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Abstract

Background: Gadolinium (Gd), with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is
proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based
on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA), or other
derivatives (at 0.1 mmole/kg recommended dose), distribute broadly into tissues and clear through the kidney. These
contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF), particularly in kidney impaired subjects. Thus, Gd
contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity
and Gd safety.

Methodology/Principal Findings: To determine whether a biocompatible lipid nanoparticle with surface bound Gd can
improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP) containing lipid bound DTPA and Gd. The
Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater
than 33-fold higher longitudinal (T1) relaxivity, r1, constant than the current FDA approved Gd-chelated contrast agents.
Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise
ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal
vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to
accumulate in the liver or kidney, and was eliminated completely within 24 hrs.

Conclusions/Significance: The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced
dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees
of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug
delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in
treatment of cancers and other diseases.
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Introduction

Magnetic resonance imaging (MRI) plays a pivotal role in non-

invasive visualization and quantification of vascular and tissue

pathology or physiologic processes. The use of paramagnetic

contrast agents increases sensitivity and specificity of medical

diagnoses based on MRI. The paramagnetic MR contrast agents

modify the local magnetic environment due to interactions

between unpaired electrons of contrast media, such as gadolinium

(Gd3+), and the hydrogen nuclei of water in the blood, tissues and

organs in the body. Among paramagnetic compounds, Gd is the

primary agent used for MRI due to high relaxation efficiency and

magnetic moments. As a free, soluble ionic metal ion, Gd3+ is

highly toxic, probably due to its affinity for metalloproteins and

calcium binding proteins. Therefore, Gd contrast agents are

formulated as Gd bound chemical chelates that are water soluble

to improve their clinical safety profile. Some of the clinically used

Gd-chelates include DTPA (Magnevist), BOPTA (MultiHance),

HP-DO3A (ProHance), DTPA-BMEA (Optimark), DTPA-BMA

(Omniscan), DOTA (Dotarem), and DTPA-DPC (Vasovist or MS-

325) (a partial list of chelates and their abbreviations are listed in

reference 1).

It is clear that Gd-chelate-based MR contrast agents have

allowed identification of pathologic tissue and physiological

processes that are not detectable by other non-invasive imaging

modalities. Due to wide-spread tissue and cell distribution, relatively

high doses (0.03–0.1 mmole/kg) of Gd3+ in one of the above chelate

forms are essential to produce sufficient MR image definition.

However, available Gd-based contrast agents are eliminated

predominantly through the kidney. Administration of Gd-chelates

in patients with significantly reduced creatinine clearance or renal

impairment is linked to nephrogenic systemic fibrosis (NSF) [1].

Data suggest that NSF is associated with increased cell and tissue

exposure of Gd-chelates and Gd dissociation from chelates.
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Therefore, all FDA approved Gd contrast agents carry a ‘Black Box’

safety warning [2]. A Gd contrast agent that exhibits higher contrast

potency at a much lower Gd dose that is effective for use in renal

impaired subjects is urgently needed. Therefore, we explored the

possibility of using a biocompatible lipid nanoparticle with surface

bound Gd that can be retained in intact blood vasculature and can

be eliminated by the biliary route to avoid reliance on renal

function. This report describes our discovery of a high potency MR

contrast agent that is built on lipid-nanoparticles with Gd bound to

lipidic chelate, and its improved MRI contrast resolution and

elimination profile. This approach could address both imaging

sensitivity and safety of Gd use.

Results

Preparation and Characterization of Gd-lipid
Nanoparticles

First, we determined whether sequestration of Gd3+ on the

surface of lipid nanoparticles through DTPA chelate embedded in

nanoparticle can enhance the MRI properties of Gd. To do so, we

constructed lipid nanoparticles containing phospholipids that

express Gd chelate or DTPA by incorporating DTPA-linked to

phosphatidylethanolamine or DTPA-PE into the lipid core of the

nanoparticles. The DTPA-PE was incorporated as 10% (m/m) of

lipid nanoparticles constructed with disteroylphosphatidylcholine.

