especially difficult for prior electronic nose technology to discriminate among
highly similar complex mixtures.

In recent years, we have developed a rather different approach using a colorimetric sensor
array. The design of such an array17-24 is based on strong dye–analyte interactions, which is
quite different from other electronic nose technologies that generally rely on weak, nonspecific
intermolecular interactions. Optical arrays have also found other applications for sensing in
aqueous solutions of anions, organic compounds, amino acids, beverages, proteins, and even
whole cancer cells.25-35

Owing to their high specificity and low cost, colorimetric sensor arrays are suitable for both
laboratory and industrial applications in the analyses of complex mixtures. To prove this point,
we sought a carefully controlled, highly reproducible complex mixture, and for these studies,
we have examined commercially available coffees as an archetype of such complex analytes.
Coffee is one of the most consumed beverages in the world, and remarkably, the primary
industrial method of quality control for coffee remains the use of human smell and taste, in
spite of the inherent nonquantitative and often subjective limitations that such “organoleptic”
analysis implies.36 The volatiles that make up the aroma of any coffee, of course, play an
important role in sensory analyses and can be considered a “fingerprint” of the product.37,38

While considerable efforts have been made to chemically characterize the aroma-related
substances in coffee,37-43 reliable discrimination among different coffees remains a difficult
task still under very active investigation.44-47 Roasted coffee beans contain more than 1000
discrete chemical compounds,39-43 which makes the identification and discrimination of
different coffees extremely difficult by traditional chemical analysis. Furthermore, the roasting
of coffee beans is highly dynamic, and the processes that develop the flavor and aroma of coffee
are strongly time and temperature dependent.39-43,48,49

We report, here, a colorimetric sensor array method for analyzing the aroma of a variety of
coffees both in whole bean and ground form. We observe excellent discrimination among 10
different brands of commercial coffee. In addition, we are also able to distinguish the
differences among coffee beans roasted at varying temperatures and lengths of time.

EXPERIMENTAL SECTION
Materials and Methods

Ten commercially available roasted coffees (six Columbian coffees, Eight O’Clock Columbian
Roast, Folgers Columbian Roast, Folgers Grande Supreme Decaf, Maxwell House Original
Roast, Maxwell House Original Roast Decaf, Starbucks Columbian Roast, and four other
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coffees, Starbucks Espresso Roast, Café Mai Traditional, Starbucks Sumatra Roast, and Eight
O’Clock Hazel Nut) were purchased from local supermarkets and stored in the freezer
compartment of a conventional kitchen refrigerator. For roasting experiments, Huila
Columbian green coffee beans were used (Columbia Street Roastery, Champaign, IL); the
Huila Departamento is located in southwest Columbia.

The composition of the colorimetric sensor array used was described previously; the specific
nanoporous pigments used in the array are given in the Supporting Information, Table S1. For
printing, the formulations were loaded into a 36-hole Teflon ink well. Sensor arrays were
printed using an array of 36 floating slotted pins (which delivered approximately 130 nL each)
by dipping into the ink well and transferring to the polyethylene terephthalate (PET) film. Once
printed, the arrays were aged under a slow nitrogen flow for at least 3 days to ensure removal
of solvent vapors. The shelf life of the arrays is excellent with no significant changes in array
response after 3 months.24

A Masterflex peristaltic pump (#77912–00; pump head #77390–00) was connected with Teflon
tubing to a 100 mL vial containing 400 mg of the coffee sample (cf. Supporting Information,
Figure S1). Two three-way valves were used to close the system, allowing the volatiles to
saturate the air within the tubing. In order to reproducibly expose the array to an air stream
fully saturated with coffee volatiles, the pump was allowed to run for 30 min at a rate of ~22
mL/min. After which, the array was exposed to the volatile compounds for 2 min.

Digital images of the array before and after 2 min exposure to each coffee sample were acquired
on an Epson Perfection V200 Photo flatbed scanner. All the analyses of coffee samples were
conducted in quintuplet trials. For each trial, a color change profile was obtained by subtracting
the “before” image from the “after” image using Photoshop or a customized package, ChemEye
(ChemSensing, Inc.). The center two-thirds of each spot was averaged to avoid subtraction
artifacts at the edges of the spots.

