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Often, resistance to drugs is an obstacle to a successful treatment
of cancer. In spite of the importance of the problem, the actual
mechanisms that control the evolution of drug resistance are not
fully understood. Many attempts to study drug resistance have
been made in the mathematical modeling literature. Clearly, in order
to understand drug resistance, it is imperative to have a good model
of the underlying dynamics of cancer cells. One of the main ingre-
dients that has been recently introduced into the rapidly growing
pool of mathematical cancer models is stem cells. Surprisingly, this
all-so-important subset of cells has not been fully integrated into
existing mathematical models of drug resistance. In this work
we incorporate the various possible ways in which a stem cell
may divide into the study of drug resistance. We derive a previously
undescribed estimate of the probability of developing drug resis-
tance by the time a tumor is detected and calculate the expected
number of resistant cancer stem cells at the time of tumor detection.
To demonstrate the significance of this approach, we combine our
previously undescribed mathematical estimates with clinical data
that are taken from a recent six-year follow-up of patients receiving
imatinib for the first-line treatment of chronic myelogenous leuke-
mia. Based on our analysis we conclude that leukemia stem cells
must tend to renew symmetrically as opposed to their healthy
counterparts that predominantly divide asymmetrically.

branching processes | symmetric renewal | cancer stem cells

Drug resistance is a fundamental problem in the treatment of
cancer, strongly limiting the effects of the drugs used in
therapy, and therefore considerably reducing the probability of
treatment success and survival of the patient. There are multiple
mechanisms by which drug resistance may develop. It appears to
be both a stochastic phenomenon caused by random genetic
mutations, as well as a drug-induced one (in which using the drug
increases the chances of developing resistance to it). There is
clear experimental evidence that at least in the case of certain
drugs, known as “mutagenic drugs,” the drug can induce resis-
tance to itself (see refs. 1 and 2).

In this work we focus on genetic mutations, mutations that are
genetic changes that occur during cell division. The best example
is that of “point mutations,” i.e., mutations that cause the repla-
cement of a single base nucleotide or pair, with another nucleo-
tide or pair in the DNA or RNA. Such an event may modify the
cellular phenotype, making any of its daughter cells resistant to
the drug. Other examples of genetic mutations are frameshift and
missense mutations.

The cause for genetic mutations is not completely clear. Is it a
mainly random phenomenon, or rather a drug-induced, directed
one, perhaps both? Such a fundamental question has been the
focus of the Nobel Prize winning work of Luria and Delbriick
(3). Using fluctuation analysis, Luria and Delbriick showed that
drug resistance in in vitro bacterial cultures seems to have an im-
portant random component. Many further in vitro experiments
with tumor cell lines confirmed this result.

In the following, we focus only on resistance due to genetic
mutations and, because of the results of Luria and Delbriick,
we assume that such resistance is caused by a random mutation
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mechanism. Furthermore, we consider the case of absolute resis-
tance, i.e., resistance that is not relative to the dosage of the drug
administered. A cancer cell is either resistant to the drug or not,
once the dosage of the drug is prescribed.

Drug resistance has been the focus of many studies in the
mathematical modeling community. The first model of drug
resistance in cancer due to point mutations is the celebrated
model by Goldie and Coldman (see refs. 4 and 5). This work was
followed by extensive literature (see, for example, refs. 6-9, and
the references therein).

In a recent work (8), Iwasa et al. have shown that the prob-
ability that resistance to a drug develops by the detection time
is given by

MuL L ) i

PZI—CXp<— D lnL—D

Here, M is the total number of cancer cells found at detection; u
is the probability of mutation per cell division, and L and D are
the birth and death rates, respectively. This result was obtained
using Markov chains and continuous-time branching processes.
Furthermore, in the case where Mu < 1, the expected number
of resistant cancer cells found at detection, conditional on the
presence of resistance, is

InM

Y (L/D-1)In[L/(L -D)]’

(2]

It is important to emphasize that the study in ref. 8 is based on
assuming that cancer cells are a homogeneous population, which
is why M is taken to be the total number of cells. Yet, recent ex-
perimental evidence suggests that tumors should not be thought
of as homogeneous. Indeed, it appears that tissues are main-
tained by a small subset of slowly replicating cells. These so-called
“stem cells” have the capacity of both self-renewal and differen-
tiation into more mature cells. Stem cells are very long-lived,
while mature, fully differentiated cells have a variable life span,
which, depending on the tissue of origin, can typically range from
a few days to several months.

