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Abstract

The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is
likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic
differences are beyond the reach of the conventional case-control designs and the statistical significance testing procedures
being used in most association studies. Our objective here was to investigate whether an alternative approach—in which
common disorders are treated as quantitative phenotypes that are continuously distributed over a population—can reveal
predictive insights into the early atherosclerosis, as assessed using ultrasound imaging-based quantitative measurement of
carotid artery intima-media thickness (IMT). Using our population-based follow-up study of atherosclerosis precursors as a
basis for sampling subjects with gradually increasing IMT levels, we searched for such subsets of genetic variants and their
interactions that are the most predictive of the various risk classes, rather than using exclusively those variants meeting a
stringent level of statistical significance. The area under the receiver operating characteristic curve (AUC) was used to
evaluate the predictive value of the variants, and cross-validation was used to assess how well the predictive models will
generalize to other subsets of subjects. By means of our predictive modeling framework with machine learning-based SNP
selection, we could improve the prediction of the extreme classes of atherosclerosis risk and progression over a 6-year
period (average AUC 0.844 and 0.761), compared to that of using conventional cardiovascular risk factors alone (average
AUC 0.741 and 0.629), or when combined with the statistically significant variants (average AUC 0.762 and 0.651). The
predictive accuracy remained relatively high in an independent validation set of subjects (average decrease of 0.043). These
results demonstrate that the modeling framework can utilize the ‘‘gray zone’’ of genetic variation in the classification of
subjects with different degrees of risk of developing atherosclerosis.
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Introduction

A major challenge of medical genetics is to determine an

optimal set of genetic markers, typically in the form of single

nucleotide polymorphisms (SNP), which when combined together

with conventional risk factors, could be used in individual level risk

prediction, classification and clinical decision-making. However,

genome-wide association studies (GWAS) have demonstrated that

the ubiquitous heritability of most common disorders is due to

multiple SNPs of small effect size and even an aggregate of these

effects is not yet predictive enough for clinical utility [1]. It has

therefore been suggested that the traditional case-control studies,

which focus on qualitative phenotypes such as diagnosed cases

versus controls, could be complemented by population-based

cohort studies, which profile quantitative clinical phenotypes and

how they change over time in individuals who are representative of
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the general population. Consequently, certain common disorders

may be interpreted as being the extremes of the quantitative

phenotypes that are continuously distributed over the population

[1]. Comparing various ranges of the low and high extremes of

such quantitative traits, rather than dichotomizing the same

distribution exclusively into cases and controls, can offer the means

to increase the statistical power of the variants [2–5], uncover

molecular pathways and networks behind various subtypes and

progression stages [6], and eventually even help to improve the

early diagnosis, treatment and prevention of the most extreme

cases. The objective here was to systematically investigate the

potential of this extreme selection strategy to provide predictive

insights into the early development of atherosclerosis, using the

carotid IMT as a quantitative phenotype and our unique

population-based follow-up study of atherosclerosis precursors as

a basis for sub-sampling of subjects with increasing disease risk.

Atherosclerosis is a common disorder which develops due to the

complex interplay of various genetic and environmental factors,

most of which are still poorly understood. It is known that

conventional cardiovascular risk factors, such as obesity, elevated

blood pressure and high low-density lipoprotein (LDL) cholesterol

levels, play an important role in the risk of its progression into

severe clinical manifestations, for instance, coronary heart disease

(CHD) [7,8]. Recently, a number of genetic risk markers that

associate with coronary disease outcomes and serum lipid

concentrations have also been identified in case-control settings

[9–21]. However, the relative contribution of genetic variation to

the early stages of the cardiovascular disease remains unclear.

From the experimental design point of view, the subtle inter-

individual phenotypic variability makes it difficult to prognosticate

clear-cut cases and controls in a pre-clinical setting, thereby

limiting the capability of the cross-sectional case-control designs in

distinguishing the variants associated with an increased progres-

sion risk from the background variability. An additional challenge

is that even in the absence of significant single-marker effects,

multiple genetic markers from distinct molecular pathways may

act synergistically when combined, leading to different atheroscle-

rosis phenotypes. Confounding inter-individual variation and

interactions across the genetic and conventional risk factors can

also mask the phenotypic variation, especially when studying

composite phenotypes such as LDL-cholesterol levels [22].

Therefore, a well-defined quantitative measurement that reflects

the full spectrum of the disease progression is needed, together

with an efficient computational approach, to systematically

explore the genotype-phenotype relationships across different

development stages of atherosclerosis.

Measurement of the carotid artery intima-media thickness

(IMT) is an established, intermediate phenotype of atherosclerosis

that has been used, for instance, to investigate the development of

pre-clinical atherosclerosis [23,24], and to predict the onset of

future cardiovascular events, such as myocardial infraction and

stroke [25–27]. It can be measured non-invasively through the use

of ultrasound imaging in large populations of healthy subjects,

without the biases related to clinically diagnosed cases and controls

[28], making it an ideal quantitative measurement for stratifying

subjects into various risk classes. However, comparisons of such

risk classes using statistical significance testing procedures that

consider only one SNP at a time may yield sub-optimal findings

when exploring the genotype-specific effects of large number of

SNPs, given that these modest phenotypic effects are likely to be

characterized by substantial genetic heterogeneity among multiple

variants [29–31]. Accordingly, it has been argued that the statistics

being used to identify variants that are significantly associated with

the disease risk - typically odds ratios or p-values for association -

are not the most appropriate means for evaluating the predictive

or clinical value of the genetic profiles [32,33]. For example, the

individual SNPs with the strongest statistical support in coronary

artery disease-related case-control studies seem to have only a

minor, if any, role in predicting carotid IMT or its progression,

when compared to the conventional risk factors [34,35]. In fact,

these susceptibility variants are able to provide only a marginal

and inconsistent improvement even in the discrimination of the

CHD cases or prediction of cardiovascular events [36–41], thus

hindering the value of these ‘top hits’ for diagnostic prediction.

Moreover, additional challenges stem from the identification of

gene-gene and gene-environment interactions, which are thought

to be profoundly important in the development of many complex

diseases [29,30,42].

In the present analysis from the Young Finns Study, we took a

more holistic approach towards revealing the contribution of

genetic variation to the early progression of atherosclerosis. The

approach was based on a stratified sampling and comparison of

the increasing risk classes from our longitudinal population cohort.

