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To survive changes in climate, successful species shift their geo-
graphic ranges to remain in suitable habitats. For parasites and
other highly specialized species, distributional changes not only are
dictated by climate but can also be engineered by their hosts. The
extent of host control on parasite range expansion is revealed
through comparisons of host and parasite migration and demo-
graphic histories. However, understanding the codistributional
history of entire forest communities is complicated by challenges
in synthesizing datasets from multiple interacting species of differ-
ing datatypes. Here we integrate genetic and fossil pollen datasets
from a host–parasite pair; specifically, the population structure of
the parasitic plant (Epifagus virginiana) was comparedwith both its
host (Fagus grandifolia) genetic patterns and abundance data from
the paleopollen record of the last 21,000 y. Through tests of phylo-
geographic structure and spatial linear regression models we find,
surprisingly, host range changes had little effect on the parasite’s
range expansion and instead host density is the main driver of par-
asite spread. Unlike other symbionts that have been used as proxies
to track their host’s movements, this parasite’s migration routes are
incongruent with the host and instead reflect the greater impor-
tance of host density in this community’s assembly. Furthermore,
these results confirm predictions of disease ecological models re-
garding the role of host density in the spread of pathogens. Due
to host density constraints, highly specialized species may have low
migration capacities and long lag times before colonization of
new areas.

comparative phylogeography | host–parasite interactions | eastern North
America | Orobanchaceae | Fagus

Because of species-specific interactions and obligate host–
parasite relationships, many parasites are thought to closely

track their hosts during range expansions. With their shorter gen-
eration times and more quickly evolving genomes, parasites can
make attractive proxies for understanding host migration patterns
(1, 2).However, parasite and host phylogeographic historiesmay be
incongruent, and that conflict reflects processes that have limited
the spread of the parasite relative to the host. In particular, host
density has been implicated in disease systems as a constraint on
parasite spread (3, 4). We take a historical approach to investigate
the effects of host density on both population differentiation and
postglacial migration in the assembly of a tree–herb, host–parasite
system. The influence of changes in host range and host density on
a parasite’smigration history is examined by comparing the parasite
phylogeography with both the host phylogeography (5) and host
abundance data (6) over the last 21,000 y. Postglacial migration is
approximately analogous to present-day range shifts due to climate
change (7), so our approach can help to understand current factors
controlling community assembly at different trophic levels.
The eastern North American study system consists of the

parasitic plant, Epifagus virginiana (beechdrop; Orobanchaceae),
and its host tree, Fagus grandifolia (American beech; Fagaceae).
E. virginiana is an annual, self-fertilizing root parasite that grows
obligately on the single species, F. grandifolia. The migration and
demographic history of F. grandifolia has been extensively stud-
ied with both molecular (5, 8) and paleopollen tools (6, 9–11).
Along with other eastern North American species, F. grandifolia

has contributed to a long-held paradigm concerning the capacity of
temperate forests to successfully track climate change. On the
basis of fossil pollen data of these species, rapid migration rates
have been estimated for trees confined in southern refuges during
glacial periods that expanded their ranges quickly northward to
their current distributional limits (9, 11). These migration rates are
orders of magnitude faster than estimates based on life history and
seed trap data (12). However, the pollen data are prone to false
negatives, especially when population densities are low (13), and
accurately tracking range margins is very challenging (14). We
reinterpret the fossil pollen datasets as reflecting changes in
abundance rather than documenting changes in range limits. This
interpretation is similar to assumptions in other paleoecological
studies that use changes in fossil pollen abundances to understand
shifts in tree densities and community structure (e.g., ref. 6). In
contrast, molecular datasets are more likely to show the initial
migration pathways, because they are sensitive to small population
sizes and founder events likely to occur at the range margins (5,
15). Molecular phylogeographies have since uncovered more
northerly refuges at midlatitudes closer to the ice margin for sev-
eral plant species (5, 16, 17), which produce lower estimates of
migration rates (18). Together, molecular and paleopollen data-
sets provide insights into the two host factors most likely to in-
fluence broad-scale parasite migration patterns: changes in host
range and host density.
The availability of such detailed host information allows us to