From the point of view of drug resistance, the heterogeneity
hypothesis implies that only the cells that have the capacity for
self-renewal can propagate drug resistance. Therefore, these cells
should be taken into account in any model of drug resistance in
cancer. In fact, these are the only cells that should be taken into
account.
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The rest of the paper is devoted to deriving, presenting, and
applying the results we obtained while calculating the probability
of developing resistance to drugs by the time a tumor is diagnosed,
this time taking into account the heterogeneity of the population.

To demonstrate the significance of our result, we focus on
chronic myelogenous leukemia (CML) for which a recent study
has been published on a six-year follow-up of patients that receive
imatinib as the first line of treatment (10). The clinical study pro-
vides us with a concrete estimate of the percentage of patients
that shift from the chronic phase to the acute phase (or enter into
a blast crisis). We use this estimate as an upper bound on the
number of patients that have developed resistance to the drug
by the time CML was diagnosed. By integrating the mathematical
estimates with clinical and experimental data, we are able to
infer the preferred mode of division of the hematopoietic cancer
stem cells, predicting a large shift from asymmetric division to
symmetric renewal. Such a division is required in order to explain
the clinical data.

Results
We assume that a stem cell may divide in the following three
ways:

1. asymmetric division: a stem cell divides into one progenitor cell
and one stem cell (with probability a)

2. symmetric differentiation: a stem cell divides into two progeni-
tor cells (with probability b)

3. symmetric renewal: a stem cell divides into two stem cells (with
probability c = 1 —a —b)

All three possibilities have been experimentally observed (see
refs. 11-14). Generally, these three modes of division coexist.
Growth curves for different choices of parameters are illustrated
in Fig. 1. We recall that the division rate is denoted by L, the
death rate by D, and the mutation probability per cell division
by u. When a tumor is detected, the number of cancer stem cells
is assumed to be M. Note that this M is different from the M that
was used in Eq. 1, where it denoted the total number of cancer
cells. An example of the time course of the growth of the drug-
resistant population versus the sensitive one is shown in Fig. 2.
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Fig. 1. Growth curves for the stem cell population. (A) Predominantly asym-
metric division: a=0.75 and b=0.01. (B) Predominantly symmetric
differentiation: a = 0.2 and b = 0.6. (C) Predominantly symmetric renewal:
a=0.2 and b=0.05. In all plots D=0.2 and L = 2.
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First, we compute the expected number of mutations occurring
when there are exactly x wild-type (drug-sensitive) cancer stem
cells in the population. This expected number of mutations, which
we denote by m,, is given by

u(l-4->)
(1—a-2b)-D/L’

m, = [3]
Note that m, is independent of x, a result that is not surprising
because when the population is large there are many more cells
that may divide but also substantially less time for them to do so
before the population increases to x + 1. A result similar to Eq. 3
was obtained using Markov chains in ref. 8.

Our next result is the calculation of the probability, Py, that at
the time of detection, there are cancer stem cells that developed
resistance to the drug. If the death rate D is assumed to be zero,
then this probability is given by

Pr=1 M 1-3-b 4
R = ‘exp{‘” (mﬂ [4]

Otherwise, when D # 0, we obtain

Po—1—exp|oum (L7270 (! [5]
rR=1=ep =M\, ") c™a=c) |

where C = 715 ‘We note that Eq. 5 is an extension of Eq. 1

+

1—a—b
(which can be recovered by setting a = b = 0, and setting M as
the total population size).

