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Abstract

Background: In this paper we investigate the definition and formation of financial networks. Specifically, we study the
influence of the time scale on their construction.

Methodology/Principal Findings: For our analysis we use correlation-based networks obtained from the daily closing prices
of stock market data. More precisely, we use the 30 stocks that currently comprise the Dow Jones Industrial Average (DJIA)
and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation
coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in
the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock
prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the
time scale of the data, whose influence on the construction of the networks will be studied in this paper.

Conclusions/Significance: Numerical analysis of four different measures in dependence on the time scale for the
construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a
meaningful graph-theoretical analysis.
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Introduction

Financial markets are one of the most fascinating and complex

systems of our times. Investigating such markets is important not

only because a more and more globalizing world depends strongly

on the cautious regulation of these markets allowing their proper

functioning. But also because we might be able to gain insights that

are fruitful and beneficial for our understanding of complex

adaptive systems in general [1–3]. For this reason, during the last

decades, questions in quantitative finance and econophysics have

attracted many scientists from diverse fields, e.g., physics,

computer science and statistics [4,5] to study this exciting

phenomenon.

One result of this effort, so far, is the understanding that the

usage of networks and network-based concepts are beneficial in

the study of financial markets because they can be used as

appropriate representation thereof [6–9]. This result coincides

with findings in many other fields, e.g., biology or sociology where

it has been realized that collective phenomena spanning large

parts of a system are best studied coherently by means of their

network structure [10–14]. For the stock market, the definition of

financial networks is very frequently based on the correlation matrix

of the composing stocks or companies. Whereas nodes correspond

to stocks and edges are obtained from the correlation coefficients,

either from a filtering or a transformation mapping. Especially,

trees have been studied numerously [8,15], because the concept of

minimum spanning trees provides a procedure for the extraction of a

tree from the correlation matrix. Further studies based on financial

networks investigated the hierarchical structure of the market,

clustered its constituting companies, studied the topology of the

obtained trees or networks, or investigated the time-dependence of

the observed correlations [6,8,15–18]. It is important to note that

the way a financial network is constructed from the correlation

matrix is not unique. For example, MANTEGNA [8] suggested to

extract the minimum spanning tree (MST) to find the most

important connections among all stocks, which also reveal their

hierarchical organization. In contrast, BOGINSKI et al. [6]

constructed their network by thresholding the correlations

resulting in different threshold dependent networks, and ONNELA

et al. [18] studied growing networks by adding successively edges

according to their rank, ordered from strong to weak correlations.

It is clear that the obtained trees or networks contain different, but

possibly overlapping, information of the underlying market.

In this paper we address the question how financial networks

should be constructed from given time series data of the stock

market. More precisely, we study the influence of the time scale -

the length of the time series - used to construct the networks. This

question arises, because we do not want to construct one financial

network for the whole time series, but we want to dissect the time

series in T (non-overlapping) intervals of length Dt and construct a

network for each interval. This is in contrast to, e.g., MANTEGNA

[8] who constructed just one minimum spanning tree, but similar
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to ONNELA [15] who used a sliding window resulting in

overlapping intervals, for which minimum spanning trees have

been extracted. In a none graph-theoretical context, EPPS [19] was

among the first who demonstrated that the correlations in the

stock market - between stocks - decay if one goes to a time scale of

hours or even shorter whereas the correlations increase for longer

time scales. This is an important finding because this result

suggests that the mixing of dependencies between stock prices

depends strongly on the time scale to establish an interconnection

within the market. It is not only important for our theoretical

understanding of the stock market to learn about intrinsic time

scales but also for practical applications, e.g., for time series

prediction. The point is that in, e.g., multivariate time series

analysis not only one, but multiple time series are used to predict

the future outcomes of stock prices or their volatility. However, if

there is no or only a very weak dependency between the utilized

time series, the analysis could be reduced to the investigation of

individual time series, because no cross information can be used to

improve the prediction accuracy. Hence, significant correlations

spanning the entire system are vital for such a multivariate analysis

[20,21]. The time scale of the stock market has been previously

investigated by KWAPIEN et al. [22] who studied stocks from the

NYSE and the Deutsche Börse. However, their focus was on the

comparison of the evolution of contemporary with the historical

market and their results demonstrate an acceleration in the

relevant time scale. Also the mechanism that could explain the

Epps-effect has been studied [23]. We want to emphasize,

however, that none of these previous approaches is network-based.