Then Gd3+ (as Gd3+ in solution) was added to preformed lipid

nanoparticles (d = 60–70 nm) expressing DTPA-PE (for binding to

Gd3+ as Gd-DTPA-PE chelate). We found that at either 1:1 or 1:2

Gd-to-DTPA-PE molar ratio, all Gd3+ added in solution was bound

to DTPA chelate molecules expressed on lipid nanoparticles

without significantly affecting the diameter of the nanoparticles

(Table 1). Complete association of Gd-to-DTPA-PE expressed on

lipid nanoparticles was verified based on the ability of free Gd3+ to

quench calcein fluorescence (lex = 490 nm; lem = 520 nm). Results

indicated that no free Gd3+ was available to quench calcein at both

1:1 and 1:2 Gd-to-DTPA-PE mole ratios. The complete chelating of

Gd to lipid-nanoparticle expressing DTPA was also verified by gel-

permeation chromatography (data not shown).

Next, to increase the bound water on the lipid nanoparticle

surface, we added 10 mole percentage of lipid conjugated to

methyl-polyethylene-glycol or mPEG-PE to lipid nanoparticles.

The molecular weight of mPEG-PE is varied to explore the role of

surface bound water on Gd paramagnetic properties. Paramag-

netic potency was evaluated as changes in T1 and T2, the

longitudinal and transverse relaxation time constants for MRI.

Compared to soluble Gd-DTPA or Gd-DTPA-BMA, we found

that inclusion of mPEG on Gd-lipid nanoparticle surfaces

significantly increased longitudinal T1 relaxivity, r1 (Table 1).

The Gd-lipid nanoparticles (Gd-LNP) containing mPEG2000-PE

exhibited the highest increase in r1, recorded at 134.8 mM21*s21.

This r1 value is about 33-fold higher than that of Gd-DTPA-

BMA (r1 = 4 mM21*s21), similar to the intrinsic value of Gd.

Based on these data, we selected lipid nanoparticles containing

mPEG2000-PE and Gd-DTPA-PE, referred to as Gd-LNP, for

subsequent experiments.

To evaluate effects of serum on Gd relaxivity, we first exposed

the Gd-LNP to 50% rat serum for 1 hr. All Gd-LNP, regardless of

the molecular weight of mPEG, as well as Gd-DTPA liposomes

exhibit 63–70 nm in diameters (Table 1). Gd-nanoparticle

diameters as determined by photon correlation spectroscopy, did

not exhibit any significant change in particle size due to serum

exposure. These particles were further evaluated for T1 relaxivity

with a 3T MRI instrument. Analysis of Gd concentration-

dependent relaxivity before and after serum exposure indicates

that molar relaxivity of Gd-LNP was not influenced by serum

(Figure 1). Morphology analysis of Gd-LNP by electron micros-

copy indicates distinct surface morphology compared to typical

liposomes expressing DTPA-PE (Figure 1B vs. 1C). The Gd-LNP

exhibited unique small electron exclusion bodies on lipid-

nanoparticle surfaces (Figure 1B) that were not seen with typical

lipid membrane vesicle or liposome preparations [3]. The

morphology reported for Gd-DTPA liposomes (Figure 1C) are

similar to those reported for PEG-expressed liposomes carrying

either Gd or gold [3,4]. This unique morphologic data is also

consistent with the much higher relaxivity data collected in Table 1

for mPEG2000-PE expressed Gd-LNP (Table 1 and Figure 1).

Table 1. Effects of varying the molecular weight of PEG expressed on Gd-lipid nanoparticles on Gd relaxivity constant and the
particle diameter.

Gd-DTPA-nanoparticles or
other formulationsa r1 [mM21

*s21]b r2 [mM21
*s21]b Diameter of particles (nm ± S.D.)a

Nanoparticle with

mPEG5900 61.2 8.1 6360.2

mPEG2000 134.8 12.7 7060.6

mPEG750 21.8 3.9 6460.2

Gd-DTPA-liposomes 13.6 5.3 8860.4

Gd-DTPA-DPC Vasovist or MS 325 6.6 (28.0*) — Solution (*in rat serum)

Gd-DTPA Magnevist 3.8 2.4 Solution

Gd-DTPA-BMA Omniscan 4.0 3.1 Solution

aGd-DTPA lipid nanoparticles containing 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC; 9 part), and 1,2- distearoyl-sn-Glycero-3-phophoethanolamine-N-DTPA
(DSPE-DTPA; 1 part), and N-(Carbonyl-methoxypolethyleneglycol-polymer of listed molecular weight)-1,2-distearoyl-sn-glycero-3-phospoethanolamine (mPEG-DSPE, 1
part) in suspension were mixed with gadolinium (III) chloride hexahydrate (Gd3+, at 1:1 DTPA:Gd mole ratio) for 20 minutes. For comparison, water soluble commercial
agents such as Omniscan (Gd-DTPA-BMA) and Magnevist (GD-DTPA) were also included. The lipid particle diameter was expressed at mean 6a SD.