Given Eq. 5, we calculate the expected value of the number of
resistant cells that are found at detection, assuming that
resistance has indeed developed by the time of detection. This
conditional expectation of resistant cells is given by

. L u(1-4-b) \'S'Mm
E(T|resistance) %}TR ((1 —a_ 2129) —D/L) Z x
x=1

M [ u(l-%-b)
~Pr ((1 —da —2129) —D/L) In(M).16]

Eq. 6 is obtained noting that E(T|resistance) = E(T)/Pr =
G'(1)/Pg. Here, Py is given by Eq. 5, and G is the generating
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Fig. 2. An example of the growth of drug-resistant cancer stem cells R(t)
versus the sensitive ones S(t). The parameters are a =0.2, b=0.05,
D=0.2L=2andu=4-10".
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function of the random variable 7', which is the total number of
resistant cancer stem cells that are present when the cancer is
detected.

Having obtained these results, we demonstrate their signifi-
cance by considering a concrete problem. Our goal is to study
the division pattern of hematopoietic leukemic stem cells in
CML. This can be accomplished by estimating the probabilities
a, b, and ¢ in CML.

It is estimated that in CML, the leukemic stem cell population
at early detection is of the order of M = 2.5 - 103 cells (15, 16). It
is also estimated that the probability of a random point-mutation
conferring resistance to imatinib isu ~ 4 - 1077 (16). The turnover
rate D/L is estimated to be in the range 0.1-0.5 (17). The model
parameters are summarized in Table 1.

A recent clinical study (10) follows CML patients that have
been treated with imatinib over a period of 6 years. It is shown
that no more than 15% of the patients stop responding to the
drug at some point during this time period. Interestingly, after
5 years, patients seem to stop relapsing, at least during the time
frame of the study. Because it has been recognized that imatinib
has a positive effect on eliminating differentiated leukemic cells,
the cases of observed relapses must be traced back to the sub-
population of leukemic stem cells that developed resistance to
imatinib. This implies that the probability that cancer stem cells
mutated and developed resistance to imatinib by the time of
detection cannot exceed 15%, a figure that can be used as an
upper bound on the probability of developing resistance by the
time the disease is detected, Pg.

Using these estimated parameters, we use Eq. 5 to fit the para-
meters a and b; c is then given by 1 —a — b. In Fig. 3 we plot the
range of a and b for which Pz < 0.15. In this case we set the turn-
over rate D/L = 0.1. Clearly, the figure indicates that in order
for P < 0.15, a and b must be relatively small. For example,
if a =0.87 and b = 0.01, then Pz = 0.71. However, if a =0.2
and b = 0.05, then Pr = 0.12, which is in the desirable range.
Similar results are obtained for other values of the turnover rate.
The larger D/L is, the smaller the admissible region is.

This result is not surprising for the probability of a symmetric
differentiation, b, which is typically estimated to be very small.
However, the estimated value of the asymmetric division prob-
ability a is interesting, because it has been observed that for
healthy hematopoietic stem cells, a should be close to 1, and
generally above 0.9 (18, 19).

These estimates suggest that leukemic hematopoietic stem
cells should have a much lower than normal tendency to divide
asymmetrically (i.e., a low a), hence making a substantial shift
toward an increased symmetric renewal.

Discussion

The main result of Iwasa et al. (8) is given by Eq. 1. How should
this equation be understood given actual estimates of the para-
meters? We recall that in Eq. 1, the parameter M is the total
number of cells in the tumor. At present, an approximation of
the lower limit of clinical detection of solid tumors is M ~ 10°;
see, e.g., ref. 20, page 31). For the mutation rate, a common
estimate is on the order of u > 1073 (see refs. 21 and 22). Hence,
according to the results of Iwasa et al., because (L/D)In[L/(L —
D)]>1 if D <L, the probability that resistance develops by
the time a tumor is detected must always be greater than .9999.