The major contribution of this paper is to study the

dependency of evolving financial networks on the time scale

used for their construction. The financial networks we construct

are correlation-based. However, instead of investigating prop-

erties of the correlation matrix directly, we study topological

modifications of the extracted financial networks. These

networks are undirected and unweighted, constructed statisti-

cally by a method recently introduced [7]. Our approach is

motivated by results from systems biology where it has been

demonstrated that the comparison of networks representing

molecular pathways allows to study important modifications of

functional units due to pathogenesis [24,25]. Here the crucial

point is that we hypothesize the topology of the financial

networks is a reflection of the proper functional behavior of the

stock market, rather than merely a mathematical auxiliary

function. Certainly, this will depend crucially on the way the

financial networks are constructed (defined). The goal of our

analysis is to find a time scale that is most beneficial for such a

definition of financial networks. That means our analysis can be

seen as a preprocessing step for a further analysis of the

obtained networks. The time scale used to estimate correlations

is crucial, because for too low values the strength of the signal

might be comparable to the noise in the data and, hence, the

networks will not only be erroneous but also very sparse because

of missing correlations. In the context of financial networks, this

impression is suggested by the investigations of EPPS [19]. On

the other hand, if the time scale is too long, then we might reach

saturation corresponding to an equilibrium. Hence, from this

consideration it appears clear that we need to use intermediate

values to construct (define) financial networks. The purpose of

this article is to provide a quantitative investigation of the above

argument.

This article is organized as follows. In the next section we

introduce our methods and describe the financial data we use for

our analysis. In the results section we present numerical results of

our analysis. This article finishes with a discussion and conclusions.

Methods

For our analysis we use data from the NYSE and the NASDAQ.

More precisely, we use the daily closing prices from the stocks of

the N~30 companies that currently comprise the Dow Jones

Industrial Average (DJIA) for the time range starting at July 1986

and ending in December 2007 [26]. The starting date was chosen

because Intel’s stock was introduced in July 1986, as the last of the

stocks considered in our analysis [7]. Because we want to study the

evolution of financial networks we separate the time series in T

none overlapping intervals. Each interval t has a duration of Dt

trading days. Table 1 shows the different parameters Dt and T we

study in this paper. The second column shows the number of

consecutive days Dt we use in our analysis to calculate the financial

networks. The third column shows the number of resulting

networks T , which equals the number of none overlapping

intervals, from July 1986 to December 2007.

In the following, we define how we construct a financial

network for each interval t. For simplicity, we omit the interval

index t whenever possible. We start by transforming the time

series of the prices Pi
t of stock i at day t to log-return values [21]

given by

xi
t~ log (Pi

t){ log (Pi
t{1): ð1Þ

From the obtained log-return values we calculate the Pearson

product-moment correlation coefficient between pairwise stocks

i and j by

rij~
E½(xi{mi)(xj{mj)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(xi{mi)2E(xj{mj)2

q : ð2Þ

The population correlation rij is estimated by the sample

correlation [27]

rij~

P
t (xi

t{mi)(xj
t{mj)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t (xi
t{mi)2P

t (x
j
t{mj)2

q : ð3Þ

Table 1. The second column shows the number of
consecutive days Dt we used in our analysis to construct the
networks.

