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Abstract

Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation with an antigen is crucial
for elucidating factors determining the magnitude, duration and efficiency of the immune response. Recent advances in
quantitative experimental techniques, in particular intracellular labeling and multi-channel flow cytometry, allow one to
measure the population structure of proliferating and dying lymphocytes for several generations with high precision. These
new experimental techniques require novel quantitative methods of analysis. We review several recent mathematical
approaches used to describe and analyze cell proliferation data. Using a rigorous mathematical framework, we show that
two commonly used models that are based on the theories of age-structured cell populations and of branching processes,
are mathematically identical. We provide several simple analytical solutions for a model in which the distribution of inter-
division times follows a gamma distribution and show that this model can fit both simulated and experimental data. We also
show that the estimates of some critical kinetic parameters, such as the average inter-division time, obtained by fitting
models to data may depend on the assumed distribution of inter-division times, highlighting the challenges in quantitative
understanding of cell kinetics.
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Introduction

After activation by encounter with an antigen, B and T

lymphocytes start to proliferate and rapidly expand their numbers.

This expansion phase is followed by a period of population

contraction resulting in only a small fraction of the expanded

population surviving and entering the memory cell pool [1–3].

The kinetics of the expansion and contraction affect the speed of

antigen clearance and the clinical course of disease [1]. At present,

only some of the factors that regulate the differentiation, expansion

and contraction of populations of activated B and T cells are

known, and the picture of the dynamics of their proliferation and

death is incomplete [1,2,4–10]. In order to dissect the contribution

of various factors involved in regulation of lymphocyte kinetics,

such as the precursor cell frequency, cell division rate, the

availability of antigen, the rate of its presentation, and its affinity to

the T cell receptor [2,4,11–14], a quantitative approach is

necessary [11,15]. Precise estimation of division and death rates

during different phases of the immune response is important as it

provides input for analyses of intra- and extra-cellular mechanisms

giving rise to the observed population behavior.

A large experimental effort has been devoted to uncovering the

detailed kinetics of the expansion and contraction of T cells during

the response to intracellular pathogens [1,2,7–11]. Labeling cells

using carboxyfluorescein succinimidyl ester (CFSE), an intracellular

fluorescent dye that dilutes approximately two-fold as a cell divides,

combined with advances in flow cytometry techniques, allows one to

quantitatively follow the proliferation and death of large numbers of

cells over 6–8 divisions [11,16,17]. Interpreting the results from

CFSE labeling experiments poses a number of conceptual and

methodological challenges. In particular, they necessitate develop-

ment of both models and computational tools for extracting

parameters that characterize the rates of cell activation, prolifera-

tion and death. It is also crucial to have a theory that incorporates

the distribution of inter-division and death times and the generation

structure of the dividing and dying lymphocytes, as well as the effects

of variation and noise in the dynamics of lymphocyte populations

[15,18–24]. Taking into account the full shape of the inter-division

time distribution function is important even for such a relatively

simple question as determination of the mean number of cells as a

function of time [25].

Several approaches have been proposed recently to provide a

quantitative description of the dynamics of populations of

proliferating and dying lymphocytes, and to analyze experimental

data.

One approach is based on the use of ordinary differential

equation (ODE) models. The simplest of these models track the

total population of responding lymphocytes. The population may

be split into sub-populations, such as resting, activated and

memory cells. These models are useful due to their computational

convenience and they provide a means for estimation of average

birth and death rates in the population [26–28].
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Extensions of the ODE models can explicitly take into account

the generation structure and the variation in the inter-division and

death times of lymphocytes. Here, for example, one can write

equations for the number of lymphocytes that have divided k
times, k~0, 1, :::::, with proliferation and death rates that depend

on the ‘‘division class’’ k [19,24,29,30]. This class of models is

convenient, as it admits analytical treatment and in many cases

provides a good qualitative description of the dynamics of the

populations of proliferating and dying lymphocytes. However,

such models, which typically involve systems of linear differential

equations, implicitly assume that the probability distributions of

the inter-division and death times are exponential. However, the

exponential distribution overestimates the probability that a cell

divides shortly after the previous division. In reality, cells are

unlikely to divide (or die) immediately after the previous division

[23]. Due to this, such models do not provide an adequate

quantitative description of lymphocyte proliferation and death,

and in many cases cannot be used for quantitative extraction of

kinetic parameters [24].

Such models can be extended to include more realistic inter-

division time distributions using the Smith-Martin model of the

cell cycle [18–20,24,30–34]. In the Smith-Martin model, the cell

cycle is divided into two phases: an A state, whose length is

exponentially distributed, and a B phase of fixed length. In the A
state, the cell grows and accumulates mass. After a certain

checkpoint in the cell cycle is passed, the cell becomes committed

to division, and enters the B phase, where DNA is replicated and

the cell cycle is completed ending with the birth of two new cells.

Both progeny are born into the A state, and the cycle starts anew.

The Smith-Martin model provides a more realistic approximation

for lymphocyte inter-division times than models that assume an

exponential distribution of inter-division times, such as the ODE

models. As a result, Smith-Martin type models provide a

quantitatively better description of the dynamics of the populations

of proliferating and dying lymphocytes, and of their generation

structure, especially when the rates of cell proliferation are high

[18,20,24,32].

Recently, another class of models, based on general probability

theory has been introduced. These theories incorporate arbitrary

(or experimentally motivated) inter-division and death time

distributions [15,22,23,35–37]. Assuming that the death and birth

processes inside each cell are independent, Leon et al. [37] and

Hodgkin and coworkers [23,35,36] developed a framework that

allows one to predict mean numbers of cells in different division

classes for arbitrary, generation-dependent distributions of birth

and death times. This approach has been extended using the

theory of branching processes to include variation in the number

of cells per division due to stochasticity in cell division and death

[36,38,39].

Finally, age-structured population models of the McKendrick–

von Foerster type [40,41] have been used for analysis of

lymphocyte population kinetics [20,36,42].