The color change profiles were compiled into a database library of 108-dimensional vectors
(36 red, green, and blue color values) and represent a unique fingerprint for each specific
sample. Standard chemometric analyses, including both principal component analysis (PCA)
and hierarchical cluster analysis (HCA),50-54 were performed on the database library using the
multi-variance statistical package (MVSP, Kovach Computing Services) software. For all
HCA, minimum variance (i.e., Ward’s method) was used for classification.

Roasting of Coffee Beans
The laboratory roasting process was conducted using the following minor modification of a
standard literature method.46-48 An aliquot of ~15 g of green coffee beans were spread out
over a Petri dish, and the green coffee beans were roasted at varying temperatures ranging from
180 ± 1 °C to 240 ± 1 °C for 15 min (Fisher Scientific Isotemp Oven #825F). In separate
experiments, green coffee beans were roasted at 220 °C for lengths of time varying from 1 min
to 3 h. After each roasting, the beans were then allowed to cool inside a sealed glass container
and then stored in the freezer compartment of a standard kitchen refrigerator.

RESULTS AND DISCUSSION
Evaluation and Discrimination of Complex Mixture

The complexity of analytical problems posed by real-world samples remains a challenge for
chemists. The number of separate compounds in foods, beverages, or even whole cells is
sufficiently large as to overwhelm even the use of hyphenated techniques. GC/MS3 has
emerged as the most versatile and widely used technology for the detection of complex mixtures
(e.g., coffee,37 perfume,55 fragrance,56 petroleum,3 etc.). While the power of GC/ MS is

Suslick et al. Page 3

Anal Chem. Author manuscript; available in PMC 2010 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



undeniable, even it has limitations for the accurate discrimination among similar complex
mixtures, especially if there is a wide dynamic range in the concentrations of important
components. GC/MS is only sensitive to the low parts per million concentration range; below
that, preconcentration is essential, and the use of solid-phase microextraction (SPME) has been
invaluable for chemical analysis of low concentration components in simple vapor mixtures.
38,57,58 Unfortunately, SPME inherently gives highly uneven preconcentration of different
components (e.g., due to differences in the solid-phase absorption of polar vs nonpolar
compounds) so that the analysis does not necessarily reflect the distribution of components in
the original complex mixture.

Biological sensory systems show unmatched ability to discriminate among complex mixtures,
as we each know from personal experience. The alternative of electronic nose technologies is,
therefore, a potentially attractive technique for analysis of complex mixtures because they treat
the mixture as a single analyte and generate a combined response. While electronic nose
techniques generally do not give component by component information, they have the potential
to provide a fast and easy method to tell one mixture from another, which has particular appeal
for industrial QC/QA applications.5-16 Past electronic nose technology, however, has not
always fulfilled this promise in large part because the chemical specificity (and hence the
dimensionality of the sensor data) has been often highly limited.17,20

Overview of Coffee and Its Roasting
The main species of coffee are Coffea arabica and Coffea canephora (often also called Coffea
robusta). Robusta beans yield a product that has substantial body, an earthy aroma, and an
elevated caffeine content (2.4–5.8 wt %). Arabica beans yield a product that has an intense
aroma that can be reminiscent of flowers, fruit, honey, chocolate, caramel, or toasted bread
and never have caffeine content higher than 1.5 wt %. Arabica beans account for two-thirds of
the world’s total coffee production and are generally considered to produce a higher quality
cup of coffee.39 The chemistry of coffee aroma is highly complex and is still not completely
understood. The main families of chemical compounds, which decompose into the volatiles
during roasting, are alkaloids (e.g., trigonelline), chlorogenic acids, carbohydrates, free sugars
(e.g., sucrose), lipids, and proteins. There are more than 300 volatile compounds identified in
unroasted, green coffee alone.43 During the roasting process, the composition of coffee beans
is drastically changed and there are more than 1000 volatile compounds that make up the aroma
of roasted coffee.39-43 A coffee’s aroma will vary as a function of changes in soil, microclimate,
altitude, types and species of bean used, the roasting process, and the preparation of the coffee.
These various conditions affect the concentration and composition of the various aroma
volatiles, which include37-43 carboxylic acids, alcohols, aldehydes, alkanes, alkenes,
aromatics, esters, furans, ketones, lactones, oxazoles, phenols, pyridines, pyrazines, pyrroles,
thiazoles, and thiophenes.