C number of days (Dt) number of intervals (T)

1. 5 996

2. 10 498

3. 20 249

4. 30 166

5. 40 124

6. 60 88

7. 100 53

8. 120 44

9. 240 22

10. 1000 5

The third column shows the number of resulting intervals respectively networks
T we obtain from July 1986 to December 2007. The first column is just a
numbering of the studied cases (C).
doi:10.1371/journal.pone.0012884.t001
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In this paper, we are interested in the evolution of dependencies

between pairs of stocks respectively their log-return values. We

quantify this ‘dependency’ via Pearson’s product-moment

correlation coefficient of the log-return values. From the

estimated correlation coefficients, see Eq. 3, we construct

financial networks by applying undirectional statistical hypoth-

esis tests to test for significance [28]. More precisely, a

transformed value of the Pearson product-moment correlation

coefficient follows a t-distribution with df ~#samples{2
degrees of freedom. The hypothesis we are testing is

H0 : r~0, ð4Þ

against the alternative

H1 : r=0: ð5Þ

From these tests we construct networks G by setting [7]

Gij : ~
1 : reject H0 : r~0

0 : else

�
ð6Þ

A network G constructed this way is undirected and unweighted.

That means, there will be an edge connecting node i with node j

in G, if the statistical test rejects the null hypothesis, given a

significance level a, that the correlation coefficient rij is zero

[28]. In this paper we use the significance level a~0:05. To our

knowledge we are the first defining financial networks this way

[7]. We want to stress that this definition allows a unique

extraction of a network from the correlation matrix that is

statistically significant and reproducible. Application of this

procedure to all intervals gives T networks Gt, t[f1, . . . , Tg.
Each network Gt represents, thus, a certain time interval of

trading activity and, hence, of the dynamics of the correspond-

ing stock market. Certainly, an appropriate selection of Dt is

crucial. For this reason, the influence of Dt will be studied in the

next section.

Figure 1. Mean edge density vvvvvvewwwwww (black line). The blue curve corresponds to results from an inter-day randomization.
doi:10.1371/journal.pone.0012884.g001
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On a technical note, we want to remark that even for small sample

sizes as well as non-normal data our experimental design allows for

sound statistical estimations. In order to demonstrate this, we

estimated the attained false positive rate of two uncorrelated random

variables for two different cases. In the first case, the random

variables are sampled from a normal distribution with mean 0 and a

variance of 1, in the second case from a Pareto distribution with an

exponent of b~2. The Pareto distribution has a fat tail that decays

accoring to a power law *x{b which may represent real data more

appropriately. Averaging over 10000 hypothesis tests, each for a

sample size of 5 (because this is the smallest sample size used in our

analysis, see table 1) and a significance level of a~0:05 testing for a

vanishing Pearson correlation coefficient gives for the normal data

an estimated false positive rate of 0:053 and for the Pareto

distributed data 0:089. It is expected that the Pareto distributed

data give worse results than the normal data, however, the attained

false positive rate is also in this case acceptable [28].

Results

In this section we present numerical results. We investigate

three graph and one information-theoretical measure in order to

analyze the influence of Dt on the construction of the financial

networks and their properties. The first measure quantifies the

strength of the correlations on a system-wide scale - that means

comprising all stocks - by calculating the edge density of the

networks,

et~
2

N2{N

XN

i~1

X
jwi

Gt
ij , ð7Þ

vew~
1

T

XT

t~1

et: ð8Þ

Here N~30 is the number of stocks and et is the edge density for

network Gt at time point t (for interval t) and vew is the mean edge

density, averaged over all T networks (intervals). The second

measure we use is the edges density difference, Det, that can be found

comparing network Gt with Gtz1 that means between two

Figure 2. Mean edge density vvvvvvewwwwww (black line). The blue curve corresponds to results from an intra-day randomization.
doi:10.1371/journal.pone.0012884.g002