bThe relaxation time T1 was measured using the standard spin-echo sequence on a 3T MR scanner. These concentration dependent T1 values were plotted versus Gd3+

concentration from which the rising curve was fitted by linear regression to estimate apparent molar relaxivity constant r1 and r2 . The covariant of r1 and r2 data were
15% or lower.

doi:10.1371/journal.pone.0013082.t001
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Effects of Gd Association to Gd-lipid Nanoparticles on MR
Imaging in Rats

Subsequently, rats were administered with varying doses of the

Gd-LNP intravenously and T1 weighted MR images were

collected. At 15 minutes after 0.00125–0.02 mmole/kg Gd-LNP

administration, a dose much lower than the two clinically

approved agents Omniscan (Figure 2A) and Vasovist (Figure 2B),

all blood vasculature including vessels in the liver, heart, and

kidney were clearly apparent (Figure 2D–E). In contrast, at their

respective clinical doses, relatively low resolution of heart, liver

and some vasculature was noted with the FDA approved agents

(Figure 2A–B vs. 2C–E). More importantly, the FDA approved Gd

Figure 1. Effects of serum on Gd-concentration dependent change in longitudinal (T1) relaxation time and comparison of lipid-
nanoparticle morphology between Gd-DTPA liposome and Gd-lipid nanoparticles. Panel A: Gd-lipid nanoparticles containing mPEG2000-
PE (#,N) or Gd-DTPA liposomes without (mPEG) (e,X), were exposed to serum (N,X) and relaxation time was measured with a 3T MRI instrument as
described in Table 1. The data were fitted using linear regression. The electron micrographs represent morphology of Gd-lipid nanoparticles (panel B)
and Gd-DTPA liposomes (panel C). Samples were negatively stained with 1% phosphotunstate. Please note the small electron exclusion bodies
surrounding the Gd-lipid nanoparticles that were not detectable with Gd-DTPA liposomes. The bars in panels B and C represent 100 nm.
doi:10.1371/journal.pone.0013082.g001

Figure 2. Comparison of whole body MR image obtained using a 3T MR instrument. The rats were intravenously given indicated doses of
Gd, in Gd-DTPA-BMA (Omniscan, panel A), Gd-DTPA-DPC (Vasovist, panel B) or Gd-lipid nanoparticles (panels C-E). The mmole/kg dose of Gd were
0.05 for Omniscan (panel A), 0.03 for Vasovist (panel B), 0.00125, 0.01, 0.02 for Gd-lipid-nanoparticles (panels C, D & E, respectively). The DCE-MR
images were collected at 15 min post Gd administration. The circles and arrows indicate Gd-dependent MR contrast in the bladder and the heart
blood vessels. Also, the catheter line used for IV administration of Gd contrast is apparent as a high contrast line.
doi:10.1371/journal.pone.0013082.g002
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agents localized in the bladder, while no bladder accumulation of

Gd in the rats administered Gd-LNP was detectable in MR images

(Figure 2). In rats administered with 0.01 mmole/kg Gd-LNP

(Figure 2D), the Gd dynamic-contrast enhanced (DCE) MRI

analysis revealed a signal-to-noise (S/N) ratio greater than 300 in

all vasculature (vasculature versus surrounding tissues). It provided

much greater anatomical and vascular details at 0.00125 than that

achieved with either 0.05 or 0.03 mmole/kg of Gd-DTPA-BMA

(Omniscan) or Gd-DTPA-DPC (Vasovist or MS-325) (Figure 2).

Thus, approximately 97% lower or only 3% of current clinical Gd

dose in Gd-LNP is needed to produce equivalent or higher MRI

contrast resolution.