Rather than using the conventional single-SNP statistical signif-

icance testing in the identification of risk-modifying variants and

their interactions, we explicitly searched for those subsets of SNPs

that are the most predictive of the increasing risk classes by means

of a predictive modeling framework using a machine learning-

based SNP-subset selection procedure. The predictive approach

was used here to mine those associations that did not necessary

meet the stringent levels of statistical significance at the level of

individual SNPs, yet still having significant contribution to the

combined predictive power at the level of SNP-subsets. In

particular, we addressed the following questions: (i) whether the

genetic variants can improve the prediction accuracy of IMT-

based risk classes beyond that obtained with conventional risk

factors; (ii) which variants are the most predictive of the subjects

that show extreme IMT levels either at the baseline or in the

follow-up study, or progression over the 6-year period; (iii) whether

the predictive SNP-panels also include other variants than those

Author Summary

Although cardiovascular events, such as myocardial
infarction and stroke, usually occur at later ages, it is
known that the atherogenic process begins much earlier in
life. Detection of subclinical atherosclerosis would there-
fore offer the means to identify individuals who are at
increased risk of developing cardiovascular events. What
remains unclear is the relative contribution of genetic
variation to the development of the early stages of
atherosclerosis. To address this question, we searched for
combinations of both genetic and clinical determinants
that are the most predictive of the progression of
subclinical carotid atherosclerosis in a sample of 1,027
young adults, aged between 24–39 years, from the Finnish
general population (The Cardiovascular Risk in Young
Finns Study). We demonstrate here, for the first time in a
population-based follow-up study, a predictive relation-
ship between individual’s genotypic variation and early
signs of atherosclerosis, which cannot be explained by
conventional cardiovascular risk factors, such as obesity
and elevated blood pressure levels. The predictive
modeling framework facilitates the usability of genetic
information by identifying informative panels of variants,
along with conventional risk factors, which may prove to
be useful in early detection and management of athero-
sclerosis. The clinical implications of these findings remain
to be studied.

Genetic Variants Predictive of Atherosclerosis
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risk markers identified in the previous case-control association

studies; and (iv) whether the machine learning-based SNP selection

can provide variants with increased predictive power compared to

the SNPs with the greatest statistical significance in the present

study population. We also illustrate how the predictive modeling

framework can be employed to identify epistasis interactions

among genetic variants that are related to the disease progression.

Finally, as the first step toward elucidating functional mechanisms

behind the genetic variants and their interactions, we also mapped

the biological pathways and processes that underlie those variants

most predictive of the extreme progression cases.

Results

The baseline study cohort in 2001 was comprised of 1,027

subjects from the Finnish general population, aged 24–39 years,

with complete data including both the ultrasound-based imaging

of the carotid IMT and the blood sample-based genotyping of the

candidate SNPs (see Table S1); of these subjects, 813 also

participated in the 2007 follow-up study of the IMT progression

(see Materials and Methods for details). The relative contribution

of the SNPs to the individual IMT levels was evaluated by means

of a predictive modeling framework, in which the study subjects

were first divided into gradually increasing low-risk and high-risk

classes according to the quantile points, say (1-q) and q, of their

pooled IMT distribution (q ranges from 5% to 25%; see Figure 1).

A non-linear Bayesian classifier was implemented here as the

predictive model (see Materials and Methods for details). Using

both the genetic and conventional risk factors collected in the

baseline study in 2001 as predictor variables, we determined the

most predictive risk factor combinations separately for both the

2001 and 2007 IMT risk classes, as well as the IMT progression

between 2001 and 2007. For a comparison, the most significant

genetic variants were determined using single-SNP statistical

testing for the same risk classes. The area under the receiver

operating characteristic curve (AUC), with cross-validation, was

used to evaluate the predictive value of the different factor

combinations, followed by independent validation set-based

assessment of how well the predictive models can generalize to

independent sets of subjects.

Clinical characteristics of the study subjects
The quantitative distributions of the levels of IMT and its

progression over the 6-year period are shown in Figure 1. The IMT

levels in the study population showed a slightly positive-skewed

enrichment of subjects with higher IMT values indicating an

increased risk of atherosclerosis (Figure 1A). There was a significant

difference in the IMT distributions between the 2001 and 2007

follow-up studies (Kolmogorov-Smirnov D = 0.234, p,0.001). As

expected, the majority of the conventional risk factors measured in

2001, including age, sex and BMI, were strongly correlated with the

Figure 1. Distributions of intima-media thickness (IMT) of the study subjects. (A) IMT levels in the baseline and follow-up studies in 2001
and 2007, respectively. (B) IMT changes from 2001 to 2007. The age-stratified distributions depict the baseline age groups of 24–30 and 33–39 years
(Younger and Older subjects), as well as their combined distribution (All subjects). The vertical lines indicate the representative 15% and 85% quantile
points (q) that divide the subjects into two risk groups: the low-risk class (subjects with the lowest q% of IMT levels or changes) and the high-risk class
(subjects with the highest q% of IMT levels or changes).
doi:10.1371/journal.pgen.1001146.g001
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IMT levels both in the 2001 and 2007 studies (Table 1). However,

only two risk factors, waist circumference and apolipoprotein B

(ApoB), correlated with the IMT progression (the 2007-2001

change). In particular, even if the age was the most significant

correlate of the IMT levels in 2001 and 2007, its linear explanatory

power turned out to be insignificant for the IMT progression.

Accordingly, the distributions of the IMT progression were similar

in the groups of younger and older subjects (D = 0.0791, p.0.10;

Figure 1B). To keep the non-linear prediction problem as general as

possible, the age-groups and sexes were pooled into a single

continuous distribution; however, all the predictive models were

adjusted for the baseline conventional risk factors (Table 1). This

enabled us to examine, for instance, the added contribution of

genetic variation to the IMT progression not explained by the

variation in the conventional cardiovascular risk factors.

Prediction of baseline IMT using genetic variants
To assess whether the genetic variants can increase the

prediction accuracy of the risk classes beyond that obtained with

the conventional risk factors alone, we used the predictive

modeling framework with a machine learning-based SNP

selection. The predictive risk factor combinations selected using

this procedure were able to significantly improve the prediction of

the subjects across the spectrum of low-risk and high-risk classes in

2001 (Figure 2A), when compared to using the conventional risk

factors (CRFs) either alone or combined with those SNPs that

were significantly associated with the low- and high-risk differences

in the study subjects (the significances of the SNPs are detailed in

Table S2). Interestingly, the panel of genetic risk markers

established in the previous case-control association studies alone

had a predictive power similar to that of a random classifier

(average AUC 0.489), and these SNPs could not improve the

prediction of the IMT risk classes over and above of the

conventional risk factors (Established SNPs and CRFs; Figure 2).

As expected, the predictive accuracy gradually decreased when

moving from 5% to 25% quantile level, as the risk classes became

phenotypically more heterogeneous in terms of the quantitative

IMT-levels (see Figure 1A). The variants most predictive of the

subjects with 15% of the lowest and highest IMT-levels in 2001 are

listed in Table 2, together with their gene annotation information

and the single-SNP statistical and predictive powers.