Financial Networks

PLoS ONE | www.plosone.org 4 September 2010 | Volume 5 | Issue 9 | e12884



consecutive networks. This measure is given by

Det~
2

N2{N

XN

i~1

X
jwi

DGt
ij{Gtz1

ij D, ð9Þ

vDew~
1

T{1

XT{1

t~1

Det: ð10Þ

Here vDew is the mean edge density difference, averaged over all

consecutive networks. We want to mention that the definition of Det

corresponds to the so called graph edit distance [29–31], which is a well

known graph metric in quantitative graph analysis [32]. This

branch of quantitative graph analysis is often referred to as inexact

graph matching [30,31] that addresses the problem of determining the

structural similarity of graphs in an error-tolerant way [31,32].

More precisely, the graph edit distance measure is based on

applying graph transformations, i.e, a sequence of weighted graph

edit operations that transform a given graph into another graph by

producing minimal edit costs [32]. The third measure we use to

quantify modification of the network structure is the number of

nodes, Ns, without connections to other nodes in the network.

These nodes are isolated and separated from the rest of the system.

For reasons of comparison, we calculate not only vew,

vDew and Ns for the data of the stock market, but also for two

randomized versions thereof. Randomized means, that we

permute the data according to a scheme in order to destroy or

establish new correlations randomly. We use two different

randomization schemes. The first randomization scheme permutes

the labels of the days t (not of the intervals) but conserves intra-day

labels (stock labels). That means we change Pi
t with Pi

t’ for all

stocks i[f1, . . . , Ng simultaneously. In the following, we call this

kind of randomization inter-day randomization. The second

randomization permutes in addition the stock labels. That means

we change Pi
t with Pi’

t’ for each stock independently. For this

reason we call it intra-day randomization. The figures 1, 3, 5 and 7

show the results for the inter-day randomization and the figures 2,

4, 6 and 8 the results for the intra-day randomization. For these

figures, curves shown in blue correspond always to results from the

randomizations.

Figure 3. Mean edge density difference vvvvvvDewwwwww (black line). The blue curve corresponds to results from an inter-day randomization.
doi:10.1371/journal.pone.0012884.g003
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Before we present our numerical results, we want to discuss the

rationale for introducing the two randomization schemas. First of

all, we would like to repeat that the major purpose in this paper is to

identify a time scale that is most beneficial for the construction of

financial networks. Here the definition of ‘beneficial’ is crucial in

order to study this problem. There are at least two possibilities to

find a definition, the first is an explicit definition the second an

implicit one. An explicit definition would be most convenient,

however, we are not aware of any higher principle that would allow

a derivation thereof unequivocally. Hence, any explicit definition

would be ad hoc and potentially difficult to defend. For this reason,

we are pursuing the second path utilizing randomizations of the

data. More precisely, a randomization of data can be interpreted as

a removal of information from these data. Because we do not know

how the networks should look like nor what structural properties

they should have, we perform a comparative analysis. This

comparative analysis compares networks constructed from (normal)

data with networks constructed from randomized data allowing to

detect differences or similarities. From this, we aim at identifying a

time scale for which networks constructed from normal data are

different to networks from randomized data, with respect to

measures we are using in this paper. Because for such a time scale,

the structural information of these networks is apparently different.

The reason for using different randomizations is that, in general,

more than one randomization is possible. In our case, we identified

two randomizations that are sensible, given the specific context of

our problem. Finally, we would like to emphasize that the fact that

the randomized and normal networks appear similar, according to a

measure employed, does not mean that this time scale may not be of

any usage for the study of the stock market in general. Instead, it

merely means that it does not appear to be advisable to use this time

scale for the construction of financial networks for data of a similar

type as the one used in this study.