All these models are similar in the sense that they describe the

potentially complicated underlying biological processes of cellular

proliferation and death in terms of effective birth and death

parameters. However, at the first glance, the aforementioned

models are substantially different in some aspects. For instance, the

ODE based models describe cell division in terms of a continuous

process characterized by a single birth rate. By contrast, models

based on probability theory and branching processes [23,36–39]

represent cell division as a discrete event. Finally, Smith-Martin

type models [18,24,32] make specific assumptions about the

progression of the cell cycle. While all these types of models have

been used to describe lymphocyte proliferation and death and to

estimate the birth and death rates, it still remains unclear to what

extent the models are inter-changeable and to what extent the

estimates of parameters depend on the choice of a specific model

and on the choice of the inter-division and death distributions.

In this paper, we compare different models and their

applicability to estimation of parameters from experimental data.

Based on and extending previous work, we develop a general

quantitative framework, which rigorously derives existing models,

elucidates connections between them, and allows us to examine

the underlying approximations involved in these models. The

framework provides a computationally simple tool for analysis of

the dynamics of expanding and contracting lymphocyte popula-

tions, complementary to the existing methods. The framework is

based on the theory of branching processes [41,43] and age-

structured populations models [40].

The paper is organized as follows. We first develop a theory of

the generation structure of the population of dividing and dying

cells, based on the theory of age-structured populations and derive

expressions for the number of cells that have undergone a given

number of divisions. We then use the theory of branching

processes to show that this alternative approach gives the same

predictions regarding the numbers of cells in a particular division

class as the theory of age-structured populations. Next, we show

that the models commonly used in the literature all can be derived

within the unified framework presented in this paper. We then

explore the plausibility of our modeling approach to the estimation

of rates of cell division and death using simulated and

experimental data.

Results

Age-structured Populations
In this section, we use the theory of age-structured populations

to compute the number of cells that have undergone a given

number of divisions, for an arbitrary distribution of inter-division

and death times. Apart from mathematical rigor, the age-

structured formulation has the advantage of being easily

generalizable to more complicated situations, such as inclusion

of time-dependent birth and death rates that might arise from

cytokine regulation, dependence of cell properties on the cell age,

asymmetric divisions, etc.

Knowing the distribution of inter-division times is critical for

determining from experimental measurements the parameters

commonly used to describe the kinetics of the immune response,

such as the average inter-division time. To exemplify this point,

consider a population of cells that, starting with a single individual

at time t~0, expand with an average measured rate b, so that the

total number of cells at time t is N(t)~ebt and the population

doubling time is (ln 2)=b. For example, for a population of CD8+
T cells that are specific for lymphocytic choriomeningitis virus

(LCMV), b&2 day{1 [26] and the doubling time is (ln 2)=b&8:3
hours. What is the average inter-division time of individual cells? A

possible answer is that average inter-division time is simply t~8:3
hours, but this implicitly assumes that cells in the population have

identical inter-division times (i.e., all cells take exactly the same

time to divide). By contrast, if the distribution of inter-division

times is exponential (i.e., cells have some chance of dividing right

after their previous division), their average inter-division time is

t~1=b~12 hours which is substantially longer than in the

previous case. In general, that the actual average inter-division

time of cells cannot be deduced the average population expansion

rate b alone. Conversely, a number of different distributions of

inter-division times can lead to identical rates of expansions of cell

populations. In particular, in the Supporting Information S1 we

Lymphocyte Proliferation
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show that for a population of cells with gamma distributed inter-

division times, the total number of cells increases exponentially

with the rate a~(
ffiffiffi
2n
p

{1)=h and therefore a number of gamma

functions with different scale parameters (h~(
ffiffiffi
2n
p

{1)=a) and

shape parameters (n can lead to the identical rate of population

growth. This example emphasizes the necessity of a modeling

description that allows for an arbitrary distribution of inter-

division times [15].

We now review the basic mathematical concepts describing a

population of stochastically dividing and dying cells [25,41,43].

Immediately after a division, the age, a, of both daughter cells is

zero. We denote the probability of a cell that has divided k times, to

divide for the kz1-th time in the infinitesimal age interval

½a, azda� as Pk(a)da; Pk(a) denotes the probability distribution

of inter-division times. Therefore the probability for a cell to be

quiescent up to an age a after the k-th division, without dividing

again, is Qk(a)~1{
Ð a

0
Pk(a’)da’. Thus, Pk(a)~{dQk(a)=da. On

the other hand, the probability to have the kz1-th division in the

age interval ½a, azda� after the k-th division is (by definition) the

probability of not dividing by age a, Qk(a), multiplied by the rate of

division in the time interval ½a,azda�, bk(a), multiplied by the

interval length da, so that Pk(a)da~bk(a)Qk(a)da. This defines an

average rate at which cells of age a undergo the kz1-th division:

bk(a)~{
d ln Qk(a)

da
, so that Qk(a)~ exp ({

Ð a

0
bk(a’)da’). It is

important to distinguish between the average division rate bk(a) and

the inter-division time distribution Pk(a); also note that unlike

Pk(a), which is a probability density, the quiescence probability

Qk(a) is a cumulative probability distribution and hence is not

normalized.

Similar mathematics describes cell death. Instead of dividing, a

cell can die at an age a, that is in the interval ½a, azda� after the

previous division, with probability Dk(a)da. Accordingly, the

probability to survive without dying up to an age a is

Sk(a)~1{
Ð a

0
Dk(a’)da’. However, the probability of dying in

the age interval ½a, azda� is the product of surviving to age a,

Sk(a) multiplied by the rate of death in the interval ½a, azda�,
mk(a), multiplied by the length of the interval da, so that

Dk(a)da~mk(a)Sk(a)da. Thus, the average rate of death of cells

of age a that have divided k times is mk(a)~{
d

da
ln(Sk(a)). Also,

Dk(a)~{
d

da
(Sk(a)) and Dk(a)~Sk(a)mk(a). For the case of a

simple birth and death process, the birth and death rates are

constant and independent of the number of divisions a cell has

undergone, S(a)~e{ma, Q(a)~e{ba and thus P(a)~be{bt,

D(a)~me{mt, that is the distributions of inter-division and death

times are exponential [25,40,43]. Further, the probability of a cell

living to age a without either dying or dividing is simply Q(a)S(a).