Table 1. Model parameters

Parameter Description Estimate
M Cancer stem cell population at detection 2.5-10°
u Mutation rate 4.1077
D/L Turnover rate 0.1-0.5
16768 | www.pnas.org/cgi/doi/10.1073/pnas.1007726107
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Fig. 3. The range of a and b for which Pg <0.15. The turnover rate is
D/L =0.5.

Another quantity of interest is the expected number of resis-
tant cancer cells found at detection Y, assuming that resistance
developed. An estimation of Y is given in ref. 8 by Eq. 2. Unfor-
tunately Eq. 2 is valid only when Mu < 1, which is not the case
when M = 10° and u = 10~%. Hence, we estimate Y for M = 10°
and u = 1078, which according to Eq. 2 is Y > 13. Consequently,
for M = 10° we could expect thousands of mutated, drug-resis-
tant cancer cells. Such a result implies that resistance should
always be present in large numbers at the detection time. There-
fore, clones that are generated by such resistant cells are invul-
nerable to the treatment. They will expand, and no patient will be
able to survive the disease in the long run. This result is in contra-
diction with clinical data. It turns out that, e.g., among CML
patients that are treated with imatinib in the chronic phase, only
in less than 15% of the patients the drug is unable to keep the
disease under control, which results in a relapse (10, 16). The
apparent contradiction between the mathematical analysis and
the experimental data suggests that something may be missing
from the modeling assumptions of Iwasa et al. Alternatively,
the experimental estimates of the mutation rates might have
to be adjusted.

This dichotomy has been addressed in recent works, e.g.,
refs. 16 and 23, in which the modeling assumptions include a het-
erogeneous tumor population, comprising from stem cells and
other cells that are at various stages of maturation. For example,
Michor et al. focus only on the stem cell compartment and ac-
cordingly use a much smaller value as an estimate for M (16).
Hence, they effectively think of M as the number of cancer stem
cells found at cancer detection, and not as the total number of
cells in the tumor. As already mentioned in Results, it is estimated
that in the case of CML in the early chronic phase, the stem cell
population at detection is approximately 2.5 - 10° cells, and the
mutation probability u is approximately 4 - 10~7. With such values
in mind, Michor et al. obtain an estimate (using Eq. 1 with
D/L = 0.5) for the probability of resistance mutations present
at the time of diagnosis. This probability is calculated in ref. 16
to be approximately 13%, an estimate that is in agreement with
the data (16, Table 1). Unfortunately, the methodology of ref. 16
is based on applying the results of ref. 8 to small cell populations
in order to consider only stem cells. The problem with this ap-
proach is that Eq. 1 was derived assuming a homogeneous tumor
population. It is not valid for describing the dynamics of stem cells
and should not be applied directly to heterogeneous populations
as done in ref. 16.

Tomasetti and Levy
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In contrast, the model that we study in this work is based on the
“stem cell hypothesis.” It incorporates the different ways a stem
cell may divide and studies the dynamics that emerges due to
these division paths. We emphasize once again that from the
point of view of drug resistance, the heterogeneity in the tumor
cell population implies that it is only the stem-like long-lived cells,
those cells that have the ability of self-renewal, that propagate the
drug resistance. Any model of drug resistance in cancer must
therefore take into account the cancer stem cells. Cancer cells
that do not have self-renewal capabilities cannot propagate the
resistance in the long run and should be disregarded.

In order to address the heterogeneity of the tumor cell popu-
lation we chose to simplify the mathematical tools. In modeling
the wild-type cancer stem cell population we replace the Markov
chains that were used in ref. 8 by ordinary differential equations.
Our approach amounts to using a deterministic model that con-
siders the averaged behavior of such a population. Intriguingly,
notwithstanding such simplification, our approach provides iden-
tical results to those found in Iwasa et al. if we also assume a
homogeneous cell population. This can be immediately obtained
by settinga = 0, and b = 0 in Eqs. 4-6. Thus, in the context of the
specific questions we are studying, nothing is lost by using a
partially deterministic approach. On the contrary, our simplified
approach enables us to extend the results of ref. 8.