generate hypotheses to test against parasite migration patterns. If
host susceptibility rates are high and density independent and
parasite dispersal is high, then the appearance of new host habitat
is the major constraint on parasite range expansion. In this case,
the host and parasite phylogeographies should show evidence of
comigration and have similar population structures. However,
many disease systems are additionally sensitive to fluctuations in
host density, and successful establishment of a parasite may be
limited by these effects (3, 4). In this scenario, the parasite phy-
logeography should be correlated with changes in host density seen
in the fossil pollen record. Due to the extensive sampling of par-
asite and host data, we have the opportunity to use powerful an-
alytical tools to answer the question:Did the parasite,E. virginiana,
primarily respond to changes in the host range or to changes in
host density as it colonized the postglacial landscape? We imple-
mented comparisons between the host and parasite migration
histories using (a) Monmonier’s algorithm (19), which describes
the geographic locations of genetic boundaries, (b) Bayesian
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coalescent methods that estimate population demographic para-
meters (20), and (c) a newly developed method that utilizes
spatial linear models to test relationships between the genetic
and fossil datasets.
The initial migration of F. grandifolia into newly unglaciated

territory was largely accompanied by rapid increases in abun-
dance except in the colonization of the midwest. The fossil
pollen data show beech to be broadly distributed in the south at
13,000 y before present (kyBP), followed by density increases in
the northeast at 9 kyBP, and then a steadily westward increase in
density into the midwest by 6 kyBP (Hp in Figs. 1A and 2C) (6).
In contrast, the host molecular data (Fig. S1) suggest a refuge
near the glacial boundary from which colonists dispersed di-
rectly northward (Hm in Fig. 1A) (5, 8). The initial dispersal of
the host into the Midwest must have occurred at low density, so
that the pattern was not captured in the pollen record. If the
parasite was able to colonize these marginal, low-density pop-
ulations, then the parasite should show similar migration routes
to Hm. Alternatively, if the parasite was limited by host density,
then the parasite’s range should track the development of high-
density beech forests (Hp). The results have implications for the
parasite’s migration capacity. Even if host species can rapidly
equilibrate with global change, additional factors may cause
parasite and other specialized species to lag behind. This lag
would result in the disassembly of the community and creation
of systems with no past analogs (21), making forecasting future
range expansions problematic.

Results and Discussion
To elucidate the migration history of E. virginiana 467 samples
from 88 localities across the range of the host were sequenced at
two chloroplast DNA (cpDNA) loci and genotyped using nine
presumably nuclear microsatellite markers (Fig. 1 B and C). The
Northeast (regions defined below) contained lower allelic rich-
ness than the South and the Midwest in both cpDNA (4.9 versus
12.6 and 11.2 haplotypes after rarefaction to 50) and micro-
satellite datasets (4.3 versus 5.8 and 6.6 alleles after rarefaction
to 100 averaged over all loci). Also, population differentiation
was highest in the South with FST’s largest there (averaged over
all loci: FST-South = 0.78, FST-Northeast = 0.49, FST-Midwest = 0.53).
Whereas these results suggest more isolation between the
southern populations, they stop short of providing the geo-
graphic locations of the boundaries segregating the genetic var-
iation. To locate these barriers we used Monmonier’s algorithm,
a method that identifies the spatial boundaries that maximize
genetic differences between localities (19) (see SI Materials and
Methods for a full description of the method). To explore the
robustness of the inferred patterns, the data were cross-validated
by reconstructing genetic boundaries in 1,000 subsampled data-
sets. Subsampling occurred at the locality level with 50% of lo-
calities sampled with replacement.
The results of the cross-validated Monmonier analyses show