A variety of processes occur during the roasting of green coffee beans: there is loss of moisture
(~8 wt %), loss of solid mass (mostly CO2, roughly 6–10 wt %), changes in physical
morphology (swelling, puffing, and introduction of significant internal porosity), and there are
a wide variety of chemical reactions, including Strecker degradations (i.e., the reaction of
amino acids with carbonyls to yield ketones and aldehydes and release of CO2), Maillard
reactions (i.e., nonenzymatic browning reactions of peptides with sugars to form nitrogen
heterocycles), fragmentation of carbohydrates (yielding volatile acids), and caramelization
(i.e., saccharide polymerization through dehydration). As coffee beans are heating, water vapor
and gases evolve, and around 190 to 210 °C, the beans undergo the “First Crack”, a fracturing
that is accompanied by a loud sound similar to the popping of popcorn; at this point, the coffee
beans have a brown color. Upon further heating to about 220 to 240 °C, a more shallow
snapping noise is heard, which is referred to as the “Second Crack” at which point the bean
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structure and its woody cellulose matrix begin to fracture and the bean color is dark brown to
black.

Design of a Colorimetric Sensor Array
The design of our colorimetric sensor arrays17-24 is based on the strong dye–analyte
interactions, which is quite different from other electronic nose technologies that generally rely
on weak, nonspecific intermolecular interactions, primarily van der Waals and physical
adsorption interactions. More specifically, we have chosen chemically responsive dyes in four
classes (as illustrated in the Supporting Information, Figure S2): (1) metal ion containing dyes
(e.g., metalloporphyrins) that respond to Lewis basicity (i.e., electron pair donation, metal ion
ligation), (2) pH indicators that respond to Brønsted acidity/basicity (i.e., proton acidity and
hydrogen bonding), (3) dyes with large permanent dipoles (e.g., vapochromic or
solvatochromic dyes) that respond to local polarity, and (4) metal salts that respond to redox
reactions.

Importantly, our most recent sensing array methodology used in this work is based on
nanoporous pigments23,24 created by the immobilization of chemically responsive dyes in
organically modified siloxanes (ormosils59,60). Porous sol–gel ormosils provide an excellent
matrix for colorants due to high surface area, good stability over a wide range of pH, relative
inertness in many environments, and transparency in the UV–visible spectrum. In addition, the
physical and chemical properties of the matrix (e.g., hydrophobicity, porosity) can be modified
by simply changing the sol–gel constituents. The nanoporous pigments produced by
immobilizing colorants in ormosils significantly improves the array’s stability and shelf life.
23,24,59,60 Furthermore, these sol–gel formulations can be modified to make an ink capable of
printing onto ordinary polymer flat surfaces.24 We have also found that the porous matrix
serves as a preconcentrator and consequently improves the sensitivity of the sensor.24

Application of a Colorimetric Sensor Array to Coffee Aroma
While there have been limited attempts to use prior electronic nose technology for analysis of
coffee,61-67 the ability to discriminate among a large number of similar coffees and to monitor
the effects of roasting conditions has not been previously reported. In order to explore the
ability of our colorimetric sensor arrays to discriminate among highly similar complex
mixtures, we have examined the response of the array to a diverse set of 10 commercial coffees.
To explore a wide variety of coffee characteristics, decaffeinated coffees, espressos, and
various blends were included. In addition, we have used the colorimetric sensor array to
examine the effects of roasting of green coffee beans, both as a function of roasting temperature
for a fixed time and as a function of time at a fixed temperature.