The prediction of a large shift from asymmetric division to
symmetric renewal of hematopoietic stem cells in CML is an
important example of what the mathematical modeling of drug
resistance can tell us about cancer. Our estimates were based
on a resistance probability of approximately 15%. If instead
we use a less conservative estimate that the probability of resis-
tance is less than 10% (as could be interpreted from the data in
ref. 10), then the conclusion of our study is that cancer stem cells
must generally renew symmetrically.

In order to discuss the confidence level at which the conclu-
sions were obtained, we make the following observations on
the sensitivity to the parameter estimates and on certain exten-
sions of the model.

It is important to comment on the sensitivity of the result on
the shift from asymmetric division to symmetric renewal to the
parameter estimates. It is easy to check that reasonable variations
in the turnover rate do not affect our conclusion. With respect to
the dependence on the estimates of M and u, it seems unlikely
that the estimate for M, the cancer stem cell population size pre-
sent at the time of detection, would be much smaller than what is
estimated in the literature (15). Rather, it appears reasonable to
assume that for many patients, M will actually be larger (depend-
ing on the detection time). In this case, there must be an even
more substantial shift toward symmetric renewal. The same is
true for the mutation probability u. If u is larger than the esti-
mated value, then there will have to be an even stronger shift
to symmetric renewal in order to explain the clinical data.

Our calculations did not include the possibility of recruitment
of progenitor cells (and their offsprings) into the cancer stem cell
compartment. It is possible that progenitor cells whose normal
function has been perturbed will acquire stem-like self-renewal
properties (24). However, we note that if such a recruitment takes
place, this would only strengthen our result. The total amount of
drug resistance that is found at detection and is due to the ori-
ginal compartment of cancer stem cells would have to be smaller
than our original estimates due to the recruitment of progenitors.
In this case, the probability of asymmetric division would be even
smaller than our current estimates. Our model also did not take
into account gene amplification, a cellular process that amplifies
the phenotype that the gene confers on the cell, preventing the
absorption of the drug by the cell. However, a similar reasoning to
the case of recruitment of progenitor cells shows that the
inclusion of this kind of resistance would again only strengthen
our conclusions.

Tomasetti and Levy

Our results do not contradict the somewhat sparse experimen-
tal data. On the contrary, there is some experimental evidence to
support the hypothesis that cancer stem cells change their mode
of division. For example, it has been observed that when the
mechanism regulating asymmetric divisions is disrupted, Droso-
phila neuroblasts begin dividing symmetrically and form tumors
(25). It is also known that some gene products can both induce
symmetric cell divisions and function as oncogenes in mammalian
cells (25, 26). Thus there seems to be a link between symmetric
divisions and cancer progression.

It could be of great interest if our model could be tested
experimentally, at least in vitro, on cancer cell lines. Ideally, a
direct experimental method would require us to isolate cancer
stem cells and healthy stem cells and compare the growth of both
stem cell populations.

From a methodological perspective, the mathematical analysis
allows us to use indirect information about the mechanisms that
control the dynamics of the disease evolution to reach specific
conclusions that go beyond the present reach of experiments.
Although we have applied our mathematical results to the avail-
able clinical data on CML, the approach is not limited to this spe-
cific disease, and we expect similar conclusions about the division
of cancer stem cells in other types of cancer as well. Specifically,
our model should apply to any cancer for which stem cells are
known to be the driving force of the progression of the disease
and for which point mutations are a source of drug resistance.