genetic breaks concentrated in the South, with almost no genetic
breaks north of the ice margin and none between the Northeast
and the Midwest (Fig. 1D). The highest proportion of breaks
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Fig. 1. Genetic structure of Epifagus virginiana. (A) Range map with competing migration route hypotheses based on host fossil pollen (Hp) or host cpDNA
(Hm). Regions (shaded) were defined by the distribution of host fossil pollen at 13, 9, and 6 kyBP. (B) Distribution of cpDNA haplotypes and haplotype network
(Inset). Numbers are the parsimony and likelihood bootstraps and Bayesian posterior probability values. (C) Distribution of microsatellite clusters and cluster
phenogram (Inset). (D) Areas of high genetic differentiation. Colors correspond to the average number of genetic breaks found at that location over 1,000
cross-validation subsamples. Color assignments were based on the 50th–90th percentiles: red, 90+%; yellow, 80–89%; green, 70–79%; blue, 60–69%; purple,
50–59%. LGM, ice margin at the last glacial maximum. Maps were drawn in Google Earth (copyright 2010 Google).
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Fig. 2. Genetic and fossil map layers of Epifagus virginiana and Fagus grandifolia. (A) Geographic range of both species. Outline shows extent of in-
terpolated data layers. (B) Genetic distance maps for E. virginiana (EV) and F. grandifolia (F.gen). F. grandifolia genetic data are redrawn from McLachlan
et al. (5). (C) Fossil pollen layers for F. grandifolia from 21 kyBP (F21) to present (F0) in 1,000-y increments. A pollen layer for 500 ybp (F0.5) is also shown. Pollen
layers are redrawn from Williams et al. (6). (D) Summary pollen layers (F.age, F.avgP, and F.varP) of F. grandifolia as described in text. Warmer colors cor-
respond with higher values in all maps. Maps were visualized using a 10-quantile color ramp.
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separate the orange/red/pink microsatellite clusters in Alabama
and Georgia and the brown cluster from the rest of the landscape
(Fig. 1D). The breaks are broad because barriers can shift
depending on what populations were included in the subsample.
The northernmost barrier generally corresponds with the blue
allele distributions with a peak separating the lower and upper
Midwest (between Indiana/Ohio and Michigan) (Fig. 1 B–D).
Multiple runs with different levels of subsampling (50–90%) and
numbers of barriers recorded per subsample (1–5) confirm the
general pattern of high differentiation in the South and barriers
separating the lower Midwest from the upper Midwest (Fig. S2).
The location of additional barriers between the upper and

lower Midwest suggests a suture zone in this area between col-
onists from different sources, so even if there was some migra-
tion northward (Hm), southern populations did not contribute
significantly to diversity farther north. This result is consistent
with the interpretation that E. virginiana survived the glaciation
in isolated, low-density host populations across the southern
range. In the North, the few genetic barriers and low population
differentiation are consistent with uninterrupted range expan-
sion from the Northeast coincident with host density increases
(Hp; Fig. 1A).
The lack of northward migration into the Midwest is further

supported by migration rates and divergence times among
regions estimated through Bayesian coalescent-based analyses
(Table 1) (20). Localities were grouped into geographic regions
defined by the range of host fossil pollen at 13, 9, and 6 kyBP,
hereafter referred to as regions 13, 9, and 6 (Fig. 1A). Migration
rates from the South into region 6, which encompasses the
Midwest, were significantly lower than those along East-to-West
routes [Pðm13→6 >m9→6Þ ¼ 0:00, Table 1 and Table S1], reflect-
ing the extensive sharing of alleles between the Midwest and the
Northeast versus the restricted southern distributions of the
other allelic groups. These results were robust to other regional
definitions where borderline localities were swapped among
regions (see SI Materials and Methods, Fig. S3, and Table S2 for
alternate regional definitions and results). For instance, even if
the area south of the ice margin in region 6 is included within
region 13 (forming region 13+ and 6−), migration rates from the
expanded southern region were still significantly less than from
the Northeast [Pðm13þ→6− >m9→6− Þ ¼ 0:00, Table S2]. The
Midwest’s divergence time from the South was older than from
the Northeast [Pðt9− 6 > t13− 6Þ ¼ 0:84, Table 1 and Table S3],
adding further evidence to the Northeast being the colonization
source for the Midwest.
Whereas the results of the Monmonier and coalescent analy-

ses suggest that E. virginiana may be broadly tracking changes in
host density, these findings are consistent with many hypothetical
migration routes within regions 9 and 6 that may not agree with
more detailed host patterns. To better assess the relationships
between parasite genetic patterns, host genetic patterns, and host