Prediction of follow-up IMT using genetic variants
The predictive power of the genetic variants that were selected

using the machine learning-based procedure increased further

when predicting the risk classes in the 2007 follow-up, even if the

genetic and conventional risk factors collected in only the baseline

study were used as predictors (Figure 2B). This result can partly be

attributed to the progression of the disease condition over the six

years in a part of the study subjects (see Figure 1A). In particular,

the classes of the most extreme levels of the IMT could be

predicted with reasonably high accuracy also using single-SNP

statistical testing, whereas the panel of established SNPs either

with or without the conventional risk factors again showed much

poorer performance (Figure 2B). These results suggest that the

genetic variants, especially those that were identified using the

machine learning-based SNP selection (see Table 3), can encode

significant information according to which it is possible to predict

subjects who will belong to different risk classes later in their lives

with accuracies beyond that obtained with the conventional risk

factors. We note that the baseline 2001 IMT-level was not used in

the reported results when predicting the 2007 risk classes;

however, in the case when the baseline IMT-level was used as

an additional predictor, the prediction accuracies became very

close to perfect discrimination (AUC ranged from 0.920 to 0.999).

This shows that the non-linear modeling approach could learn also

the significant linear correlation between the 2001 and 2007 IMT-

levels (r = 0.582; Table S3).

Genetic variants predisposing to IMT progression
We next searched explicitly for those factors that are most

predictive of the subjects who show extreme progression in their

Table 1. The baseline characteristics in 2001 along with their correlations with the 2007 level and progression of intima-media
thickness (IMT).

Conventional Risk Factor* Mean (SD) IMT 2001 IMT 2007 IMT Progression

r{ p{ r{ p{ r{ p{

Sex (% women) 55.3 0.132 ,0.001 0.195 ,0.001 0.086 NS

Age in 2001 (years) 31.7 (4.92) 0.290 ,0.001 0.301 ,0.001 0.041 NS

BMI (kg/m2) 25.2 (4.38) 0.152 ,0.001 0.188 ,0.001 0.094 NS

Waist circumference (mm) 84.0 (12.0) 0.189 ,0.001 0.260 ,0.001 0.133 0.006

Systolic blood pressure (mmHg) 117 (13.2) 0.180 ,0.001 0.158 ,0.001 0.044 NS

Diastolic blood pressure (mmHg) 70.6 (10.5) 0.220 ,0.001 0.160 ,0.001 20.020 NS

Total cholesterol (mmol/L) 5.17 (0.99) 0.113 0.011 0.155 ,0.001 0.082 NS

LDL cholesterol (mmol/L) 3.28 (0.86) 0.126 0.002 0.166 ,0.001 0.087 NS

HDL cholesterol (mmol/L) 1.29 (0.32) 20.037 NS 20.107 NS 20.089 NS

Triglycerides (mmol/L) 1.35 (0.86) 0.047 NS 0.131 0.007 0.099 NS

ApoA1 (g/L) 1.49 (0.26) 20.052 NS 20.085 NS 20.039 NS

ApoB (g/L) 1.06 (0.27) 0.110 0.016 0.195 ,0.001 0.138 0.003

Smoking (% subjects) 22.8 0.049 NS 0.007 NS 20.011 NS

*The characteristics in 2001 were used as potential confounding risk factors in predictive models.
{Pearson correlation coefficient (r-value) was calculated using the risk factors collected in 2001.
{Statistical significance (Bonferroni corrected p-value) is from the t-distribution with n-2 df (n = 1,027 in 2001 and n = 813 in 2007); NS, non-significant.
doi:10.1371/journal.pgen.1001146.t001
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IMT-levels between the two follow-up studies. When applying the

machine learning-based procedure to prediction of the subjects

with increasing changes in their IMT-levels between the study

years 2001 and 2007, the selected SNPs could again systematically

increase the predictive power across all the progression risk classes,

compared to the accuracy obtained with the conventional risk

factors either alone or when combined with the panels of variants

identified in the previous case-control studies or in the present

study population using single-SNP statistical testing (Figure 2C). In

this case, however, the prediction accuracies were not anymore

monotonically decreasing functions of the quantile point (q). In

particular, the 10% risk class was found to be problematic, which

could be due to the particular IMT cutoff values used in its

quantitative definition. Interestingly, the SNP set most predictive

of the IMT progression contained a relatively large number of

variants with modest contributions to the predictive power; of

these variants, only one was among the established markers

identified in the previous case-control studies (Table 4). Even if the

IMT progression proved relatively difficult to predict, the many

novel markers support the potential and added value of genetic

variation, especially when evaluating susceptibility to the most

extreme progression risk class (q = 5%).

Epistasis interactions between the predictive variants
To identify candidate epistasis (or synergistic) interactions

between the genetic risk factors, we searched for such pairs of

genetic variants that led to the largest drop in the prediction

accuracy when removed together from the set of predictive SNPs,

relative to the drop resulting from removing either of the variants

separately. As a feasibility study, we explored the particular SNP

set which was found to be highly predictive of the subjects with the

most extreme IMT progression from 2001 to 2007 (Figure 2C,

q = 5%). When investigating a specific variant (rs2516839) in the

upstream stimulatory factor 1 (USF1), a known regulator of the

transcription of several cardiovascular-related genes, we identified

a number of potential genetic interaction partners of USF1

(Figure 3), including formin 2 (FMN2, rs17672135), protein

tyrosine phosphatase, non-receptor type 22 (PTPN22, rs2476601),

hepatic triglyceride lipase (LIPC, rs1800588), and arachidonate 5-

lipoxygenase-activating protein (ALOX5AP, rs17222814). It is

interesting to note that each of these candidate gene-gene

interactions originated from different biological processes, indi-

cating that the disease progression and phenotypic heterogeneity is

likely due to genetic alterations within multiple molecular

pathways (Table S4). Such interactions and pathways may serve

as basis for more detailed further studies of the molecular

mechanisms and disease networks that predispose to such excess

levels of the IMT-progression that can lead to clinical cardiovas-

cular events in the future.