We denote the number of cells that have undergone exactly k

divisions and whose age is in the interval ½a, azda� at time t as

nk(a, t)da. Then, the total number of cells at time t that have

undergone exactly k divisions is Nk(t)~
Ð?

0
nk(a’, t)da’ - these

cells are termed as belonging to the k-th division class. Cells leave

the k-th division class, by either dividing or dying, with the

combined rate bk(a)zmk(a), which is written mathematically as

[20,40,42]

Lnk(a, t)

Lt
z

Lnk(a, t)

La
~{(bk(a)zmk(a))nk(a, t): ð1Þ

The cells of age zero in division class k are born from cells in

division class k{1. This provides the boundary condition [40]

nk(0, t)~2

ð?
0

bk{1(a)nk{1(a, t)da for k§1, ð2Þ

where we have assumed that at each division a cell produces

exactly two off-spring.

For simplicity, in the following we assume that the cell

population starts at time t~0 with one cell of age zero, which

gives the initial condition for equation (1) nk(a, 0)~dk,0d(a),
where d(a) and dk,0 are the continuous and discrete d-functions,

respectively.

Equation (1) can be solved using the method of characteristics

[42,44] (cf. Supporting Information S1) giving for k~0

n0(a, t)~d(a{t)S0(a)Q0(a): ð3Þ

Therefore, the total number of cells in division class zero at time t

is

N0(t)~

ð?
0

n0(a’, t)da’~Q0(t)S0(t): ð4Þ

As expected, the total number of cells in the 0-th division class at

time t, N0(t), is simply the number of cells that have not divided or

died by that time.

Iteratively, one gets for the number of cells of age a that have

undergone one division by time t, n1(a, t):

n1(a, t)~2Q1(a)S1(a)P0(t{a)S0(t{a) for t§a ð5Þ

and n1(a, t)~0 for tva. Integrating over age a yields the total

number of cell in division class 1

N1(t)~2
Ð t

0
Q1(a)S1(a)P0(t{a)S0(t{a)da

~2
Ð t

0
Q1(t{x)S1(t{x)P0(x)S0(x)dx:

ð6Þ

Equation (6) has a very simple interpretation: namely that the

number of cells that have divided once by time t is the number of

the descendants of the cells that had their first division at some

time x, (0vxvt), P0(x)S0(x), and have remained in the same

division class (that is have not divided or died) until the time t,

Q1(t{x)S1(t{x).

In general, we get

Nk(t)~

ðt

0

Qk(t{x)Sk(t{x)Lk(x)dx for k§1, ð7Þ

where Lk(x)dx is the number of cells that had their k-th division in

the time interval ½x, xzdx�, i.e.,

Lk(t)~2

ðt

0

Pk{1(t{tk{1)Sk{1(t{tk{1)Lk{1(tk{1)dtk{1

for k§2

L1(t)~2P0(t)S0(t):

ð8Þ
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Therefore, by recursion

Lk(tk)~2k

ðtk

0

Pk{1(tk{tk{1)Sk{1(tk{tk{1)dtk{1 :::

ðt2

0

P0(t1)S0(t1)dt1:

ð9Þ

Equations (7), (8) and (9) are the main results of this section and have

the same simple interpretation as the equation for N1(t): at time t, the

number of cells in division class k is the number of the descendants of

the cells that have had k divisions at times t1, t2, :::, tk and have

survived afterwards, without dividing, until time t.

Also note that the equations (7), (8) and (9) can be compactly

written in terms of the Laplace transform:

~LLk(v)~ P
i~k

i~0

~LLi(v)

~NNk(v)~~GGk(v)~LLk{1(v), ð10Þ

where ~LL(v)~
Ð?

0
Li(t) expvt is the Laplace transform of Li(t) and

~GG(v)~
Ð?

0
Pi(t)Si(t) expvt is the Laplace transform of the

product Pi(t)Si(t).
Time-dependent birth and death rates. In principle, the

birth and death rates can depend not only on the age of a cell, and

the number of divisions it has undergone, but also explicitly on

time. Such a situation can arise, for instance, when external signals

that influence the birth and death rates change with time.

The age-structured model formulated above can be extended to

this case by introducing birth and death rates that depend not only

on the age of a cell but also explicitly on time: b(a, t) and m(a, t),
so that the equation (1) becomes

Lnk(a, t)

Lt
z

Lnk(a, t)

La
~{(bk(a, t)zmk(a, t))nk(a, t): ð11Þ

The survival and the quiescence probabilities Sk(a) and Qk(a)
of a cell now explicitly depend on tk, the time of the last

division: Sk(aDtk)~ exp ({

ða

0

mk(a’, tkza’))da’ and Qk(aDtk)~

exp ({

ða

0

bk(a’, tkza’))da’, as can be directly derived from the

equation (11) using the method of characteristics [42,44]. Then,

similar to equation (9), the number of cells that undergo the k-th

division at time tk, is

Lk(tk)~

ðtk

0

Pk{1(tk{tk{1jtk{1)Sk{1(tk{tk{1jtk{1)dtk{1:::

ðt2

0

P0(t1)S0(t1)dt1

ð12Þ

and the total number of cells at time t is, similarly to equation (7)

Nk(t)~

ðt

0

Qk(t{tk Dtk)Sk(t{tk Dtk)Lk(tk)dtk: ð13Þ

Although more complicated, the equations of this section have

the same simple probabilistic interpretation as equations (7) and

(9). Also note that this formulation allows to express any general

dependence of the birth an death rates on time.