The printed sensor arrays were digitally imaged with an ordinary flatbed scanner prior to and
shortly after exposure to air saturated with the volatiles from ground coffee. A difference map
(red minus red, green minus green, blue minus blue) was generated for each analysis, and the
resulting color difference profiles (i.e., 108-dimensional vectors made up of the changes in red,
green, and blue values of the 36 nanoporous pigments) represent a unique “molecular
fingerprint” for each coffee aroma. As shown in Figures 1 and 2, these color difference profiles
are able to provide robust discrimination among 10 different brands of commercial coffee.
While the overall patterns in the difference maps are all similar (Figure 1), close examination
shows highly reproducible differences between brands. Based on the responses of the
individual nanoporous pigment components of our colorimetric sensor array, the response of
the array to coffee aroma is due at least in part to acidic components (e.g., formic, acetic,
propionic acid, etc.).
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For quantitative comparison of the difference maps, we can define a 108-dimensional vector
(i.e., 36 changes in red, green, and blue values for the after-exposure image compared to the
before-exposure image for our 6 × 6 array of nanoporous pigments). Each experimental trial
is represented by its 108-dimensional color change profile, and these vectors may be compared
by standard chemometric techniques. The complete database is available in the Supporting
Information and consists of the 108-dimensional color change profiles for each of the quintuplet
trials for each of the 10 coffee samples plus a control.

A standard chemometric analysis, hierarchical cluster analysis (HCA),50-54 was utilized to
analyze this database. Colorimetric sensor array data are highly dispersed across a large number
of dimensions, and therefore, their analysis requires a classification algorithm that uses the full
dimensionality of the data. HCA is the simplest statistical approach and bases its classification
on the Euclidean distance between data points (i.e., color change vectors) in their full
dimensionality. The advantage of HCA compared to other model-dependent statistical analysis
(e.g., linear discriminant analysis) is that it makes no assumptions about the classification of
results that one is trying to establish. Hierarchical clustering generates a dendrogram that
quantitatively compares the Euclidean distances among all the experimental trials, as shown
in Figure 2. Remarkably, in quintuplet trials, all 10 coffee samples and a control were accurately
identified against one another with no error or misclassifications out of 55 cases. An important
lesson from such a clustering analysis is that once a library of array responses is created, the
similarity of a new analyte (e.g., a new coffee or other complex mixture) can be quantitatively
compared to the existing library entries: e.g., the colorimetric sensor array can tell us what the
unknown is “like”.

Another standard chemometric technique, principal component analysis (PCA), can be used
to probe the dimensionality of sensor array data; PCA creates linear combinations of the array’s
responses (i.e., 108 changes in RGB values) so as to maximize the total variance among the
data into as few dimensions as possible. PCA for most other electronic nose technology is
dominated by only two or three independent dimensions: in fact, there is often a single dominant
dimension that accounts for >90% of the total discrimination and roughly corresponds to sensor
hydrophobicity. This limited dimensionality (or “dispersion”) means that very little of the total
diversity of chemical properties is being probed in traditional electronic nose technology,
which is the inherent result of relying primarily on van der Waals interactions (e.g.,
physisorption onto metal oxide surfaces or into polymer films) for molecular recognition.
Because of this highly limited dispersion, the data obtained with traditional electronic nose
technologies is typically plotted against the two most important PCA dimensions. Such a two-
dimensional plot can discriminate among substantially different analytes, but only because the
dimensionality of data from most electronic nose technologies is extremely limited. Two- or
even three-dimensional PCA plots are not suitable, however, for colorimetric sensor array data
because the discrimination among analytes is spread over many dimensions. The advantage of
high dimensional data, however, is that it greatly broadens ones ability to discriminate among
closely related analytes or among very similar complex mixtures.