Evaluation on independent and randomized subject sets
To further explore the generalization capability of the prediction

models estimated and evaluated on the current study subjects, we

constructed a separate validation set consisting of those subjects who

Figure 2. Prediction accuracy as a function of increasing risk
classes. The accuracy was defined using the area under the receiver
operating characteristic curve (AUC), and the risk classes using the
quantile points (5–25%). (A) Prediction of the baseline IMT risk classes in
2001 when using the conventional risk factors either alone, or when
combined with the panel of 17 SNPs associated in previous studies with

cardiovascular morbidity (Established SNPs), with those SNPs that are
significantly associated with the low- and high-risk classes (Significant
SNPs), or with the most predictive SNPs identified using the machine
learning-based approach (Predictive SNPs). (B) Prediction of the follow-
up IMT risk classes in 2007 using the baseline conventional and genetic
risk factors measured in 2001. (C) Prediction of the IMT progression risk
classes when using the baseline conventional and genetic risk factors
measured in 2001 (the same as in (A,B)).
doi:10.1371/journal.pgen.1001146.g002
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were filtered out in the initial subject selection because of missing

data, but had a complete set of those SNPs identified for the

particular risk class (see Figure S1). These new subjects were then

split into the classes of ‘low-risk’ and ‘high-risk’ based on the exact

same IMT-cutoff values that were used in the original subjects. In

general, the results in the independent validation set scaled as

expected (Figure 4). Even if the prediction of the new subject classes

using those SNPs identified in the original dataset led to decreased

prediction accuracies (average decrease in AUC was 0.043), their

prediction capability was shown to extend beyond the original

subjects, especially for the extreme 5% IMT cases, whereas the 10%

risk class again showed poorer performance. A part of the decreased

accuracy can be attributed to the sensitivity of the extreme selection

strategy to the particular IMT quantile cut-offs being used (the

dotted trace). We also repeated the same model building and

evaluation framework for randomized datasets, in which subjects

Table 2. The single nucleotide polymorphisms (SNPs) predictive of the subjects with 15% lowest and highest IMT levels in 2001.

SNP ID* (rs number) Gene symbol (HGNC name) SNP location (Chr region) Significance{ (p-value) Predictive power{ (%AUC)

rs2073658 USF1 1q23.3 0.70 11.8

rs1205 CRP 1q23.2 0.02 10.6

rs805305 DDAH2 6p21.33 0.38 9.68

rs3890182 ABCA1 9q31.1 0.81 7.53

rs6929137 C6orf97 6q25.1 0.10 7.53

rs4073307 IGSF1 Xq26.1 0.71 6.45

rs693 APOB 2p24.1 0.53 6.45

rs3130340 INTERGENIC 6p21.32 0.11 6.45

rs599839 PSRC1 1p13.3 0.10 6.45

rs754523 INTERGENIC 2p24.1 1.00 5.38

rs1143634 IL1B 2q13 0.51 5.38

rs4404254 ICOS 2q33.2 0.16 4.30

rs2548861 WWOX 16q23.1 0.14 4.30

rs2553268 WRN 8p12 0.15 3.23

rs4937100 IL18 11q23.1 0.22 2.15

rs2516839 USF1 1q23.3 0.13 2.15

*The SNPs identified also in the previous case-control association studies [9–21] are boldfaced.
{The corrected p-values larger than one were truncated to unity.
{The SNPs are arranged according to their contribution to the overall prediction accuracy (AUC).
doi:10.1371/journal.pgen.1001146.t002

Table 3. The single nucleotide polymorphisms (SNPs) predictive of the subjects with 15% lowest and highest IMT levels in 2007.

SNP ID* (rs number) Gene symbol (HGNC name) SNP location (Chr region) Significance{ (p-value) Predictive power{ (%AUC)

rs17672135 FMN2 1q43 0.41 17.5

rs9941339 CDH13 16q24.2-q24.3 0.75 8.75

rs2548861 WWOX 16q23.1 0.14 8.75

rs9939609 FTO 16q12.2 0.69 7.50

rs693 APOB 2p24.1 0.53 7.50

rs17222814 ALOX5AP 13q12.3 0.89 7.50

rs1041981 LTA 6p21.33 1.00 7.50

rs9551963 ALOX5AP 13q12.3 0.64 6.25

rs7524102 INTERGENIC 1p36.12 0.77 5.00

rs2516839 USF1 1q23.3 0.13 5.00

rs2301880 WNK1 12p13.33 1.00 5.00

rs7759938 INTERGENIC 6q21 0.12 3.75

rs9479055 C6orf97 6q25.1 0.40 3.75

rs3130340 INTERGENIC 6p21.32 0.11 3.75

rs2553268 WRN 8p12 0.15 2.50

*The SNPs identified also in the previous case-control association studies [9–21] are boldfaced.
{The corrected p-values larger than one were truncated to unity.
{The SNPs are arranged according to their contribution to the overall prediction accuracy (AUC).
doi:10.1371/journal.pgen.1001146.t003

Genetic Variants Predictive of Atherosclerosis
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Table 4. The single nucleotide polymorphisms (SNPs) predictive of the subjects with 15% lowest and highest IMT changes from
2001 to 2007.

SNP ID* (rs number) Gene symbol (HGNC name) SNP location (Chr region) Significance{ (p-value) Predictive power{ (%AUC)

rs2073658 USF1 1q23.3 0.70 9.40

rs9479055 C6orf97 6qs25.1 0.40 8.55

rs17672135 FMN2 1q43 0.41 8.55

rs9687339 MAST4 5q12.3 0.93 7.69

rs1042713 ADRB2 5q33.1 0.48 7.69

rs2301880 WNK1 12p13.33 1.00 6.84

rs3130340 INTERGENIC 6p21.32 0.11 6.84

rs2476601 PTPN22 1p13.2 0.44 5.13

rs11898505 SPTBN1 2p16.2 0.27 5.13

rs3798220 LPA 6q25.3 1.00 5.13

rs10172036 ICOS 2q33.2 0.52 5.13

rs2820037 INTERGENIC 1q43 0.66 4.27

rs2234693 ESR1 6q25.1 0.74 3.42

rs1800896 IL10 1q32.1 0.71 3.42

rs17222814 ALOX5AP 13q12.3 0.89 3.42

rs1801274 FCGR2A 1q23.3 0.75 2.56

rs854560 PON1 7q21.3 0.81 1.71

rs10246939 TAS2R38 7q34 0.80 1.71

rs9594738 INTERGENIC 13q14.11 0.58 1.71

rs1799983 NOS3 7q36.1 0.06 0.855

rs1256049 ESR2 14q23.2 0.46 0.855

*The SNPs identified also in the previous case-control association studies [9–21] are boldfaced.
{The corrected p-values larger than one were truncated to unity.
{The SNPs are arranged according to their contribution to the overall prediction accuracy (AUC).
doi:10.1371/journal.pgen.1001146.t004

Figure 3. Candidate interaction partners of a variant in USF1 (rs2516839). The candidate SNP-SNP interactions were searched among the
variants predictive of the extreme IMT progression (see Table S4). The interaction score for a SNP-pair (x,y) is Px,y{ PxzPy

� �
, depicting the combined

contribution of the SNP-pair to the predictive power (Px,y), relative to that of the individual SNPs’ contributions (Px and Py). The predictive power
was assessed in terms of how much the AUC value changed when the particular SNP or SNP-pair was deleted from the subset of variants. The Gene
ID was used as a SNP identifier, where available; otherwise, the rs ID was used instead.
doi:10.1371/journal.pgen.1001146.g003
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were divided into the low- and high-risk classes at random. This

resulted in random prediction accuracies (average AUC 0.496),

indicating that the high accuracies obtained with the predictive

models were not by chance alone (Figure 4). Based on these results,

independent and randomized subject sets were found to be useful

for controlling the degree of overfitting, even when cross-validation

is used in the model building.