We next evaluated the dose-response of Gd-LNP for MRI

contrast properties. As shown in Figure 2 panels C-E, a lower Gd

dose reduced contrast levels but provided better definition than that

collected at higher doses of Omniscan or Vasovist. Even at

0.00125 mmole/kg Gd-LNP dose, clear definition of heart and liver

as well as vasculature connecting tissues was apparent. The MR

image collected at 0.00125 mmole/kg (or 1.25 mmole/kg) Gd-LNP

dose (Figure 2C) is about equivalent to that collected with

0.03 mmole/kg Gd in the Vasovist formulation, and better than

that collected with 0.05 mmole/kg Gd in the Omniscan formula-

tion. Thus, compared to 0.05 mmole/kg Gd dose in Omniscan,

only 2.5% [(0.00125/0.05)6100%] of Gd in Gd-LNP is needed to

produce higher quality MR images. The dose-response MR

contrast data were replicated with another batch of Gd-LNP to

verify these results. Collectively, based on the dose dependent data,

contrast potency improvement is estimated to be at least 24-fold

higher than Gd in the Vasovist formulation, which is considered the

most sensitive vascular agent approved for clinical use [5].

Kinetics and Clearance
While Gd-LNP are not cleared by the kidney or accumulated in

the bladder (Figure 2C–E), it is essential to define the route of Gd

elimination. To do so, we first performed a time course MR image

evaluation. The rat administered 0.01 mmole/kg Gd-LNP

produced high resolution images within 5 minutes in all

vasculature and highly perfused organs (Figure 3B). Gd-LNP

appeared concentrated within blood vasculature, even within the

kidney and liver (Figure 3C). By 15 minutes, Gd-LNP began to

appear in the gut and could be traced to the bile duct in the liver.

Furthermore, this process appeared complete within 24 hours,

suggesting Gd-LNP that lack any cell or tissue binding ligands on

their surface exhibited high intensity in blood without prolonged

tissue exposure (Figure 3D). This image data suggests that Gd

remains stably associated with DTPA-PE in lipid nanoparticles

such that they are subject to biliary, instead of renal elimination.

Should DTPA-PE in lipid nanoparticles metabolize to DTPA in

liver or blood vasculature, we might have detected Gd or Gd-

DTPA liberated from lipid nanoparticles as free form, appearing

as positive contrast images in the kidney and bladder, which did

not occur.

To further characterize the Gd clearance in Gd-LNP, we used
153Gd-labeled Gd-LNP in preliminary comparative pharmacoki-

netics and tissue distribution studies focusing on time-course blood

kinetics, major organ distribution, excretion and residual Gd in

muscle and skin tissues. As expected, rats (500 g; n = 4/group)

administered with 0.05 mmole of Gd in LNP exhibited much

higher blood Gd concentrations than with the Gd-DTPA

formulation (Figure 4). The half-life of Gd-LNP and Gd-DTPA

in the blood is estimated to be 45.7 and 6.1 mins. Analysis of urine

and feces for Gd concentrations at 24 and 48 hrs revealed the

distinct differences between soluble Gd-DTPA and Gd-LNP. Rats

administered with Gd-DTPA almost exclusively eliminated Gd

through the renal route and Gd appeared in urine; while those

that received Gd-LNP eliminated Gd in feces through the biliary

route (Figure 5). It is interesting to note that much higher

concentrations of Gd excreted at both 24 and 48 hr post

Figure 3. Time course of Gd-enhanced MR images for Gd-lipid nanoparticles. The rats were administered intravenously with 0.01 mmole/kg
of Gd-lipid nanoparticles. The MR images at indicated time were collected with a 3T MR scanner. The animal was also scanned before dosing (panel A),
5 min (panel B), 15 min (panel C) or 24 hr (panelD) after Gd nanoparticle dosing. By 15 min (C), appearance of high positive contrast due to Gd
elimination into the bile which connects to the intestine (arrows) and the gut is apparent. Also by 24 hrs, all the Gd-lipid nanoparticles were eliminated
(panel D). Please note that the image for 24 hr did not line up due to different animal position. The contrast at 24 hr is found mainly in the GI tract, some
of which are contributed by fatty materials as well. Also, due to leakage at the site of Gd administration L at the left femoral vein, Gd localization is
apparent as a high contrast area. Please note the vaso-restriction # clearly apparent in panels B & C.
doi:10.1371/journal.pone.0013082.g003
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administration in feces (an end result of biliary excretion) in rats

administered with Gd-LNP than those treated with Gd-DTPA

(Figure 5), suggesting that Gd-LNP may be more effective in

removing Gd from the body. These data confirmed the MRI data

in Figure 3.