Materials and Methods

We derive the mathematical model using ordinary differential equations
(ODEs) for the wild-type cancer population and branching processes for
the mutant cells. In Iwasa et al. (8) both the wild-type and the mutant cancer
populations are modeled as stochastic processes. Our deterministic approach
in modeling the total number of drug-sensitive CSCs is equivalent to consi-
dering their averaged behavior. For completeness we derive in S/ Text the
corresponding model in which both populations are represented by branch-
ing processes. The standard theory for these multitype branching processes
can be found in refs. 27 and 28 and especially in the book by Mode (29). Thus
the methodology we used in the paper may be seen as a simplified version of
the stochastic approach, and in this sense it has the advantage of easily
allowing modifications. For example, an exponential cancer growth may
be a good assumption only when the cancer population is small. To replace
it by any other growth model, while straightforward with the ODEs
approach, would be a somewhat more complex undertaking when dealing
directly with stochastic methods. Furthermore, we note that arguably our
modeling methodology may be seen as more general, in the sense that
at least for the wild-type population we make assumptions only on their
averaged behavior (no Markov property, for example). Finally, we note that
if the cells are assumed to be a homogeneous population, then our results,
obtained through a partially deterministic methodology, match exactly the
results of Durrett et al. obtained by the completely stochastic approach (30).

Ordinary Differential Equations. As was already mentioned in Results, we
consider the different ways in which a stem cell may divide (shown in Fig. 3):
(i) asymmetric division in which a stem cell divides into one progenitor cell
and one stem cell, (i) symmetric differentiation in which a stem cell divides
into two progenitor cells, and (iii)) symmetric renewal in which a stem cell
divides into two stem cells. All three types of division have been observed
experimentally (see refs. 11-14). We can therefore assign probabilities to
the three division paths of stem cells as follows: We denote by a the prob-
ability of an asymmetric division, by b the probability of a symmetric differ-
entiation, and by c¢=1-a-b the probability of a faithful symmetric
renewal. Clearly, 0 <abc<1anda+b+c=1.

Because we are interested in the dynamics of drug resistance in cancer,
from now on we focus on cancer stem cells. In addition we focus on the case
of asingle drug therapy. We denote the total number of wild-type, i.e., drug-
sensitive, cancer stem cells at time t by S(t). This population is assumed to
grow exponentially. The second group of cells, the mutated cancer stem cells
that developed resistance to the drug, are denoted by R(t). The dynamics
of the averaged behavior of the two cell populations can be described using
the following system:
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SU) = |L(1—u)(1—a—b) - <D+bL +%)}S(t),

2

R(t) = [L(1 —a —b) — (D + bL)JR(¢) +uL (1 - g - b)S(t). [7]

We assume that at time t = 0, we start with a single wild-type cancer stem
cell, and no mutated stem cells. Consequently, the initial conditions for Eq. 7
are given by 5(0) = 1 and R(0) = 0. As previously stated, u is the mutation
probability per cell division, whereas L and D are the birth and death rates,
respectively. To be precise, from now on, we refer to L as the division rate,
because a division may not result in the birth of a stem cell. In addition,
because the mutation probability is usually extremely small, system 7 is writ-
ten under the assumption that mutations may occur in the division process
only to one of the two daughter cells. This is a standard assumption; see,
e.g., refs. 7 and 8.

In the first equation in Eq. 7, the size of the wild-type cell population can
increase only as a result of a symmetric renewal, where no mutation occurs.
The probability of such an event is (1 — u)(1 —a — b). Multiplying this prob-
ability by the division rate L provides the birth rate of 5(t). On the other hand,
a decrease in the wild-type population will occur in the following cases: a cell
death (D), a symmetric differentiation into two progenitors (bL), and if there
is an asymmetric division (aL) in which the stem cell daughter is the mutant.
The stem cell daughter will be the mutant with probability u/2, because u is
the probability of mutations, and in this scenario only one of the two
daughter cells is a stem cell.

For the second equation in Eq. 7, the size of the mutant population can
once again increase only due to a symmetric renewal. Only that this time, we
assume that mutated cells can no longer mutate back to the wild-type state
(due the rarity of this event for point mutations). A decrease in the mutant
population will be the result of cell death and of a symmetric differentiation
into two progenitors. The last term of the equation is the wild-type cells that
mutated. They come either from a symmetric renewal, uL(1 —a - b), or from
an asymmetric division in which a mutation hits the daughter stem cell,
ula/2. The sum of these two terms is uL(1—a/2 - b).