Discussion

The present results demonstrate a predictive relationship between

an individual’s genotypic variation and early signs of atherosclerosis

along with its progression over a 6-year period in our population-

based longitudinal follow-up study. The relationship was much

stronger with the variants identified using the machine learning-

based approach compared to the variants identified using single-

locus statistical hypothesis testing procedures either in the present

study population or in the previous case-control association studies of

clinically manifesting CHD [9–21]. This latter finding is in line with

a recent observation that the genetic scores, constructed from

individual SNPs that met the genome-wide level of statistical

significance in earlier GWASs, could not improve the prediction of

cardiovascular risk after adjustment for conventional cardiovascular

risk factors [41]. Similar observations have been made in the context

of other diseases when using such a ‘bottom-up’ approach to building

discrimination models [33]. In the present study, rather than

exclusively using only those variants with the lowest p-values for

association, we took here an alternative ‘top-down’ approach to

predictive modeling by explicitly searching for all of the genetic and

conventional risk factors that positively contribute to the prediction

power. It was surprising to note that, among the most predictive

variants, there was only a single statistically significant SNP in the

present cohort (see Table 2, Table 3, Table 4), supporting the idea

that many of the predictive associations are detected much lower

down on the ranked list of hits compared to the top hits with the

highest statistical support [43]. Ignoring such ‘gray zone’ variants is

likely to result in missing an important proportion of the quantitative

variation in heritability [44]. The proposed predictive modeling

framework therefore complements the statistical class comparison

procedures traditionally used during the discovery phase.

We used our longitudinal cohort data of carotid atherosclerosis

precursors to implement a class prediction model, with the specific

aim to build a multivariate discrimination function, or a classifier

[45], which can accurately predict the risk class of a new subject on

the basis of a panel of key variants. Sampling of the subjects with

increasing carotid IMT levels from our follow-up study provided us

with the unique opportunity to investigate the genetic variants

contributing to the present and future atherosclerosis risk.

Evaluation of the genetic variants predictive of the 2001 IMT risk

classes was used here to set a baseline for the prediction accuracies

and for the corresponding SNP panels. Medically, it is perhaps most

interesting to evaluate the ability to predict the future IMT risk

classes as well as the progression of the IMT levels over the time.

The determination of the future atherosclerosis risk is analogous to

predicting the 2007 IMT risk classes based on the data reflecting the

2001 baseline genetic variants and confounding risk factors. The

IMT progression (i.e., difference between the 2007 and 2001 IMT

levels) is relevant in that even though an individual may not be

considered to be in the risk group in 2007, the rate of change in the

IMT levels between the evaluation years is large enough to warrant

the subject as still being regarded as being at higher risk. The group

with extreme IMT progression therefore represents the set of

subjects who would be potential candidates for primary prevention

in order to offset their likelihood of developing carotid atheroscle-

rosis in the future. The full set of the SNP-panels predictive of the

IMT-levels in the 2001 and 2007 studies, as well as of its relative

progression from 2001 to 2007, are listed and characterized in

Table S1. The genetic interactions between those variants that were

highly predictive of the extreme IMT-progression are further

discussed in Text S2.

Those SNPs that were found to be the most predictive of the

15% risk classes of IMT-levels and progression (Table 2, Table 3,

Table 4) can be interpreted on the basis of a prior knowledge

(Table S5). Most of the SNPs and corresponding genes have

earlier been associated with cardiovascular disease risk factors such

as low serum HDL-cholesterol and high serum LDL-cholesterol,

triglycerides, lipoprotein(a) and apolipoprotein B concentrations

(i.e., APOB, LPA, WWOX, ABCA1, USF1, PSRC1, ADRB2),

inflammation, inflammatory and immunological factors such as

serum CRP and interleukin levels (i.e., CRP, IL18, IL1B, LTA,

ALOX5AP, IL10, ICOS, PTPN22), blood pressure, hemodynam-

ics as well as serum asymmetric dimethyl arginine concentrations

(DDAH2, WRN, WNK1, CDH13, NOS3), obesity, BMI,

metabolic syndrome (FTO, ADRB2), and lipoprotein oxidation

(PON1). Most of these SNPs are also linked to different

cardiovascular traits, such as coronary artery disease, coronary

artery calcification and atherosclerosis plaque areas, myocardial

infarction, sudden cardiac death, stroke, as well as having

phenotypic relationships with subclinical atherosclerotic traits

such as carotid IMT (ESR1, APOB, PON1, USF1, ALOX5AP,

ESR2, IL10, FCGR2A). Such associations have been found either

alone or by interaction with other genes and clinical or

Figure 4. Prediction accuracies on independent and random-
ized subject sets. The accuracy was defined using the area under the
receiver operating characteristic curve (AUC), and the risk classes using
the quantile points (5%–25%). The prediction accuracies were evaluated
for the baseline IMT risk classes in the independent dataset, in
comparison with the cross-validated accuracies obtained in the original
dataset using the same IMT thresholds, conventional risk factors and
the most predictive SNPs identified with the machine learning-based
procedure in the original subject set. The dotted trace shows the effect
of deleting those subjects whose IMT level was the same or close to the
quantile cut-off value (,0.02 difference in IMT). The randomized
datasets were generated by first dividing the original set of subjects
into the low- and high-risk classes at random, independent of their IMT-
levels, and then repeating the same randomization process 100 times
for each of the risk classes. The average AUC level for the various risk
classes is reported. None of the 500 randomized datasets produced
prediction accuracy higher than that obtained using the most
predictive SNPs identified in the original set of subjects.
doi:10.1371/journal.pgen.1001146.g004
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environmental factors, including diabetes mellitus and use of

alcohol or smoking [46,47]. There were also novel IMT-related

SNP candidates, earlier associated with bone density (C6orf97 and

some intergenic SNPs), revealing possible mechanistic links to

bone mineral and calcium metabolism. It is known that

morphogenetic proteins and vascular calcification are activated

in advanced atherosclerotic plaques [48–50]. On the basis of the

present results, the same seems to hold true already in the sub-

clinical stage of carotid atherosclerosis.