density, a method was developed to analyze these spatial data
within a geographic information system (GIS) framework using
spatial linear regression models. First, genetic and fossil datasets
were transformed into comparable raster map layers. Genetic
patterns were summarized by calculating Reynolds’ distances (22)
averaged across all loci (cpDNA and microsatellite) between
neighboring locality pairs. Neighboring localities were de-
termined via Delaunay triangulation. The genetic distances were
assigned to coordinates halfway between locality pairs. The dis-
tances were interpolated to form amap layer (23) of the same grid
cell size (50 × 50 km) and extent as available host fossil pollen
layers (Fig. 2A). The parasite map layer was consistent with the
Monmonier results that indicated high levels of differentiation
among localities in the southern part of the range [E. virginiana
(EV), Fig. 2B]. For the host, the locations of strongest genetic
differentiation are in the midwestern and central parts of the
range (F.gen, Fig. 2B), and host density grew from the South, to
the Northeast, and at present is highest in the North (Fig. 2C).
Because the focus of this project was understanding the influence
of host variables on parasite patterns instead of other topological
or environmental barriers, spatial linear models were restricted to
predicting the parasite genetic map layer (EV) on the basis of (a)
host genetics (F.gen), (b) any one of the host pollen density layers
from a particular time (F0–F21), or (c) summaries of the host
pollen layers, such as pollen averaged across times (F.avgP),
variance in pollen (F.varP), and date of arrival of >2% pollen at
a location (F.age) (Fig. 2). A spatial lag term (ρ) was included to
account for spatial nonindependence within the data layers (24).
Because of the inherent relationships between layers based on
host pollen (F0–F21, F.avgP), univariate models with these ex-
planatory variables were competed via Akaike’s information cri-
terion (AIC) scores (25) to select the best pollen density layer that
was then used in multivariate analyses.
In the univariate pollen density models predicting parasite ge-

netic distances, the younger host pollen layers outperformed the
older ones, wheremodels using layers younger than 2 kyBP (F0–F2)
were 91% probable to be the best model compared with models
based on older time slices (Table S4). The most probable model
was based on the 500 yBP time slice [F0.5, weighted (w)AIC= 0.52,
Table S4], which was then used in multivariate parasite models.
Models with one, two, three, or four explanatory variables were
constructed on the basis of the host layers F0.5 or F.avgP, F.gen,
F.age, and F.varP. Univariate models and the one multivariate
model with significant coefficients are described in Table 2.Models
that included the host genetic data were universally poor, without
significant coefficients, and outcompeted (wAIC = 0, Table 2),
strongly indicating that host genetic structure has no influence on
parasite patterns. Increasing levels of parasite genetic distance
were related to lower host pollen densities (F0.5 and F.avgP) (Table
2). This finding agrees with the interpretation that higher host
densities support larger parasite populations, and high levels of

Table 1. Population demographic parameters of Epifagus virginiana

r1 r2
θ1

(4N1μ)
θ2

(4N2μ)
θA

(4NAμ)
m2→1

(m2→1/μ)
m1→2

(m1→2/μ)
meff2→1

(2N1m2→1)
meff1→2

(2N2m1→2)
t

(tμ)

13 9 0.73 0.25 9.76 0.59 5.05 0.22 0.64 0.06
(0.2–1.7) (0.08–0.59) (4.95–26.72) (0.11–5.90) (0.62–13.75) (0.02–0.37)

13 6 1.94 12.93 5.04 1.03 0.04 1.00 0.24 0.36
(1.27–3.02) (10.03–21.15) (3.42–21.15) (0.38–2.23) (0.01–2.02) (0.30–3.90)

9 6 0.42 239.49 8.59 6.34 8.17 1.33 978.02 0.28
(0.08–0.59) (47.80–236.38) (5.39–46.12) (3.11–11.20) (6.28–11.63) (0.18–1.28)