At 48 hrs post-exposure, residual Gd was found in the lung,

liver and kidney for Gd-LNP; and for Gd-DTPA, most Gd was

found in the bladder. Analysis of skin and muscle tissues revealed

site-dependent highly variable skin and muscle accumulation in

rats administered with Gd-DTPA, and much less variable and

lower residual Gd concentrations were detected in rats adminis-

tered with Gd-LNP. We also performed a preliminary behavioral

toxicity study with mice and looked for skin agitation and lethargy

with increasing doses of Gd in the LNP formulation. We used

Magnevist and Omniscan for comparison. With as low as

0.02 mmole/kg Gd dose, mice began to exhibit skin agitation

within 15 min for Omniscan and began to show signs of lethargy

in 10–15 min. Gd given in Magnevist (Gd-DTPA) formulation

exhibited a lower degree of skin agitation and mice were not

lethargic with up to 0.2 mmole/kg dose. Under the same

conditions and with up to 0.4–0.6 mmole/kg Gd-LNP, mice did

not exhibit any signs of skin agitation. Collectively, these

preliminary data suggest that Gd remains stably associated with

LNP and thus no significant fraction of Gd is eliminated through

the renal route (which is the main route of Gd-DTPA elimination).

These data are also consistent with the MRI data presented in

Figures 2–3.

Discussion

Taking advantage of our ability to stably express Gd on the

LNP surface via DTPA-PE chelate, we have identified a Gd-LNP

formulation that exhibits about 33-fold higher r1 relaxivity than

the Gd-DTPA-BMA formulation. The high longitudinal r1
relaxivity exhibited by these lipid nanoparticles is within

experimental error of the maximum range predicted by simulation

of Bloembergen and Morgan theory for paramagnetic systems

[6,7]. The review by Woods et al [6] estimates the maximum Gd

r1 based on computer simulation for Gd to be 110–

120 mM21*s21. Single-wall carbon nanotubes (20–100 nm)

loaded with Gd were reported to exhibit 160–174 mM21*s21

[8]. However, the shape and composition of carbon nanotubes

may not be biocompatible.

The longitudinal relaxivity of Gd-LNP is also much higher than

other lipid nanoparticles (diameter: 213–247 nm) described by

Wickline and his colleagues (r1 = 12.7 mM21*s21) [9]. Their r1
values were much lower than observed with those coated with

mPEG2000 (Table 1). While others have explored DTPA-PE in

lipid vesicles or liposomes to enhance relaxivity of Gd-DTPA,

reported r1 values were around 10–12 mM21*s21 [4,10]. For this

Gd-lipid nanoparticle expressing mPEG2000-PE, the apparent high

relaxivity reported is more than 2.5-fold higher than those

achieved with Gd-DTPA-DPC (Vasovist) exposed to human

serum albumin. Serum albumin levels may depend on renal

disease state [11,12] under the most favorable conditions [13].

Much higher relaxivity was achieved with Gd-LNP expressing

mPEG2000-PE independent of serum albumin or other serum

proteins.

While the exact mechanisms leading to the observed improve-

ment in the longitudinal relaxivity remain elusive, it is possible that

the surface bound water on lipid nanoparticles through mPEG2000

greatly reduces molecular rotation. As schematically presented in

Figure 6, about 2–3 order of reduction in molecular rotation may

translate to 22–33-fold enhancement in relaxivity. This hypothesis

is consistent with the data presented in Table 1, where a change in

surface hydration and varying PEG polymer size provided

significantly different longitudinal relaxivity. Regardless, at the

Figure 4. Time-course blood Gd kinectics in rats. Rats were
intravenously given 0.5 mmole/kg of 125Gd either in Gd-lipid nanopar-
ticles (Gd-LNP) or soluble Gd-DTPA and Gd concentrations in blood
were analyzed and presented as mmole/ml. Data presented were mean
6a S.D of n = 4 per treatment group. * Indicates p,0.05 by student T
test.
doi:10.1371/journal.pone.0013082.g004

Figure 5. Comparison of Gd in LNP (hatched) vs soluble Gd-
DTPA (filled) formulation excreted in feces and urine at 24 and
48 hrs. Rats were intravenously given 0.5 mmole/kg of 125Gd either in
Gd-lipid nanoparticles (Gd-LNP) or soluble Gd-DTPA. The urine and
feces collected from rats housed in metabolic cages were analyzed at
24 and 48 hr. Data were expressed as mean 6a S.D. in mmole/g [Gd] for
each treatment group. * Indicates p,0.05 by student T test.
doi:10.1371/journal.pone.0013082.g005
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optimal PEG polymer size, mPEG2000, Gd-LNP produced

dramatically improved longitudinal relaxivity and also retained a

majority of Gd in vasculature under normal conditions. A

combination of reduced cellular and tissue uptake and enhanced

longitudinal relaxivity likely contributed to the overall improve-

ments in contrast potency (Figure 6). These and other mechanisms

remain to be evaluated.