Limitations of the study and future developments
As with any association study that evaluates the contribution of a

large number of candidate variants to a given phenotype, the

question of how well the results will generalize to other study

populations remains to be studied. This is a potential limitation in all

SNP studies regardless of whether the class comparison or class

prediction approach is being applied. It is known that associations

identified in one population using the single-SNP statistical

hypothesis testing procedures may not be detected in other

populations in part due to the p-values being affected by the

confounding factors [29,51]. Measures which directly evaluate the

predictive value of multiple factors, such as AUC-values, can

overcome some of these limitations but are not without caveats

[32,33,52]. Unlike many other class prediction studies that have

used the AUC to assess the discrimination accuracy within the given

cases and control subjects only, here we used cross-validation both

when selecting coherent subsets of the most predictive variants,

through feature selection, as well as when evaluating their

prediction accuracy, as compared to the subsets of the most

significant SNPs. Cross-validation was necessary to avoid a selection

bias, which can lead to over-optimistic prediction results and the

reporting of a large number of over-fitted genetic variants [45,53].

The final evaluation of the panels of SNPs was done using an

independent subject set to confirm that the reported models also

generalize to other sub-populations beyond those used in the initial

model estimation and validation. Testing on an independent dataset

can also help to resolve any biases that may exist due to the fact that

the cross-validation folds are far from independent of one another.

In common with many other SNP-studies, our main objective

here was to find out those variants that are the most predictive of

the atherosclerosis risk and progression in our follow-up study.

When the aim is to obtain high prediction accuracies, the rules for

including factors in the discrimination model are different from

those when searching for the strongest statistical associations [54].

However, regardless of whether the discoveries come from

statistical significance testing or from machine learning-based

SNP-selection, the selected variants need to be carefully validated

in further studies [55]. These two complementary approaches

have also been combined, by building prediction models based

exclusively on statistically significant SNPs, but this combined

approach has been shown to result in poor classification accuracies

[33]. In fact, reasonable increases in the prediction accuracies are

often obtained only after including hundreds of top variants,

depending on the complexity of the disease phenotype and

whether or not cross-validation is utilized [32,38,39]. When the

aim is class prediction, we believe it is better to make use of those

methods that are specifically designed for optimal prediction,

together with stringent feature selection and cross-validation, to

output modest number of highly predictive and reliable variants

for further study [45]. Further evaluation of the prediction power

on independent and randomized subject sets was also found to be

useful for controlling the degree of over-fitting, as shown in

Figure 4, even when systematic cross-validation schemes are being

used in the model building process [56,57].

It was interesting to note here that the simple naı̈ve Bayes

classifier performed well in the prediction of the atherosclerosis risk.

The conditional independence assumption behind this probabilistic

prediction model results in the nominal predictive probabilities that

are often unrealistic, in the sense of being very close to either zero or

one. Therefore, we followed the standard practice and chose the

class with the highest posterior probability. Despite this simplifying

assumption, the naı̈ve Bayes classifier generally provided the best

prediction results across the various risk classes, compared to other

classification models, such as Bayes Nets, Support Vector Machines,

or Random Forest (see Text S1 for their comparison). Moreover,

because of its simplicity, the naı̈ve Bayes classifier is also

computationally more efficient than the other, more complex

prediction models, enabling its usage in GWAS meta-analyses as

well. These observations are in line with previous works, which have

shown that the naı̈ve Bayes classifier can perform well even in the

case when there are strong dependencies in the dataset [58–60]. In

particular, it has proven to be effective in the context of the IMT-

phenotype and in SNP-data [61,62]. Standard filtering procedures,

such as those based on the Hardy-Weinberg equilibrium, and other

quality control measures implemented during the genotyping can

result in severe restrictions on the joint distribution of alleles,

enabling them to appear independent of one another, further

explaining the good performance of the naı̈ve Bayes classifier.

However, other efficient SNP-subset selection methods that go

beyond the single-SNP testing, such as those based on penalized

maximum-likelihood approach [63], or different filter-wrapper

machine learning approaches [31], could be used in the generic

modeling framework.

While previous studies have identified sex-related differences in

the cardiovascular disease incidence and genetic risk factors [64],

the objective of the present study was to demonstrate that a

common panel of genetic risk factors can already improve the

prediction of subclinical carotid atherosclerosis risk and progres-

sion in a general population of young adults. Therefore, we did not

stratify the subjects on the basis of any of the conventional risk

factors, including sex or age, but the subjects were combined into a

single distribution (Figure 1). In the future studies, however, it is

possible to divide the heterogeneous population into more

homogeneous sub-samples to investigate the relationship between

the genetic and conventional risk factors in more controlled

settings. Further, pathway and network analyses of such sub-

sample-specific genetic variants and their interactions could reveal

also underlying similarities or differences in the biological

processes and genetic networks [6]. We have previously shown

that sub-sampling-based automated procedures can help to detect

hidden subject sub-groups that present with similar genetic profiles

in genome-wide studies and which may associate with divergent

clinical outcomes [65]. An automated subject grouping combined

with the predictive modeling framework introduced in the present

study could offer possibilities to start developing personalized

approaches that make the most of genetic variation together with

clinical data to predict individual susceptibility to the initiation and

progression of carotid atherosclerosis and other complex diseases.

Such experimental-computational approaches may prove to have

also clinical utility in the early detection and management of sub-

clinical atherosclerosis and other quantitative disorders.

Materials and Methods

Subject selection
The Cardiovascular Risk in Young Finns Study is an on-going

population-based follow-up study of atherosclerosis precursors

from childhood to adulthood [66]. The multi-center study has
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been carried out in five university hospitals across Finland (Turku,

Tampere, Helsinki, Kuopio and Oulu). The baseline cross-

sectional study in 1980 included a total of 3,596 children and

adolescents, aged between 3–18 years, who were randomly chosen

from the national population register [67]. Since then, follow-up

studies have been conducted in 1983, 1986, 2001 and 2007, in

which the conventional risk factor data have systematically been

collected from the individuals participating in those studies. In the

two most recent follow-ups in 2001 and 2007, which were used in

the present analysis, a total of 2,283 and 2,204 participants were

re-examined, comprising the age groups of 24, 27, 30, 33, 36, 39

years and 30, 33, 36, 39, 42, 45 years, respectively; out of these, a

total of 1,828 subjects participated both in the 2001 and 2007

follow-up studies [68]. The subjects involved in the cohort

provided written consent to be included in the study approved

by local ethics committees.

The study cohort for the present analysis was comprised of those

subjects who took part in both the ultrasound and the genotyping

studies in 2001. The carotid artery intima-media thickness (IMT)

was measured from 1,809 subjects in both of the follow-up studies.

Genotyping of single nucleotide polymorphisms (SNPs) was based

on the DNA collected in 2001. The candidate gene approach was

used to explore potentially interesting relationships between

several known SNPs and clinical traits. Subjects who had missing

values either in their IMT or SNP data in the year 2001 or 2007

were excluded from the present analysis, in order to eliminate their

potentially adverse effects on both the reported prediction

accuracies and on the selected genetic variants. Due to such

stringent subject selection criteria (see Figure S1), the complete

data matrices from n = 1,027 subjects were used in the search of

genetic variants (SNP sets) that are predictive of the atherosclerosis

(indexed by IMT) at baseline (2001); of these, n = 813 had

complete data also in the follow-up study (2007), and could be

used when searching for variants predictive of IMT progression

(the change from 2001 to 2007).