In contrast to other electronic nose technology, the colorimetric sensor array is not limited to
van der Waals interactions but rather employs a diverse range of chemical interactions that
probes a broad volume of chemical-properties space. Our 6 × 6 array has 108 total possible
dimensions (i.e., red, green, and blue color changes for 36 dyes), but there is of course
significant redundancy. Nonetheless, the PCA of the colorimetric sensor array data on 10
different roasted coffees plus controls reveals an extremely high level of dispersion. As shown
in Figure 3, using 55 trials with centered, standardized color difference vectors, 18 dimensions
are required to define 90% of the total variance and 25 dimensions are required to define for
95%. Standardization of the channels (i.e., ΔRGB values) implies that all of the dyes are of
equal importance in contributing to the analysis. Alternatively, without standardization, one
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implies that the dyes with the largest inherent color changes are the most discriminatory (which
is generally a less true assumption); without standardization, the PCA still requires 7
dimensions for 90% of total variance and 13 dimensions for 95%. Regardless, the colorimetric
sensor arrays demonstrate extremely high dimensionality in the analysis of coffee aroma, and
it is that high dimensionality that permits facile discrimination among such similar complex
mixtures as the 10 brands of coffee.

Colorimetric Sensor Array Response vs Coffee Bean Roasting
The colorimetric sensor array is also able to identify the effects of various roasting conditions.
Most of the aroma of coffee is developed during roasting, and the composition of the coffee
aroma will vary with the processing conditions. Moisture will be released from the interior of
the bean, as well as carbon dioxide causing the beans to expand rapidly. The external color of
the beans will change from light to dark brown as roasting temperature or time increases.
Numerous chemical components will decompose or undergo complex chemical reactions. To
probe the ability of the colorimetric sensor array to discriminate among complex mixtures
directly relevant to quality control processes, we examined the array response to coffee beans
before and after being roasted at six different temperatures (180, 200, 210, 220, 230, and 240
°C) for 15 min each, as seen in Figure 4. The colorimetric sensor array was successfully able
to identify and discriminate among these seven complex analytes; in quintuplicate trials, there
were no errors or misclassifications in the HCA of the six various roasting temperatures and
the unroasted (green) coffee beans, as shown in Figure 5. One may conclude that these sensor
arrays have a resolution of roasting temperature that is better than 10 °C for the roasting of
coffee beans. The clustering within the HCA illustrates the trend seen in the concentration of
the volatiles. There is relatively little difference between unroasted beans and 15 min of roasting
at 180 °C. Most of the roasting process occurs between 200 and 240 °C, which contains the
so-called first and second “crack” of the roasting process. The HCA clustering shows that the
samples roasted over that temperature range are easily distinguishable but still relatively
similar. After the second crack (i.e., above 220 °C), further decomposition occurs, and larger
differences in the composition of the volatiles are observed.

In addition to various roasting temperatures for a constant time, the effects of various roasting
times at a constant temperature (220 °C) were also investigated, as shown in Figure 6. As
expected, the response of the array to the coffee aroma increases with increasing roasting time.
The increase in response over time is due in large part to the decomposition of volatiles to
carboxylic acids. After very long roasting times (>3 h), the array response decreases,
presumably due to increasing loss of volatiles and to further decomposition of initially formed
volatiles. For quintuplicate trials, there were again no errors or misclassifications in the HCA
for discrimination of coffee aroma at different roasting times among 45 trials (Figure 7). One
may conclude that these sensor arrays have a resolution of roasting time that is better than 5
min. In addition, the clustering within the HCA showed an interesting finer trend: the unroasted
beans were separate but closest to the lightly roasted beans (from 1 to 10 min), which were
separate from the medium roasting (15 min) and well separated from the heavily roasted beans
(45 min to 3 h).

CONCLUSION
In summary, we have successfully created a disposable colorimetric sensor array of nanoporous
pigments that is capable of discriminating among extremely similar complex mixtures, in this
case specifically, different coffee aromas. This sensor array technique does not, of course, give
information about individual components and so this approach is complementary to, rather
than competitive with, more traditional chemical analysis. If one requires specific knowledge
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about the concentrations of specific analytes within a complex mixture, then no sensor array
technique will be appropriate.