Regions (r1 and r2) are defined in Fig. 1A and in text. θ1, θ2, and θA refer to the scaled effective population sizes of r1, r2, and the ancestral population,
respectively. m2→1 and m1→2 are the scaled migration rates forward in time from r2 to r1 and vice versa. meff2→1 and meff1→2 are the effective migration rates
(taking into account population size). t is the scaled divergence time between the regions. All values (except meff) are scaled by the unknown per gene per
generation mutation rate, μ.m, migration rate per gene per generation; n, effective population size; t, time in generations. The 95% credible interval is given
below each estimate. Because meff is a point estimate, no credible interval is given.
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gene flow connect areas of high density. Similarly, models de-
pendent on host establishment ages (F.age) showed that older
parts of the range harbored higher parasite genetic distances
(Table 2). Interestingly, models including the temporal variance in
pollen density (F.varP) were not informative (Table 2). Layers with
density data averaged across time (F.avgP, F.age, and F.varP) were
worse predictors of parasite patterns than the most recent host
density layer, suggesting that recent patterns in host density had the
most influence on present-day parasite population structure. Al-
ternatively, because many of the recent (<7 kyBP) host density
time-slice layers performed similarly (Table S4), the overall genetic
patterns may have been established earlier, although were still
amenable to small recent changes in density. Older time-slice
layers have most of their data in the unglaciated South, so parasite
populations could be older than 21 kyBP and structured by nu-
merous compounding glacial cycles. If host density effects aremost
prominent at the time of initial population establishment, then we
would expect southern populations to be influenced by even older
host density changes not considered here and less sensitive to re-
cent postglacial host demographic changes.
The comparisons of the demographic histories of the host and

the parasite strongly suggest that host density was the primary
determinant in the parasite’s range expansion and population
genetics—not the host’s own genetic patterns and migration
routes. Because of this dependence on host density, this parasite
should not be used as a direct indicator of host range expansion
even though its life history (obligate, host-specific parasitism and
mostly vertical transmission) suggests its utility as a proxy (1). In
this case, the parasite was unable to keep up with the range margin
of its host, perhaps indicating that the host’s initial range expansion
occurred at low density and thus limited the establishment of the
parasite in new populations. Meanwhile, the parasite differenti-
ated within isolated refuges in the South. Once the threshold host
density level was reached in contiguous northern populations,
parasites from the opportune source population then quickly col-
onized. More generally, it seems likely that herbs and other highly
specialized species may lag behind because the habitats they re-
quire are distributed in a more complex fashion across the land-
scape (26). For instance, other parasitic plants have shown high
levels of population differentiation typical of long periods of iso-
lation, small population sizes, and patchy habitats (27, 28), and
patterns of genetic diversity in the mistletoe, Arceuthobium
americanum, and its host, Pinus contorta var. latifolia, have sup-
ported a lag between host and parasite colonization of formerly
glaciated territory (29). Nonplant parasites, such as lungworms,
have also shown this lagged migration pattern controlled by low-
density host populations at the migration front (4). The slower
movement of herbs and parasites suggests that forest assemblages
may partially disassociate while species react separately to climate

change, and it is unclear if the migration capacity of highly spe-
cialized species is sufficient to outrun extirpation from their
current ranges.

Materials and Methods
Epifagus virginiana Datasets. Specimens were collected from 88 localities
spread across the range of E. virginiana during 2003–2007. Standard pro-
cedures were followed in extracting DNA, performing PCR, cycle sequencing,
scoring markers, calculating diversity measures, and estimating phylogenetic
relationships (see SI Materials and Methods for detailed information).

PCR was performed on 467 samples to amplify two cpDNA regions:
pseudogenes rbcL + atpB and the second intron of clpP (primers given in
Table S5). Indel regions were excluded from analyses, leaving 1,016 bp that
defined 41 unique cpDNA haplotypes (Dataset S1).

In addition to the two cpDNA loci, genotypic data were generated from
nine presumably nuclear microsatellite loci of 113–362 bp (primers given in
Table S5). In total, 455 samples were genotyped, 350 (77%) of which were
from all nine loci and 403 (89%) from six or more (Dataset S1).

The microsatellite data were categorized into clusters using the Bayesian
spatial clustering method implemented in BAPS v.5.2 (30). This method
utilizes biallelic genotypic data (only the microsatellite genetic data were
used, and the cpDNA data were excluded) and assigns individuals to clusters
that have restricted gene flow between them. In addition to the genetic
data, this method incorporates spatial information within the prior distri-
bution for the clusters (30) (details given in SI Materials and Methods).