Correlations of the birth and death times between

subsequent generations. It has been recently shown in vitro

that the division and death times of lymphocytes (specifically, B

cells) are correlated between the mother and the daughter cells

under certain conditions [45]. Whether it is true in general is not

known and the underlying causes of such correlations are not fully

understood. (for instance, bigger cells might give rise to bigger

daughters whose replication times are longer). That is, the

parameters of the birth and death time distributions of the

daughter cells are not constant but depend on the birth/death

times of the previous division. However, a reasonable assumption

is that the functional form (shape) of the distribution is the same in

all division classes, as it is determined by the same intracellular

processes. One way to formalize this mathematically is to

introduce the explicit dependence of the distribution parameters

in the division class k on the actual previous division time in a

given cell lineage, tk{1{tk{2. Collectively denoting the

parameters of the distribution as ~pp, one can the write the

general form of the distribution of the inter-division as

Pk(tk{tk{1; ~ppk(tk{1{tk{2)). The dependence of the

parameters on the previous division time tk{1{tk{2 can be

arbitrary. For instance, if the mean division time in the division

class k is linearly proportional to the mean division time of the

mother, so that S(tk{tk{1)T~Sx(tk{1{tk{2)z(1{x)=bT
(where x is a numerical parameter), then for gamma-distributed

division times, the distribution of times between division k{1 and

k is

1

2!
b3(tk{tk{1)2 exp {

(tk{tk{1)

x(tk{1{tk{2)z(1{x)=b

� �
ð14Þ

The strength of the correlation can be tuned by varying the

parameter x.

Recruitment rate. In the case of lymphocyte proliferation,

the probability distribution of the time to the first division after

encounter with an antigen is often different from the subsequent

division times. This is due to the different mechanisms involved in

initial lymphocyte activation compared to subsequent proliferation

of activated lymphocytes [15,21,23,24].

One can model the recruitment of cells into division by simply

incorporating it into P0(t), the probability distribution of the time

to the first division. However, the time to first division in vivo is

determined by two independent processes: the time to the initial

encounter with an antigen-presenting cell having enough peptide-

MHC on its surface to stimulate the T cell, which defines the

recruitment rate, and the time to the first division after that

encounter. One can take into account the recruitment rate

explicitly denoting the number of unrecruited cells as Nu(t). Then

N0(t) is the number of cells that have been activated by encounter

with antigen-presenting cells, but have not divided yet. Accord-

ingly, the probability of not being recruited by time t is Qu(t) and

the probability of not dying by time t is Su(t). One has to

remember that unlike cell division, which is a discrete event, the

process of activation by an antigen-presenting cell can be long.

Therefore, we define the transition to class 0 from class u

(unrecruited) as a point in the cellular differentiation pathway.

In this case Nu(t)~Su(t)Qu(t), and L0(t)~

ðt

0

dtuPu

(t{tu)Su(t{tu). Recalling that the recruitment does not involve

a change in cell numbers, the results of the previous section still

apply, with an appropriate re-definition of Lk(t):

Lymphocyte Proliferation
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Lk(t)~2k

ðt

0

dtkPk(t{tk)Sk(t{tk) :::

ðt1

0

dtuPu(tu)Su(tu):

Branching Processes Theory
Previous authors [15,36,38,39] have used the theory of

branching processes to describe proliferation and death of

lymphocyte populations. One advantage of using branching

process theory is that it allows one to calculate not only the mean

number of cells in different division classes, but also the probability

of a given number of cells in a given division class. Comparison of

the theoretical predictions with the observed statistical variance

can help tease apart different mechanisms behind the variability in

population behavior. Such analysis lies outside the scope of the

present work.

Below we show how the results obtained above using the theory

of age-structured populations [25,36,41,43] can be obtained using

branching processes.

Generation functions for the numbers of cells in different

division classes. Given that initially only one cell is present, let

us denote the probability that the population contains exactly n

cells in division class k at time t as Pk
n(t). Note that the number of

cells in the division class k cannot be more than 2k. It is convenient

to define a generating function for this probability as

Gk(s,t)~
P

n Pk
n(t)sn [25,36]. After the generating function has

been computed, one can obtain the probabilities and the mean

numbers of cells in different division classes by differentiating

Gk(s, t) with respect to s. For example, the mean number of cells

in a division class k is Nk(t)~
LGk(s, t)

Ls
Ds~1, while Pk

n(t)~

LnGk(s, t)

Lsn
Ds~0. We now derive expressions for the generation

functions Gk(s, t) using the methods of the theory of branching

processes [25,41,43].

We start with the probability that at time t there are no cells in a

division class k§1, denoted as Pk
0(t). It is a sum of the

probabilities that the initial cell has not divided at all by time t,

or that it died without dividing, or that it divided once at some

time t (0vtvt), but by time t both resulting lineages contain zero

cells that divided k{1 times after the first division. Mathemat-

ically,

Pk
0(t)~Q0(t)S0(t)

z

ðt

0

dtQ0(t)S0(t) m0(t)zb0(t)Pk{1
0 (t{tj1)Pk{1

0 (t{tj1)
� �

,
ð15Þ

where Pk{1
0 (t{tD1) denotes the probability that the progeny of a

cell that has undergone the first division at time 0 contains 0 cells

that have undergone k{1 additional divisions by time t.

Similarly, the probability that at time t there are n§1 cells in a

division class k§1, Pk
n(t), is the probability that the cell has

divided at some time t, 0vtvt, and that the sum of the cell

numbers in the division class k in both resulting lineages is n at

time t. This is expressed mathematically as

Pk
n(t):Pk

n(tj0)

~

ðt

0

dtQ0(t)S0(t)b0(t)
Xn

i~0

Pk{1
i (t{tj1)Pk{1

n{i (t{tj1),
ð16Þ

where Pm
n (xDj) is the probability that one lineage of a cell that

divided the j-th time at time 0 will contain n cells that have divided

m more times by time x (cf. Figure 1). The Pm
n (xDj) can be

calculated iteratively (for n§1):

Pk
n(tjj)

~

ðt

0

dtQj(t)Sj(t)bj(t)
Xn

i~0

Pk{1
i (t{tjjz1)Pk{1

n{i (t{tjjz1),
ð17Þ

and so on. It is convenient to define division-dependent generating

functions Gk(s, tDj)~
P

n Pk
n(tDj)sn. From the above equations, we

get an iterative equation for the generating functions

Gk(s, tjj)~Qj(t)Sj(t)

z

ðt

0

dtQj(t)Sj(t)(mj(t)zbj(t)(Gk{1(s,t{tjjz1))2)

for k§1:

ð18Þ

Finally, in the division class zero, k~0, (undivided cells) there can

be either one cell or none at all, and the corresponding

probabilities are given by

P0
0(tDj)~1{Qj(t)Sj(t) P0

1(tDj)~Qj(t)Sj(t) for all j ð19Þ

and therefore

G0(s, tDj)~Qj(t)Sj(t)(s{1)z1 for all j: ð20Þ

where we have used a generalized notation Pk
n(tD0):Pk

n(t) and

G0(s, tD0):G0(s, t)

Differentiating the generating function Gk(s, t):Gk(s, tD0) with

respect to s, gives the mean numbers of cells in a division class k,

Nk(t)~
LGk(s, t)

Ls
Ds~1. For instance,

N0(t)~
LG0(s, t)

Ls
Ds~1~Q0(t)S0(t) ð21Þ

and

N1(t)~
LG1(s, t)

Ls
Ds~1~

ðt

0

dtQ0(t)S0(t)b0(t)
LG0(s, t{tD1)

Ls
Ds~1

~

ðt

0

dtQ0(t)S0(t)b0(t)Q1(t{t)S1(t{t) ,
ð22Þ

which are identical to those obtained in the previous section using

the theory of age-structured populations. This process can be

repeated iteratively, resulting in expressions for Nk(t)’s which are

equivalent to those obtained using the theory of age-structured

populations, for all k (See Supporting Information S1).

Comparison of the Existing Theories
In this section we compare models of cell proliferation and

death that previously have been used in the context of analysis of

lymphocyte dynamics. We show how the existing models can be

derived as special cases of the model given in Eqns. (7)–(9).

Exponential distribution of inter-division times: linear

differential equations. We first show that when the inter-

division times and the death times are distributed exponentially

Lymphocyte Proliferation
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(Pk(a)~bke{bka, Dk(a)~mke{mka and Qk(a)~e{bka, Sk(a)~
e{mka), our model reduces to a system of linear differential

equations, used by several authors in early studies of lymphocyte

proliferation (e.g. [24,30]). In this case, equations (7),(8) and (9) become

Nk(t)~

ðt

0

e{(bkzmk )(t{tk )Lk(tk)dtk, ð23Þ

Lk(tk)~2bk{1

ðtk

0

e{(bk{1zmk{1)(tk{tk{1)Lk{1(tk{1)dtk{1

~2bk{1Nk{1(tk),

and therefore

d

dt
Nk(t)~Lk(t){(bkzmk)

ðt

0

e{(bkzmk)(t{tk)Lk(tk)dtk

~2bk{1Nk{1(t){(bkzmk)Nk(t),

ð24Þ

which are identical to the equations used in [24,30]. Thus, describing

the population dynamics of proliferating and dying lymphocytes using

linear differential equations of this type [25,43], is equivalent to the

assumption of an exponential distribution of inter-division and death

times [24,25,43].

Smith-Martin-like model. In the framework of this paper

(see also Introduction), the Smith-Martin model [18,20,24,32] can

be described by the following distribution of inter-division times

Pk(a), and the probability of not dividing up to age a, Qk(a), for

cells in the division class k:

Pk(t)~
0 for tvtk

bke{bk(t{tk ) for t§tk

�

Qk(t)~
1 for tvtk

e{bk (t{tk) for t§tk

� ð25Þ

The death times are assumed to be exponentially distributed, so

that Sk(t)~e{mkt.

Using equation (7) we get, tk?t{t

Nk(t)~

ðt{tk

0

e{bk (t{tk)e{mk (t{tk )Lk(tk)dtk

z
Ð t

t{tk
e{mk (t{tk )Lk(tk)dtk:

ð26Þ

It should be noted that the classical Smith-Martin model is not

exactly identical to that defined by the equations (25): in the

classical Smith-Martin model the cells divide upon the exit from

the deterministic B phase and then enter into the stochastic A

state. In our case the phases are reversed, with the fixed length B

phase occurring first and upon division the cell exits the stochastic

A state. Nevertheless, the overall inter-division time distribution as

defined in equations (25) is identical to that of the original Smith-

Martin model.

The second term in equation (26) describes cells that have

divided not longer than tk ago, and thus corresponds to the

deterministic B phase of the Smith-Martin model.

Similarly, the first term is the number of cells in the

exponentially distributed stochastic phase of the cell cycle,

i.e., the A state of the Smith-Martin model. Accor-

dingly, we denote

ðt{tk

0

e{bk(t{tk)e{mk(t{tk)Lk(tk)dtk~NA
k (t)

and NB
k (t)~

ðt

t{tk

e{mk(t{tk)Lk(tk)dtk.

From equation (8) we get

Lk(t)

~2bk{1

Ð t{tk{1
0 e{bk (t{tk{1)e{mk (t{tk{1)Lk{1(tk{1)dtk{1

~2bk{1NA
k{1(t):

ð27Þ

Figure 1. Schematic illustration of the dynamics of a population of proliferating and dying cells, as a branching process. Each node
represents a division, and each branch represents a cell lifetime. See text.
doi:10.1371/journal.pone.0012775.g001
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Figure 2. Fitting the solution of the general model to simulated and experimental data. This figure shows the time dependence of the
numbers of cells that have undergone n~1,2,3 . . . divisions with time for both the data (points) and the model predictions (lines). We use the
analytical solution of the model in which the distribution of inter-division times is given by a gamma distribution with the shape parameter n~3 and
the death distributed exponentially (cf. text). In panel A, the data is the result of simulations of the population starting with 100 cells; inter-division
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Consequently,

d

dt
NA

k (t)~{(mkzbk)NA
k (t)z2be{mtNA

k{1(t{tk)

and

d

dt
NB

k (t)~{mkNB
k (t)

z2bk{1NA
k (t){2bk{1e{mktk NA

k (t{tk):

ð28Þ

As mentioned above these equations are similar to those

describing the evolution of the Smith-Martin model [19,20,24,34]

except for the factor 2 in the equation for NB
k (t). This difference is

due to the aforementioned difference between the original Smith-

Martin model, and the one defined here by equations (25), where

the order of the A-state and B-phase is reversed.