It is important to emphasize that Gd-contrast is almost

completely eliminated by 24 hours, and that most of the Gd-

LNP contrast was detected in the gut. In prior studies of liposomes

expressing PEG, there is significant uptake and retention of PEG-

liposomes in Kupffer cells in the liver and macrophages, and at

least 20% of the injected dose remained in the liver at or beyond

50 hours in mice [3]. While detailed tissue localization studies are

planned, the image data suggests that no significant Gd-LNP were

detectable in the spleen or the liver by 24 hours (Figure 3). The

distinct in vivo disposition profile between traditional liposome

formulations and the Gd-LNP composition described here is also

consistent with the unique morphology of Gd-LNP detected by

electron microscopy (Figure 1B–C). While it needs to be validated,

the current Gd-LNP with diameter ,70 nm is far greater than the

50–70 kDa (d,3–4 nm) renal filtration threshold for globular

proteins in humans. As retention of free or chelated Gd molecules

in the kidney and tissues are proposed as one of the root causes of

NSF in patients with renal diseases or impairment, the Gd-LNP

hold promise both to improve effectiveness of contrast enhanced

MRI as well as safety of Gd use in this patient population.

More importantly, a more complete clearance of these lipid-

nanoparticles also suggests that background non-specific exposure

or accumulation of these lipid-nanoparticle carriers in tissues is

low. Thus, by attaching targeting molecules or peptides, these lipid

nanoparticles could provide high specificity and low off-target

accumulation for targeting to tumor receptors accessible through

blood, i.e. leaky tumor-associated vasculature. Given the low

degree of non-specific tissue accumulation, targeted lipid nano-

particles could be developed further as a better molecular imaging

agent and drug loaded targeted nanoparticles could provide much

higher therapeutic indices than classical liposomes or nanoparticles

using other matrices.

The specific application of the Gd-lipid nanoparticles as a

contrast agent remains to be directly demonstrated. However, it is

likely that with a 45 min, instead of 5 min half-life, it could be used

in a single dose instead of up to three injections to provide whole

body MRI scans for detecting atherosclerosis. In addition, with the

high resolution and low dose needed to detect vasculature in detail,

it is likely to provide early detection of pathogenic conditions in

highly perfused organs such as the lung, liver, kidney and

microhemorrhage in the brain. Due to its movements, a different

MR sequence may be needed for MR imaging of the lung. These

and other potential applications are beyond the scope of this

report and are under our current investigation.

In this report, we employed a linear chelate DTPA for proof-of-

concept studies. The macrocyclic chelate DOTA can extend the

DTPA, as a linear chelate, binding affinity of Gd about 3–4 orders

of magnitude. The increased binding affinity of macrocyclic

chelate to Gd has been proposed as one of the mechanisms to

reduce clinical toxicity due to release of free Gd into cells and

tissues. It is conceivable that we can further extend the DTPA in

our Gd-LNP using macrocyclic chelating agents such as DOPA-

PE, instead of DTPA-PE. These and other approaches to further

stabilize the Gd association to the Gd-LNP are currently under

our investigation. Regardless, the current formulation of Gd-LNP

appeared to reduce non-specific tissue uptake and provided

improvement in the extent of efficient elimination from the body.

In summary, our results indicate that an approximate 22–33-

fold lower dose of current Gd contrast agents could be used to

achieve similar or better whole-body image resolution for medical

diagnosis. The enhancement in contrast potency achieved with

Gd-LNP enable the use of only 3% or less of current clinical Gd

dose needed for MRI procedures with potentially better vascular

imaging capabilities. Furthermore, the rapid onset and unique

clearance properties of Gd-LNP could also be adapted for system

biology profiling of in vivo drug target distribution for new

molecules that are identified as part of global/international efforts

in pharmacogenomic and drug/target discovery research.

Materials and Methods

Materials
Phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)

and 1,2- distearoyl-sn-Glycero-3-phophoethanolamine-N-DTPA

(DTPA-PE) were purchased from Avanti Polar Lipids (Alabaster,

AL). 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[poly

(ethylene glycol)MW] (mPEG-DSPE) was obtained from Genzyme

Pharmaceuticals (Cambridge, MA). Gadolinium (III) chloride

hexahydrate (Gd3+) and calcein were purchased from Sigma

Chemical Co. (St. Louis, MO). Clinical Gd contrast agents were

purchased from clinical pharmacy. Other ingredients were of

analytical grade or higher.