F. grandifolia Datasets. A total of 1,901 bp of cpDNA data from 121 samples
from 97 localities was obtained from McLachlan et al. (5).

Fossil pollen data for the host, F. grandifolia, were obtained fromWilliams
et al. (6). The data are interpolated pollen percentages at 1,000-y time slices
since 21 kyBP and a layer at 500 yBP. Absent data were assigned zero values
(see SI Materials and Methods for details). The F.avgP layer was calculated
excluding zero values.

Monmonier Analysis with Cross-Validation. Pairwise genetic distances be-
tween neighboring populations were calculated using several summary
statistics such as Nei’s distances and Reynolds’ distances averaged across all
cpDNA and microsatellite data. Results were similar across distance methods,
so only results using Reynolds’ distances are discussed. See SI Materials and
Methods for specific input parameters. Cross-validation analyses were per-
formed by randomly subsampling with replacement the original data by 50,
75, or 90% of the localities at a time. One to five Monmonier barriers were
then recomputed for each replicate. To summarize results, paths from all
replicates were binned into a 2D 38 × 23-cell histogram; each cell was 0.75° ×
0.75°. The average number of paths to intersect each grid cell is reported in
Fig. 1D and Fig. S2.

Estimating Migration Rates and Other Population Demographic Parameters
Using IMa (20). Because eastern North America has few clear biogeographic
boundaries to separate regions, we tried multiple regional definitions. In
addition to the three geographic regions described above, we ran models
with three to four geographic regions on the basis of a combination of fossil
evidence, the location of the last glacial maximum, and the boundary of the
prairie peninsula (31) (SI Materials and Methods and Fig. S3). Results were
similar across regional definitions (Table 1 and Table S2). Because we were
interested in relative migration rates among regions, parameters were left
scaled to an unknown mutation rate and not converted to per generation
values. Also, because population sizes varied among regions, the effective
migration rates that account for population size were also reported. Specific
prior values and program parameters are given in SI Materials and Methods.

Spatial Linear Regression Models. The genetic map layers, EV and F.gen, were
based on interpolated genetic distances between localities of E. virginiana
and F. grandifolia, respectively, as described in the text. Interpolations
proceeded according to a modified quadratic Shepard’s inverse weighting
method (32). Only points within the present-day distribution of F. grandi-
folia were assigned nonzero values.

To determine which F. grandifolia layer(s) best predicted the parasite’s
genetic population structure, multiple spatial autoregressive lag models were
compared. These models are linear regressions that include an additional
spatial lag term as an explanatory variable, thereby accounting for spatial
nonindependence in the E. virginiana genetic data layer (24). Lagrange mul-
tiplier tests were performed on all models to check for any further residual
autocorrelation; none were detected (P > 0.05 in all cases). Models without

Table 2. Best spatial regression models of host variables
predicting Epifagus virginiana genetic distances

Model
(EV ∼) Intercept Coefficient Z-value ρ AIC ΔAIC wAIC

F.gen 0.03307 −0.00301 0.214 0.960 −5347.7 12.7 0.00
F0.5 0.04669 −0.00109 0.000 0.945 −5360.4 0.0 0.59
F.age 0.03417 0.00061 0.002 0.949 −5355.9 4.5 0.06
F.avgP 0.03670 −0.00103 0.034 0.957 −5350.6 9.8 0.00
F.varP 0.03123 −0.00005 0.389 0.961 −5346.9 13.5 0.00
F.avgP +
F.age

0.04195 −0.00116
0.00065

0.020
0.001

0.943 −5359.3 1.1 0.35

Fagus grandifolia and E. virginiana variables are shown in Fig. 2. Coeffi-
cients and their corresponding Z-values refer to host data layer coefficients,
whereas ρ is the spatial lag coefficient. All values of ρ were significant (P <
0.01). AIC, ΔAIC, and weighted (w)AIC values are reported following Wagen-
makers and Farell (25). The best model is in boldface type.
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significant regression coefficients were discarded. To evaluate the remaining
multivariate models an AIC was also used, where Akaike weights represent
the probability that a model is the best of the set (25).
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