Cyton and related formulations. Another general model of

cell population kinetics based on probability theory is the cyton model

[15,23]. Like our model, it allows one to incorporate arbitrary

distributions of the inter-division and death times. It has been recently

applied to analysis of the in vitro dynamics of T and B lymphocytes

[18,23]. The connection of the cyton model to the theory of

branching processes has been also presented previously [15,36].

The basic assumption of the cyton model is that the intracellular

processes that lead to birth or death of a cell are independent. In

mathematical terms, the probability to survive without dividing up

to time t is the product of the corresponding quiescence and survival

probabilities: Q(t)S(t), or in other words, the birth and death rates

are additive as in equation (1). In this section we show that the

formulation obtained on the basis of age-structured population

theory is mathematically equivalent to the cyton model.

We start with the expression for number of cells in the k-th

division class at time t, Nk(t), derived in equation (7). After some

variable changes, and using the facts that Pk(t)~{dQk(t)=dt,
Dk(t)~{dSk(t)=dt, Qk(0)~1 and Sk(0)~1, we get

Nk(t)~

ðt

0

Qk(t{x)Sk(t{x)Lk(x)dx

~

ðt

0

Lk(x)dx 1z

ðt{x

0

d

dy
(Sk(y)Qk(y))dy

� 	

~

ðt

0

Lk(x)dxz

ðt

0

Lk(x)dx

ðt{x

0

dSk(y)

dy
Qk(y)dy

z

ðt

0

Lk(x)dx

ðt{x

0

dQk(y)

dy
Sk(y)dy

~

ðt

0

Lk(x)dx{

ðt

0

dx

ðx

0

Dk(x{y)Qk(x{y)Lk(y)dy

{

ðt

0

dx

ðx

0

Pk(x{y)Sk(x{y)Lk(y)dy,

ð29Þ

where Nk(t) and Lk(t) are defined in equations (7),(8),(9).

Equation (29) is identical to the expressions derived for the

cyton model [18,23]. Note that in the present formulation, the

‘‘recruitment fraction’’ of Ref. [23] can be incorporated into the

distribution of death times S(t). Equation (29) also has a simple

probabilistic interpretation: at time t, the number of cells in

division class k is the number of cells that had their k-th division at

any time x before t (first term), minus the number of cells that have

died (second term), or divided (third term), between time x and

time t [15,18,23].

We also note that for exponentially distributed death times with

a uniform death rate d that does not change with division class

(S(t)~e{dt for all k), the formulation of this paper reduces to that

of Ref. [37].

Applications to Experimental and Simulated Data
In this section, we explore the computational feasibility of the

approach developed in this paper for estimation of parameters of

lymphocyte proliferation and death and compare the estimates

obtained using different models.

When dealing with experimental data, several important

questions arise. First, what distribution of inter-division times to

choose? Second, how do estimates of the parameters of the cell

division and death depend on the chosen distribution of inter-

division times? More generally, are different models distinguish-

able from the data - can one distinguish between different

distributions or, given the distribution, to what extent can one

distinguish between different parameter combinations? A general

answer to these questions is a complex problem in mathematical

statistics, and will not be discussed here. In this paper, we

investigate these questions as a ‘case study’, pertinent to analysis of

the models of lymphocyte dynamics, putting the theoretical study

of the preceding sections in a practical context.

Several of the approaches that are currently used for the analysis

of the lymphocyte proliferation and death rely on the use of either

simple models with analytical solutions (e.g., ODE models) or

numerical solutions or simulations of more complex models (e.g.,

the Smith-Martin or cyton model). By contrast, we obtain

analytical solutions for the number of cells that have undergone

a given number of divisions for different distributions of inter-

division times, such as the gamma distribution. Once the analytical

solution has been obtained, there is no need of further numerical

solutions or simulations in order to analyze each particular set of

experimental data. This results in large savings of computational

time and higher precision of the parameter estimates.

To test the practical feasibility of such an approach and to study

the model identifiability issues mentioned above, we first obtained

explicit analytical expressions for the model given in eqns. (7)–(9)

assuming that the distribution of inter-division times is given by a

gamma distribution with a fixed shape parameter (2 or 3)

accounting for the possibility that the distributions of inter-division

times can be different for undivided and divided cells. The

distribution of cell death times was exponential. Explicit analytical

expressions for Nk(t) were generated using Mathematica 5.2 (the

code is available from the authors upon request). As an example,

for the gamma distribution with shape parameter n~3
(Qk(t)~e{bkt(1zbtz 1

2
b2

kt2) and Sk(t)~e{mkt with bk~b for

k§1 and bk~b0 for k~0), the expressions for the numbers of

probability distribution is log-normal (see Figure 3). The death rate is exponentially distributed with the mean death rate m~0:01 h{1. In Panel B, the
data comes from the experiments with CD4 T cells stimulated in vitro with anti-CD3 antibodies in the presence of 50 U/ml of IL-2 [21]. Parameters
providing the best fit of the model to data are given in Table 1. Cells that have undergone 6 or more divisions were lumped into a ‘‘6+’’ division class.
Similarly to the previous approaches, we do not fit the dynamics of undivided cells [19,32]. Standard deviation of the estimated error in the data is 22
(cells) (panel A) and 478(cells) (panel B).
doi:10.1371/journal.pone.0012775.g002
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cells in different division classes are:

N0(t)~e{(b0zm)t(1zb0tz
1

2
b2

0t2), ð30Þ

N1(t)~
b3

0e{(bzb0zm)t ebt((b{b0)t(bt{b0t{2)z2){2eb0t
� �

(b{b0)3
,

etc:

Simulated datasets. Briefly, in the simulations the lifetimes

of the cells are distributed with a cumulative distribution Q(a)S(a),
where Q(a) and S(a) have been defined in the previous sections.

At the end of each lifetime, a cell can either divide, with a

probability b(a)=(b(a)zm(a)) or die, with a probability

m(a)=(b(a)zm(a)). This process exactly implements the division

and death process described above. The simulation algorithm was

tested for consistency with the mathematical model in the case

when both the simulated data and the analytical model were

generated using the c-distribution with shape parameter 3 for large

initial cell numbers, and excellent agreement between the

simulation and the analytical expression was found (data not

shown).