For all following simulations, we obtain T(Dt) - depending on the

time scale - different networks (see table 1). From these networks we

estimate our four measures described above and their corresponding

standard errors (shown as vertical bars in the figures). Fig. 1 shows the

results for the mean edge density vew. For this measure, the course

of vew for the randomized data is very similar. Both curves start at

low values for short time intervals Dt, but increase steadily for larger

intervals, until almost every stock is correlated with all other stocks. In

this case, G is almost fully connected. We would like to point out that

Figure 4. Mean edge density difference vvvvvvDewwwwww (black line). The blue curve corresponds to results from an intra-day randomization.
doi:10.1371/journal.pone.0012884.g004
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the curves are similar but not identical because inter-day random-

ization permutes trading days, and not whole intervals. For the intra-

day randomization, shown in Fig. 2, we observe a considerable

difference for vew. This demonstrates that the correlations among

stocks within a day are stronger than the correlations between trading

days. The intra-day randomization removes almost all correlations,

which is the reason why vew increases only slightly for larger values

of Dt. The interesting result from Fig. 1 is that for Dt larger than

about 40 trading days both curves become indistinguishable, given

the errors of the estimates. However, below this threshold they are

different. Given the large sample sizes (see table 1) for these values,

which is larger than 100, implies reliable estimates.

Fig. 3 shows the results for the mean edge density difference

vDew. It is interesting to see that now a difference between the

normal (black line) and inter-day randomized (blue line) data is

clearly visible for all values of Dt, underlining the need to study

several different measures, because each has its own sensitivity

towards certain characteristics in the data. From Fig. 3 follows that

between Dt~10 and Dt~20, both curves separate strongly from

each other and vDew reaches its maximum for Dt~40 (normal

data). For Dt larger than 40 days, vDew decays, because due to

the longer interval sizes the correlations seem to reach an

equilibrium resulting in consolidations of the correlations between

stocks and, hence, a more stable structure of the financial

networks. This means, if one wants to study the dynamical

behavior of the stock market our results suggest to focus on

Dt[f10, 40g days. Using interval sizes below 10 days seems not to

be advisable because the noise seems to be of comparable strength

as the signal. Again, the intra-day randomization shown in Fig. 4 is

significantly different to the results for the normal data, and its low

values can be explained due to the low number of significant

correlations present in G (see Fig. 2). The results for the mean

number of unconnected nodes, Ns, are shown in Fig. 5 and 6.

Fig. 6 suggests also that below Dt~10 the signal and the noise are

comparable in size, because the randomized and normal curves

provide similar results and from Fig. 5 we see that Ns reaches an

equilibrium for larger interval sizes.

Finally, we present results for one further measures, the

mean Kullback-Leibler divergence. The mean Kullback-

Leibler divergence [33,34] for the degree distributions is given

by

vDw~
1

T

XT{1

t~1

Dt, ð11Þ

with

Dt(p
d
t Dp

tz1
d )~

X
i

pd
t (i) log

pd
t (i)

pd
tz1(i)

: ð12Þ

The distributions pd
t and ptz1

d correspond to the degree distributions

of the network at time (interval) t and tz1 (interval). The Kullback-

Leibler divergence evaluates the deviation of the degree distribu-

tions of consecutive networks and, hence, provides a measure to

evaluate topological modifications regarding the connectivity of the

networks. vDw is a global measure because it compares

distributions for the whole network, but in contrast to the edge

density difference (9), which is also a global measure, vDw does

not assess modifications of individual vertices but of the whole

collective. For this reason vDw is less sensitive against individual

Figure 5. Mean number of unconnected nodes Ns (black line).
The blue curve corresponds to results from an inter-day randomization.
doi:10.1371/journal.pone.0012884.g005

Figure 6. Mean number of unconnected nodes Ns (black line).
The blue curve corresponds to results from an intra-day randomization.
doi:10.1371/journal.pone.0012884.g006
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degree modifications as long as the whole network maintains a

certain distribution. That means vDw does not detect individual

degree modifications and, hence, is more abstract then (9).