Given that u is very small, it can be eliminated from the first equation.
However, it cannot be removed from the second equation because S(t) is
much larger than R(t). System 7 can be thus reduced to the following:

S'(t) = [L(1 —a —2b) = D|S(t).

R(t) = [L(1 —a — 2b) —= DIR(t) + uL <1 - % - b)S(t). 8]

We make the following remarks:

1. Because we are modeling a cancer stem cell population that is assumed
to grow from one cell to a large number, it must be that [L(1 —a — 2b)—
D] > 0, which implies that (1 —a —2b) > 0 and therefore (1-3-b) > 0.

2. Because the mutant population is always considered to be very small, we
are actually not going to use the equation for R(t) from Eq. 8. This
equation will be replaced with a stochastic approach. It is still instructive
to keep this equation as part of system 8 because it can be used to under-
stand the meaning of the final formulas.

3. In this model we assume that both the wild-type and the resistant stem
cells have the same division and death rates and the same division events’
probabilities a, b. This assumption is made in order to simplify the
presentation and can be easily modified to model situations where the
mutant cancer cells R(t) have a relative fitness advantage or disadvantage
with respect to the wild-type cancer cells S(t) (as done in ref. 8).

4. Because of the simplicity of our approach, the assumption regarding the
exponential growth of cancer can be easily replaced by any other growth
model. Such a modification is more complex when dealing directly with
stochastic methods.

5. We assume that mutations happen only in one direction, i.e., wild-type
cells mutate and become resistant but not vice versa, and thus (1 —u)
is not multiplying L in the second equation. This seems to be a reasonable
assumption in the case in which the focus is on point-mutation resistance
and not on resistance that is caused by gene amplification. Indeed, the
probability of reversal of a point mutation is much smaller than the
probability of the point mutation itself and can therefore be neglected.

6. By modeling the cancer stem cell population growth in a deterministic
way instead of as a random process, we lose the sensitivity to events
that can happen for small populations, such as a population going

16770 | www.pnas.org/cgi/doi/10.1073/pnas.1007726107

extinct. Our focus in this study is on modeling the case where the
wild-type cancer stem cell population reaches a detection size, M, and on
its impact on drug resistance. Such a deterministic approach cannot
provide the probability distribution of how long it takes for the tumor
to reach detection size. However, our study provides the average beha-
vior of such time. Interestingly, the formulas that we obtain using our
mixed approach are in exact agreement with the results that were de-
rived with the full-blown stochastic approach [in the simple case where
only symmetric renewal is considered, the only case that was previously
studied with stochastic methods (8)].

The Expected Number of Mutations when the Size of the Wild-Type Population
Is x. At this stage we can use system 8 to estimate the expected number
of mutations, m,, that occur once the wild-type population is of size x.

Consider the first equation of system 8. As first step, we are interested in
finding the expected lengths of time for which the total number of wild-type
cancer stem cells S(t) is equal to 1,2,..,M— 1. Here, M is the number of
wild-type cancer stem cells at detection time. Note that, given the very small
probability of a mutation, M is also a good approximation of the total num-
ber of cancer stem cells found at detection, i.e., both wild-type and mutated
ones. Because the solution of Eq. 8 for 5(t) is given by

S(t) = exp{[L(1 —a — 2b) — D]}, [9]

then the "average” time at which the wild-type cancer stem cell population
reaches size x, defined as t,), is given by
In(x)

YT Li—a-2)-D 101

Thus the average length of time for which the population will consist of
exactly x stem cells is

) P In(x+1)—-In(x)  In(1+1/x)
(x+1) (X)7L(1_a_zb)_DiL(l—a—ﬂ))—D'

(11]

Hence, the “expected number” of mutations occurring when there are
exactly x wild-type cancer stem cells, m,, is given by

B a In(1+ 1/x)

This expression is obtained by multiplying the number of wild-type stem cells
present at that time, x, by the mutation rate uL(1 -4 - b), and by the length
of time for which the total stem cell population equals x.