Subsequently, we tested how reliably the parameters can be

estimated from the data when the inter-division time distribution is

unknown, which is an important question because this is typically

the experimental situation. To this end, from simulations we

generated several datasets in which cell divisions were distributed

in accord with either a log-normal distribution, a gamma-

distribution with shape parameter 3, or a Weibull distribution,

starting with an initial number of cells N0. The parameters of the

inter-division time distributions were the same in all division

classes except for k~0, which was different, which is a common

situation for lymphocytes stimulated to proliferate in vitro. For

small initial cell numbers, simulations result in stochastically

variable data (see Fig. 2A). As expected, in the case when the

datasets were fitted using the analytical expressions with the same

inter-division time distribution as used in generating them

(gamma-distribution with shape parameter 3), we were able to

obtain a good fit and recover the parameters used to simulate the

data (results not shown). More importantly, we also were able to

obtain good fits even in the cases when the actual distribution of

inter-division times in the simulated data was relatively different

from the gamma distribution used for fitting (e.g., when the

simulated data generated using a log-normal distribution, was

fitted with the analytical solutions for gamma-distribution with

shape parameter 3 - cf. Fig. 2A ); both birth and death times could

be estimated reliably (see Fig. 2A, Table 1 and Fig. 3). Similar

results were obtained when we fitted data generated using Weibull

distribution for cell division times with Eqn. (31) (results not

shown). The model with gamma distributed interdivision times

(and n~3) can fit well various data and recover model parameters

properly. By contrast, we generally obtained poor fits of simulated

(and experimental) data when we used a model with gamma

distributed inter-division times with the shape parameter n~2 (not

shown). These results suggest that model that has a different

underlying distribution of inter-division times than the data can

still provide reasonable fits of the data, but this need not be the

general case.

It has been suggested in several works that the division rate

might depend on the division class [19,23,32,38]. Can such

dependence be unambiguously determined from the cell division

data alone? To this end, we simulated cell dynamics choosing the

inter-division times to obey a gamma distribution with shape

parameter 3, while the division rate parameter increased linearly

with the number of divisions that the cell had undergone

(Qk(t)~e{bkt(1zbtz 1
2

b2
kt2) with bk~b0{ak, where a is a

constant). The cell death times were chosen to be distributed

exponentially. The resulting data were fitted with two different

solutions of the general model in which either the birth rate, b, or

the death rate, m, were assumed to vary linearly with the number

of cell divisions k. We found that in both cases, the models could

fit the data with good quality. The differences between the

standard deviation of the fits were not much higher than the

expected statistical error due to the stochasticity of the cell division

process (see Fig. 4). This result indicates that if CFSE data contain

information on division-dependence of parameters, it might be

difficult to know which parameters change with division class

without additional experimental data. A similar conclusion was

also reached in a previous study [32].

A related important question arising in the context of analysis

of the cell division data (in the case of variable inter-division

times) is whether the division rates are linked to the division class,

or to the time since stimulation. Distinguishing between these two

possibilities can provide important insights into inter- or intra-

cellular mechanisms of regulation of the lymphocyte number

during immune response. To provide insight into this aspect of

data analysis, we have simulated population expansion with

exponentially distributed inter-division times where the birth

rates increase linearly with time and fitted the simulated data with

the predictions of the model where the birth rates increase with

the division class. Interestingly, the model can fit the data

reasonably well, at least for the later divisions. However, the

recovered parameters were not close to the actual ones,

suggesting that although the populations where the rates of cell

division change over time may look similar as those where the

rates change with the number of cell divisions, additional

experimental data is probably needed to discriminate between

time- and division-dependence. These results are summarized in

Fig. 5.

Finally, we explored whether the correlations in division times

between daughter and mother cells can be inferred from the

Table 1. Estimates of the parameters providing the best fit to
the simulated and experimental data.

Simulated data Experimental data

Actual Estimated Estimated gamma Estimated SM

T0, h 66.7 75:5+0:4 50:6+0:6 63:7+0:9

T , h 20 19:3+0:4 16:2+0:2 13:55+0:53

t,h 0 54:6+0:3 33:2+0:8 21:25+1:62

N0 cells 100 105:9+12:8 (0:54+0:05)|104 (0:50+0:07)|104

d,h{1 0.01 0:007+0:002 0:024+0:002 0:02+0:005

Left column: fit of the simulated dats with the general model of eqns.
(7)(described in the text and Figure 3). Right column: comparison of the fits of
the experimental data with either the general model of Eqns. (7) or Smith-
Martin model. or Smith-Martin model. Here T0 and T are the average times of
the first and the following cell divisions, t is the delay before any cells undergo
their first division, N0 is the initial number of cells, and d is the death rate of
dividing cells. Standard deviations for parameters were calculated by
bootstrapping the residuals 100 times [32,48]. Simulated data was generated
using a log-normal distribution of inter-division times as shown in Fig. 3, with
the exponential death rate d~0:01 h{1 .
doi:10.1371/journal.pone.0012775.t001
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division data alone. To this end, we generated simulated datasets

where the division times of the daughter cells are distributed

according to the gamma-distribution with shape parameter 3 and

are either weakly or strongly correlated with the division times of

the mother cells (see text above equation (14)). The resulting data

have been fitted with the model with uncorrelated division times

obeying the same gamma-distribution with shape parameter 3. In

the case of weak correlations, the model could describe the data

Figure 3. Sensitivity to the choice of inter-division time probability distribution. The dashed lines show the log-normal distribution with
the shape parameter s0~0:15 for undivided cells and the scale parameter m0~65:9h (panel A), and s~0:47 and m~17:9h (panel B) for divided cells,
used in the simulations (see Fig. 2A). The solid lines show the inferred gamma-distribution providing the best fit of the simulated data (see text and
Table 1).
doi:10.1371/journal.pone.0012775.g003
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reasonably well, while for strong correlations the fit was reasonable

only for higher division classes. However, the errors of the fit were

high and the parameters for cell division could not be determined

correctly ( See Fig. 6). These results indicate that in some cases,

even if data have intrinsic correlations between generation times of

mothers and daughters, model without such correlations can

describe the data well. Furthermore, it might be difficult to obtain

unambiguous inference based on the cell division data alone.