Clinical characteristics
In the present analysis, we used the conventional risk factor data

from the 2001 follow-up study. The physical examination

consisted of the measurement of height, weight, systolic and

diastolic blood pressure, and waist circumference [66]. The body

mass index (BMI) was calculated by dividing the patients’ weight

in kilograms by the square of their height in meters. Waist

circumference was recorded as the average of two measurements

with an accuracy of 0.1 cm. Blood pressure was measured at least

three times with a random zero sphygmomanometer, and the

average of the three readouts of systolic and diastolic blood

pressure was recorded. Lifestyle risk factors, such as smoking, were

examined with questionnaires; the subjects who smoked daily were

regarded as smokers. For the assessment of serum lipoprotein

levels, venous blood samples were drawn after an overnight fast

and the serum was separated, aliquoted and stored at 270uC until

analysis. Standard enzymatic methods were used for recording the

levels of serum total cholesterol, HDL-cholesterol, and LDL-

cholesterol, as well as the concentrations of serum triglycerides,

apolipoprotein A1 (ApoA1) and B (ApoB) [67,68].

Genotyping studies
Genomic DNA was extracted from peripheral blood leukocytes

with a commercially available kit (Qiagen Inc., Valencia, CA).

The DNA samples collected during the 2001 follow-up study were

genotyped as described previously [66,69]. In the present analysis,

we included the panel of 17 SNPs with the highest single-SNP

statistical significance in the recent GWASs identifying variants for

CHD outcomes and serum lipids [9–21], as well as a number of

other candidate SNPs listed in the first phase of the international

pooling project of cardiovascular cohorts [70]. A total of 108 SNPs

with complete genotyping data in the selected subjects were

considered here in the predictive modeling; these SNPs are

generally related to serum lipid and lipoprotein metabolism,

oxidation, cellular lipid metabolism, inflammation, immunological

system, cell signaling, cell migration, cell growth, homocystein

metabolisms, cellular adhesion and blood coagulation (see Table

S1 for the full list of SNPs together with information on their gene

annotation and chromosomal location, as well as on associated

phenotypes available from previous studies).

Ultrasound imaging
Ultrasound studies were performed using Sequoia 512 ultra-

sound mainframes (Acuson Inc., Mountain View, CA, USA), with

13.0 MHz linear array transducers. Exactly the same scanning

protocol was used both in 2001 and 2007 studies, as previously

described [23]. Briefly, carotid IMT was measured on the

posterior (far) wall of the left carotid artery. At least four

measurements were taken 10 mm proximal to the bifurcation,

and the average of the readouts was recorded. The digitally stored

scans were manually analyzed by the same reader both in 2001

and 2007 blinded to the subjects’ characteristics. The between-visit

coefficient of variation of such IMT measurements was 6.4%, as

estimated between two visits that were three months apart [23].

Since the IMT correlates with the risk of atherosclerosis

progression and subsequent cardiovascular events [23–27], it was

used here for stratifying the subjects into gradually increasing risk

classes. Being non-invasive in its nature, this measurement can be

justified in large populations of healthy subjects, without biases

related clinically diagnosed cases and controls [28], making it a

convenient quantitative phenotype of atherosclerosis in popula-

tion-based follow-up studies. The quantitative IMT measurement

suffers from a degree of measurement error, which can lead to

regression to the mean (Figure S2).

Predictive modeling
The relative contribution of the conventional and genetic risk

factors to the individual IMT levels was investigated by means of a

predictive modeling framework, similar to that which we and

others have used before [61,62]. Briefly, the study subjects were

first divided into several risk classes according to their IMT levels.

Based on the concept of extreme selection strategy [1–3], the

quantile points, say (1-q) and q, of the IMT distribution were used

to define the low and high risk classes, respectively (see Figure 1).

The prediction of whether a subject belongs to the high-risk (Hq) or

low-risk (Lq) class was done on the basis of his or her individual

SNP data (S1, …, Sl), whereas clinical characteristics, smoking

habits, sex and age were used as confounding risk factors (C1,

…,Cm). A probabilistic prediction model, the so-called naı̈ve Bayes

classifier, was used here because of its low computational cost and

good performance in previous studies [61,62,71]. Mathematically,

the predictive classifier can be formulated as a conditional

probability of observing the true class R (either Hq or Lq) given

the genetic and confounding risk factors (the predictors P):

p R Pjð Þ~K p Rð Þ P
l

i~1
p Si Rjð Þ P

m

j~1
p Cj Rj
� �

, ð1Þ

where K is a scaling factor independent of the risk class R. The a

priori probabilities p Rð Þ were set to the number of training samples

in the low and high classes [71], and for numeric risk factors, the
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training algorithm estimates the densities p x Rjð Þ using Gaussian

distributions [72] (see Text S1 for more details). The subjects in

the test material were then classified by choosing the risk class with

the highest posterior probability in Eqn (1). The predictive power of

different risk factor combinations was assessed with the k-fold

cross-validation procedure, in which the given sample was divided

into k distinct subsets of equal sizes, each of which in turn was used

as a validation set, to assess how well the results will generalize to

new sets of subjects, while the remaining sub-samples were used in

the initial training of the prediction model [71]. The final

prediction accuracy was reported as the average over the k

validation rounds (here k = 10; see Figure S3).

Selection of predictive variants
The selection of predictive genetic and conventional risk factors

was performed in two-steps, with the aim of identifying a minimal

set of informative features for predicting the different risk classes

(see Figure S3). The SNP selection was done using a machine-

learning-based procedure, similar to the ‘filter-wrapper’ method

[73]. The filtering phase starts from the full set of SNPs and uses

an entropy-based information gain measure to reduce the high-

dimensional search space to the subset of most informative genetic

and conventional risk factors (here 40), which could subsequently

be traversed thoroughly in the next phase of selection. In the

wrapper phase, the best first-based iterative search-and-evaluate

algorithm was used to further improve this subset by excluding

those factors with least predictive power, using backward search

direction, while the backtracking option allows for escaping from

local optima [71]. The predictive power of the selected factor

combinations was assessed using the naı̈ve Bayes classifier, run

with a 5-fold cross-validation to avoid potential selection bias, and

the final prediction accuracy was evaluated using external 10-fold

cross-validation (see Figure S3). The predictive modeling and risk

factor selection was carried out with the Weka data mining

platform (version 3.7; University of Waikato, New Zealand) [71].