Finally, note that ¢:==xIn(1+ 1/x) ~ 1 (e.9., ¢ ~.9 for x = 4 and ¢ ~ .98 for
x = 20). Hence, because we are ultimately interested in large values of x,
Eqg. 12 can be reduced to

~uL(1-5-b) 13
T —a-20)-D [13]

Note that if the cancer stem cell population is growing, L(1—a—2b)—D
must be greater than zero and hence the expression in Eq. 13 is well defined.

Branching Processes. We are ultimately interested in calculating the prob-
ability of developing drug resistance by the time a tumor is detected. At
this stage of the analysis, it is proper to take advantage of stochastic
methods.

Assume that the tumor population grows exponentially starting from
one wild-type stem cell. Let r, be the actual number of mutations produced
when there are x = 1,2,...,M — 1 wild-type cancer stem cells. Assume that all
the random variables, r,, follow a Poisson distribution with mean m,, given
by Eq. 13 and that they are independent. Note that the Poisson distribution
seems to be a good choice given the very small probability of a mutation u.

Consider the clone initiated by a mutant cancer stem cell that originated
when there were x wild-type cancer stem cells. Assume that the population
size of such clone follows a continuous-time branching process where in each
time step of length At, a stem cell divides with probability LAt and dies with
probability DAt.
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Let g, (&) be the generating function of such clone for which the original
mutation happened when 5(t) = x. To calculate this generating function we
proceed as follows:

To simplify the notation we let L = L(1—a—b) and D = Lb + D. Then by
the Kolmogorov backward equation we have

E[R0|R(0) = 1] = LAE[ERO|R(0) = 1
+ DAE[ERO|R(0) = 0]

+[1 = (L +D)AJE[ERO|R(0) = 1],  [14]
because E[¢R®|R(0) = 2] = E[ER®|R(0) = 1]?, by independence. The time t = 0
in Eq. 14 is the time of occurrence of the original mutation that generates the
clone, i.e., when the wild-type population is of size x. The time t in Eq. 14
measures time starting from this t = 0.

Let g(&t) = E[ERD|R(0) = 1]. As At — 0 we get

Qe ig+D-(L

= +Dg. [15]
Solving Eq. 15 with the initial condition g(&0) = & gives
—1)(D/L)et-Dr — (¢~ D/L
g = G- DO - =D/ o

(&= 1)eDr — (¢ -D/L)

Because M ~ x exp[(Z - [))t,v,_x], where t),_, is the time it takes for the cancer
stem cells to go from x to M, we obtain the generating function

(E-D(D/L)M/x) - (¢-D/L)
(€=1)M/x) = (E-D/L)

8:(6) =g(Ex) ~ [17]

We now denote by T the total number of drug-resistant cancer stem cells
that are present when the cancer is detected, i.e., when the total stem cell
population is M. We let G7(¢) be its generating function. To calculate Gr(¢),
we let K, be the total amount of resistant cells found at detection whose
originating mutation occurred when there were x sensitive cancer stem
cells. Then
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Note that, on line four of Eq. 18, we used the fact that g,(£)" is the gen-
erating function of all the r, clones for which the original mutations hap-
pened when 5(t) = x, that is the product of r, generating functions g, (¢).

The Probability of Having Resistant Cancer Stem Cells at the Time of Detection.
By Egs. 18, 13, and 17, we have that the probability of having resistant cancer
stem cells at the time of detection is

M-1
Pr=1-Gy(0) = 1= exp = 3,1 ~5,(0))

_ u(l-5-b & 1-C
= 1—exp(—(1_a_22)_D/L;1—C(x/M))’ [19]

=1

where C = L(?_‘i;fb). By replacing the summation with an integral, and with a

change of variable, we get

uM(1-2-b) [1 1
Pr~1-— - 2 2
wet-en( -G /ol—u’?f—ﬁ’,,)ydy)’ (201

from which we obtain the desired expressions.
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