Experimental data. Next, we fitted the model solutions to

data obtained in experiments in which CD4+ T lymphocytes were

stimulated with anti-CD3 antibodies in vitro in the presence of a

high concentration of exogenous interleukin-2 (IL-2) [21]. These

data have been fitted before with the Deenick et al. model [19]

and the Smith-Martin model [32]. The formulation developed in

this paper fits these data as well as both previous models. The

estimated death rate of dividing cells obtained from the fit of the

model to the data obtained using the gamma-distributed inter-

division times was almost identical to those obtained with the

Smith-Martin model [32]. This is not very surprising since all of

these models assume that death is exponentially distributed.

However, the average time of the first division and the average

inter-division time of divided cells obtained from our fit are

somewhat different from that obtained using the Smith-Martin

model (cf. Fig. 2B and Table 1). This and the above result indicate

that estimates of important kinetic parameters, such as the average

inter-division time, may depend on the model used to fit the data

(see [19,32]).

To summarize, we have shown that the analytical solutions of

the general model obtained in this paper can fit artificial and

experimental data with reasonable quality providing a parameter

estimation tool complementary to existing models.

Discussion

Understanding the mechanisms of the immune response requires,

among other things, quantitative measurements of the kinetics of

lymphocyte proliferation and death. Recently, several different

mathematical descriptions of the kinetics of lymphocyte proliferation

Figure 4. Division-dependent birth and death rates. In simulations, the population starts with N0~100 cells whose proliferation times are
distributed in accord with gamma distribution with the shape parameter n~3 and the rate parameter bk that depends on the number of cell
divisions k, bk~0:01{0:0002k. Cells die at the constant rate m~0:001. Panels A and C: fit of the simulation data with the model predictions for with
division-dependent birth rate (equations not shown). The estimated parameters of the fit are: bk~0:01{2:2|10{4k, m~0:00096, N0~83. Panel A:
fit of the model to the data; Panel C: the estimated dependence of the birth and death rates on the number of cell divisions k. Panels B and D show
the fit of the simulated data with the model that assumes division-dependent death rate. The estimated parameters are b~0:01,
dk~0:000012z0:00028k, N0~51. Panel B: fit to the data; Panel D: the estimated changes in the death rates with the number of cell divisions.
The quality of the model fit to data is similar in both cases as judged by the mean square deviation; the standard deviation of the fit was sq&13
(sq~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSS=(N{p)

p
where RSS is the residual sum of squares, N is the number of data points and p is the number of model parameters).

doi:10.1371/journal.pone.0012775.g004
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Figure 5. Time-dependent division rates. Here, we simulate the dynamics of cells assuming that their division times are distributed in accord
with exponential distribution and the division rate changes with time. The data were fitted with the model in which birth rate changes linearly with
the number of cell divisions. Interestingly, the model describes the data reasonably well, at least for the later divisions, suggesting that changes in
rates of cell division over time may look similar as that over the number of cell divisions, and that additional experimental data is needed to
discriminate between time - and division-dependence.
doi:10.1371/journal.pone.0012775.g005

Figure 6. Division times of daughter cells correlated with that of the mother. We simulate the dynamics of a cell population with gamma
distributed inter-division times assuming strong or weak correlation between average division times of mothers and daughters (see Section). In the
case of the weak correlation (left panels), the data can be fit with the uncorrelated model reasonably well, although the recovered parameters are
different from the parameters used in the simulations. For strong correlations, the model is not able to describe the simulated data (right panels).
doi:10.1371/journal.pone.0012775.g006
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and death have been used in order to estimate birth and death

parameters of lymphocyte populations during an immune response

[15,17–21,23,24,26,27,30,32,34–36,42,46]. These works lay a foun-

dation for the quantitative analysis of immune response kinetics.

In order to compare the estimates obtained using different

models and make meaningful inference, it is important to

understand the differences and similarities in the mathematical

structures of different models. It is also important to understand

how the estimates obtained using different models are sensitive to

the choice of model characteristics, such as the shape of the inter-

division time distribution.

In this paper we have provided a mathematical comparison of a

general model based on the theory of age- and generation-

structured populations with other formulations (such as Smith-

Martin, cyton and branching processes) and show under what

conditions they are mathematically equivalent. Based on the

mathematical formulation, we developed an algorithmically and

conceptually simple way for estimation of kinetic parameters of

lymphocyte proliferation and death. The algorithm was used for

analysis of simulated and experimental data.

It is important to emphasize that in the majority of situations,

the true distribution of division and death times of proliferating

cells is unknown and estimating the rates of cell division and death

could strongly depend on the model used to fit the data. We have

shown that in some cases, different models can fit equally well

particular types of data while in other cases different models lead

to different parameter estimates. Our novel approach and

analytical solutions of the model with gamma distributed inter-

division times adds to the arsenal of models currently available to

experimentalists. This and other models can therefore be used to

test whether the estimates for the rates of cell division and death in

a particular experimental situation depend on the model used to fit

the data. In those cases when different models yield similar

estimates for the rates of cell division and death (e.g., average inter-

division time, the probability of death per division, etc.) one can be

confident that these parameters are estimated robustly. In cases

when different models yield different parameter estimates,

additional information is needed to rule out alternative models

for cell division (see also [47]).

Lastly, although our work was motivated by problems in

lymphocyte population kinetics, the methods are applicable more

broadly. For example, the spread of a viral infection could be

modeled by a simple generalization of the type of branching

process used here, where each infected cell rather than having

exactly two offspring, gives rise to a number of new infected cells in

the next generation.

Materials and Methods

The analytical calculations were performed with pencil and

paper with the help of Mathematica 6 package. The simulations

were written on C and compiled and executed under UNIX or

Windows operating systems. Data fitting was performed in

Mathematica 5.2.

Supporting Information

Supporting Information S1

Found at: doi:10.1371/journal.pone.0012775.s001 (0.08 MB

PDF)
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