Assessment of prediction accuracy
The predictive accuracy of the classifiers, constructed using

either the p-value-based selection of the most significant SNPs or

the machine-learning-based selection of the most predictive SNP-

sets, was assessed using the receiver operating characteristic (ROC)

analyses; ROC curves characterize the relative trade-off between

true positive rate (sensitivity) and false positive rate (1 – specificity)

of a classifier over the whole range of discrimination thresholds

[32,33,71]. The overall accuracy of a classifier was summarized

using the area under the ROC curve (AUC) measure; for an ideal

classifier, AUC = 1, whereas a random classifier obtains an

AUC = 0.5 on average [52,61,71]. The relative predictive power

of each individual SNP or SNP-SNP interaction was assessed in

terms of the change in AUC level when the particular SNP (say x)

or the SNP-pair (x,y) was deleted from the selected set of variants

(denoted by Px and Px,y, respectively). The interaction score for

detecting epistasis effects was defined as Px,y{ PxzPy

� �
,

resembling additive definition of genetic interactions based on

single and double-deletion experiments in model organisms [74].

The AUC-values were calculated using the Weka platform

(version 3.7; University of Waikato, New Zealand) [71].

Statistical procedures
The level of statistical association of single SNPs with the IMT-

classes was assessed by determining the genotypic probabilities

(p-values), on the basis of the 263 contingency matrix that contains

the counts of the three genotypes among the low-risk and high-risk

subjects [75]. Computationally efficient calculation of the exact

p-values for each individual SNP was carried out with the

ExactFDR software [76]. The Pearson correlation coefficient was

used to assess the linear association between the various

conventional risk factors and IMT-levels or changes. These p-

values were adjusted for multiple testing using the Bonferroni

correction. Although it is known that this correction may be

conservative, especially when the test statistics are dependent, it

provides an effective means for ensuring that the findings deemed

most significant are not by chance alone when many hypotheses

are being tested simultaneously. Differences in the distributions of

the IMT-levels or changes between sub-populations were assessed

using the Kolmogorov-Smirnov D-statistic, which is based on the

maximal vertical distance between the two distributions. The

statistical analyses were carried out with the SPSS Statistics

software (version 17.0; SPSS Inc., Chicago, IL, USA) and with the

statistical computing platform R (http://www.rproject.org/).

Supporting Information

Figure S1 The selection of the subjects and SNPs for the original

dataset and for the independent validation set from the

Cardiovascular Risk in Young Finns Study cohort. The white

entries represent missing data points and their corresponding

SNPs and subjects were removed by the final dataset which is

represented by the completely shaded box on the upper left hand

corner. The first inclusion criterion for the subjects was that they

must have complete data for the set of 17 variants that have

previously been associated with cardiovascular events (Established

SNPs, the yellow submatrix). After that, the set of SNPs was

extended gradually, to incorporate as many subjects as possible

with complete SNP data. This selection procedure resulted in a

sub-matrix of 1027 subjects and 108 SNPs that were used here

when searching for the variants predictive of the severity and

progression of sub-clinical atherosclerosis (Candidate SNPs, the

blue submatrix). In order to create the independent validation

dataset, the set of patients who were not part of the original 1027

subject subset were searched for those individuals who had

complete data for all of the SNPs involved in a particular

predictive model (Predictive SNPs). The number of patients, n, in

each of the independent sets varied according to the particular risk

class the validation set was created in relation to (n = 103, 222, 300,

351 and 423, for the 5%–25% risk classes, respectively).

Found at: doi:10.1371/journal.pgen.1001146.s001 (0.17 MB PDF)

Figure S2 Scatter plots of the IMT levels (A) in 2001 and 2007,

and (B) with 2001 and the change in value between 2001 and

2007, both fitted with their respective linear correlation models

(black lines). The plots are marked with two sets of vertical lines

indicating the numerical IMT cutoff values used to select the 5%

(red solid lines) and 15% (blue dashed lines) extreme quantiles and

to split the subjects into the low-risk and high-risk classes.

Although regression to the mean is observed, as was expected, it

can be seen that the 15% extreme value class contains both

increasing and decreasing IMT values, making it a unique

situation in which the classifier must try to predict different IMT

change directions within individual risk classes.

Found at: doi:10.1371/journal.pgen.1001146.s002 (0.53 MB PDF)

Figure S3 Schematic illustration summarizing the model

building and evaluation procedure. Implementation and evalua-

tion of the machine learning-based feature selection algorithm,

compared to using the single-SNP p-values (the right-hand track).

The aim of the algorithm was to select the subset of genetic factors

(SNPs) and conventional risk factors (CRFs) from the filtered

dataset that were the best predictors of the risk classes, determined
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separately for 2001 and 2007 IMT levels (two follow-up points), as

well as for its progression between 2001 and 2007 (IMT

progression). The low-risk and high-risk were defined based on

the gradually increasing quantiles of the pooled IMT distribution

(q ranges from 5% to 25%). The most significant SNPs,

determined using single-SNP statistical testing for the same risk

classes, were used as a reference SNP selection approach in the

evaluations.

Found at: doi:10.1371/journal.pgen.1001146.s003 (0.12 MB PDF)

Table S1 The SNPs explored in the present study, together with

information on their gene annotation and chromosomal location

(from the dbSNP database), and on associated phenotypes as

available from the existing studies (listed in references). Established

SNPs refer to those 17 variants identified in the previous CHD

case-control association studies. The other columns indicate

whether the SNPs were considered predictive of the various

IMT risk classes.

Found at: doi:10.1371/journal.pgen.1001146.s004 (0.10 MB

XLS)

Table S2 The statistical significance (p-value) calculated for each

of the individual SNPs, depicting their degree of association with

the various IMT risk classes in 2001, 2007, and with the IMT

changes from 2001 to 2007.

Found at: doi:10.1371/journal.pgen.1001146.s005 (0.08 MB

XLS)

Table S3 Pairwise correlations between the conventional risk

factors and with the IMT levels in 2001, 2007, and progression

from 2001 to 2007.

Found at: doi:10.1371/journal.pgen.1001146.s006 (0.05 MB

XLS)

Table S4 Molecular pathways and biological processes of the

genetic variants predictive of the most extreme 5% IMT change

from 2001 to 2007.

Found at: doi:10.1371/journal.pgen.1001146.s007 (0.04 MB

XLS)

Table S5 The interpretation of the SNPs most predictive of the

15% IMT risk classes in 2001, 2007, and of its progression from

2001 to 2007.

Found at: doi:10.1371/journal.pgen.1001146.s008 (0.04 MB

XLS)

Text S1 Details of how Weka platform was used in the

prediction studies.

Found at: doi:10.1371/journal.pgen.1001146.s009 (0.24 MB PDF)

Text S2 Supporting discussion text.

Found at: doi:10.1371/journal.pgen.1001146.s010 (0.05 MB PDF)
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