For other analytical goals with complex mixtures, however, sensor arrays are a complementary
approach. The colorimetric sensor array has proved extremely effective for comparisons
against a standard, for discrimination of subtle differences among similar mixtures and for
monitoring changes in the mixture as a function of time or conditions. Unique “odor
fingerprints” are easily obtainable for any coffee sample from the color changes of an array of
36 chemically responsive colorants. Hierarchical cluster analysis (which is free of any
predetermined statistical model) demonstrated flawless discrimination among 10 different
brands of commercial coffees. In addition, we were also successful in facile discrimination of
coffee aromas as a function of the roasting of green coffee beans under varying roasting times
and under varying roasting temperatures. Principal component analysis reveals that the
colorimetric sensor array has an extremely high dimensionality, which contributes to the ability
of the array to discriminate among highly similar complex mixtures. This high dimensionality
provides the promise of future applications to the correlation of objective colorimetric sensor
array responses to human sensory evaluation: it is likely that appropriate linear combinations
of the 108 channels of our sensor array data can be found to match sensory descriptors of flavor
or aroma, which may prove useful for the objective evaluation of issues of quality and consumer
preference.

In addition, we have recently developed a functional prototype hand-held device that makes
use of an inexpensive white LED (light-emitting diode) and an ordinary CMOS
(complementary metal-oxide semiconductor) camera, as shown in the Supporting Information,
Figure S3. Combined with a low dead-volume cartridge (Supporting Information, Figure S4),
this hand-held device can provide a rapid and highly sensitive method for portable monitoring.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Color change profiles after 2 min of array exposure to the saturated vapors from 10
representative commercial coffees. While the overall patterns are all similar, a close
examination shows highly reproducible differences between brands. A full digital database is
provided in the Supporting Information, Table S2. For display purposes, the color range of
these difference maps are expanded from 4 to 8 bits per color (RGB range of 4–19 expanded
to 0–255).
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Figure 2.
Hierarchical cluster analysis (HCA) for 10 commercial coffees and a control. All experiments
were run in quintuplet trials; no confusions or errors in classification were observed in 55 trials,
as shown. The HCA used minimum variance (i.e., “Ward’s Method”) for clustering.
Abbreviations: Maxwell House Original Roast, MHOR; Folgers Grande Supreme Decaf,
FGSD; Eight O’Clock Hazel Nut, EOHN; Maxwell House Original Roast Decaf, MHORD;
Starbucks Sumatra Roast, SSR; Starbucks Columbian Roast, SCR; Starbucks Espresso Roast,
SER; Folgers Columbian Roast, FCR; Café Mai Traditional, CMT; Eight O’Clock Columbian
Roast, EOCR; the number indicates nth trial. Control = no coffee present.
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Figure 3.
Scree plot of the principal components from PCA of 55 trials using 10 coffees and a control.
The colorimetric sensor array has an extremely high level of dispersion: for centered,
standardized color difference vectors, 18 dimensions are required to define 90% of the total
variance and 25 dimensions are required to define 95%.
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Figure 4.
Color change profiles after 2 min of array exposure to Columbian Huila green coffee beans
roasted for 15 min at 180, 200, 210, 220, 230, and 240 °C. A full digital database is provided
in the Supporting Information, Table S2. For display purposes, the color range of these
difference maps are expanded from 4 to 8 bits per color (RGB range of 4–19 expanded to 0–
255).
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Figure 5.
Hierarchical cluster analysis (HCA) for Columbian Huila green coffee beans roasted for 15
min at temperatures ranging from 180 to 240 °C. All experiments were run in quintuplet trials;
no confusions or errors in classification were observed in 40 trials, as shown. NR = green
coffee, not roasted; the number indicates nth trial. Control = no coffee present.
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Figure 6.
Color change profiles after 2 min of array exposure to Columbian Huila green coffee beans
roasted at 220 °C for times ranging from 1 min to 3 h. A full digital database is provided in the
Supporting Information, Table S2. For display purposes, the color range of these difference
maps are expanded from 4 to 8 bits per color (RGB range of 4–19 expanded to 0–255).
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Figure 7.
Hierarchical cluster analysis (HCA) for Columbian Huila green coffee beans roasted at 220 °
C for times ranging from 1 min to 3 h. All experiments were run in quintuplet trials; no
confusions or errors in classification were observed in 45 trials, as shown. NR = green coffee,
not roasted; the number indicates nth trial. Control = no coffee present.
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