Preparation and characterization of Gd-lipid
nanoparticles

The Gd-DTPA lipid nanoparticles were prepared by mixing

DSPC:DTPAPE:mPEG-DSPE (9:1:1 mole ratio), were dissolved

in chloroform, dried into a thin film under N2 and placed in a

vacuum overnight. The same lipid composition without mPEG-PE

were prepared as Gd-DTPA-liposomes. The phosphate buffered

saline (PBS, pH 7.4) was added to the film and either sonicated or

extruded through 50 nm polycarbonic filter at 60uC. To prepare

Gd bound to lipid nanoparticles, the nanoparticles in suspension

Figure 6. Schematic presentation of soluble and lipid nano-
particle associated Gd-DTPA molecular rotation and impact on
relaxivity as well as their retention in healthy blood vascula-
ture. The medium circular Gd and small circular DTPA chelate in
solution or H2O exhibit high molecular rotation (,1010 sec21) that
influences water proton relaxation, which typically produce 4–
6 mM21*sec21 relaxivity. When Gd-DTPA is bound to lipid nanoparticle
surface with surface bound water molecules attracted by PEG and Gd’s
molecular rotation is reduced to ,107–8 sec21, relaxivity is greatly
increased to about ,130 mM21*sec21 (not drawn to scale). Gd in Gd-
LNP also reduces the cellular uptake and thus lowers the cellular and
tissue accumulation in non-pathogenic tissues and cells which may
relate to clinical presentation of fibrosis.
doi:10.1371/journal.pone.0013082.g006
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were mixed with Gd3+ (1:1 DTPA-PE:Gd mole ratio) for 20

minutes. The same method was used to prepare 153Gd labeled

Gd-lipid nanoparticles where Gd3+ was replaced with 153Gd3+. For

comparison, water soluble commercial agents such as Gd-DTPA-

BMA and Gd-DTPA were also included. The lipid particle

diameter was determined with a Malvern Zetasizer 5000 photon

correlation spectroscopy (Malvern Instruments, PA), and expressed

at mean 6a SD.

Magnetic Resonance Measurements
In vitro measurements. The relaxation time T1 was

measured using the standard spin-echo sequence on a 3T MR

scanner with a volume head coil as RF receiver operating at 37uC.

For T1 measurements, TE (echo time) was fixed to 9 ms and seven

TR (repetition time) were 133, 200, 300, 500, 750, 1000 and

2000 ms, respectively. For T2 measurements, TR was fixed to

2000 ms and four TE were 15, 30, 45, and 60 ms, respectively.

The imaging intensities were fitted to obtain the corresponding T1

and T2 values for each concentration of Gd. These concentration

dependent T1 values were plotted versus Gd3+ concentration from

which the rising curve was fitted by linear regression to estimate

apparent molar relaxivity constant r1 and r2. The covariant of r1

and r2 data were 15% or lower.
In vivo rat imaging studies. All animal experiments were

performed with approved protocol # 2372-05 from the University

of Washington Institutional Animal Care and Use Committee.

Rats under anesthesia were implanted with an intravenous

catheter in the femoral vein. They were given indicated doses of

Gd-chelate or Gd-lipid nanoparticle preparations in 0.4 ml. MR

images were collected sequentially at indicated time points with a

3T MR scanner (Acheiva, Philips Medical Systems, Best,

Netherlands) using a small quadrature birdcage radiofrequency

receiver coil. Axial, 2D T1-weighted, turbo spin-echo of the whole

body was performed of each rat (TR/TE = 750/6.4 ms, TSE

factor 2, 5006470 mm in-plane resolution, 2-mm contiguous slice

thickness). In addition, coronal 3D RF-spoiled, fat suppressed,

gradient echo images were acquired (TR/TE/Flip = 19/1.55 ms/

40 degrees, in-plane voxel size = 550650 mm, 1.2 mm slice

thickness). A control marker of Omniscan doped water was

included in the imaging field of view to normalize signal intensity

of each set of images across animals.

Statistical Analysis
Data are presented as the mean 6 SD. Statistical significance

was evaluated either by unpaired Student’s t-tests (two-sided) or

one way ANOVA using SigmaPlot software (Systat, San Jose, CA).
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