Fig. 7 and 8 show our results for the mean Kullback-Leibler

divergence. The qualitative results for the mean Kullback-Leibler

divergence are similar to the results for the edge density difference

(Fig. 3 and 4). For Dt larger than 20, the normal and inter-day

randomized curves separate from each other indicating that

successive networks are more and more dissimilar, because the

degree distributions become more and more dissimilar. For larger Dt
values, both curves come closer together (this holds also for the intra-

day randomization shown in Fig. 8) indicating an decreasing amount

of signal in the networks respectively their degree distributions. A

difference between vDw and vDew is the location of the maxima,

which is at Dt~40 for vDew and Dt~90 for vDw.

Discussion

In this paper we investigated the construction of financial

networks. We used the correlation matrix to define undirected and

unweighted networks, resulting from the application of statistical

hypothesis tests to the correlation coefficients. This results in

statistically significant networks, wherein stocks correspond to

nodes and edges correspond to non-vanishing correlation

coefficients [7]. The novel contribution of this paper is a systematic

investigation of the influence, the length of the used time interval,

Dt, has on the resulting networks respectively on their structure.

The goal was to find a time scale, Dt, that results in the most

meaningful networks. Here we consider a network structure to be

meaningful, if it is a reflection of the current state of the stock

market. Our underlying hypothesis is based on the assumption

that the stock market is a dynamical system [35]. For this reason it

appears reasonable not to represent the market by just one

network for the whole time series of all trading days, but to

construct many networks, each for a much shorter time interval.

This way the networks may capture and, hence, represent

characteristic information of the corresponding time intervals

reflecting the state of the dynamical system. Intuitively, it seems to

be clear that networks that have many unconnected nodes (low

vew and high Ns values) and networks that are almost fully

connected in average (high vew values), are not meaningful.

From an economics point of view, it is very difficult to provide an

exact definition of network properties that should be present

because our knowledge of the working mechanism of the stock

market is far from being complete. For this reason, we studied the

behavior of four measures (three graph-theoretical and one

information-theoretical measure) in dependence on Dt compara-

tively by means of randomized data. Our results indicate that a

time scale from more than 10 to 40 trading days, corresponding to

an interval between 2 weeks and 2 months, seems to be most

favorable for the construction of the financial networks. Using a

time scale that is shorter or much longer, results in networks that

are either very sparsely connected with a high number, Ns, of

unconnected nodes (see Fig. 5 and Fig. 6) or in networks that are

almost fully connected (see Fig. 1 and 2). Clearly, the utility of the

networks depends strongly on the scientific question under

consideration, however, a different time scale seems not to be

advisable, because otherwise the properties of the networks are in

average quite extremal and not just for some of the networks.

Regarding potential applications, our results clearly indicate

that networks should be constructed from more than 10 trading

days in order to reduce the amount of noise in the constructed

Figure 7. Mean Kullback-Leibler divergence vvvvvvDwwwwww (black line).
The blue curve corresponds to results from an inter-day randomization.
doi:10.1371/journal.pone.0012884.g007

Figure 8. Mean Kullback-Leibler divergence vvvvvvDwwwwww (black line).
The blue curve corresponds form an intra-day randomization.
doi:10.1371/journal.pone.0012884.g008
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networks. Again, this recommendation holds only for financial

data of the same type as ours (daily closing prices). This implies

that the lower bound found by our analysis is the more relevant

one for applications in time series analysis, because Dt defines the

resolution in the application of the financial networks.

From a more abstract point of view the topic of our paper is

complementary to studies investigating the generation of (complex)

networks [36–39]. Such studies define usually a stochastic

procedure consisting of basic rules, whose iterative application

generates a network with certain structural properties. In contrast,

we obtained networks not by a generation but a construction

(estimation) procedure which is based on data. It would be

interesting to study structural properties of financial networks

constructed by our procedure and to compare them with known

network models in the literature. It should not surprise to find

similarities because also many recent network models that give rise

to power law distributions in the degrees form special cases of

classic models by YULE or SIMON [40,41] (see [37] for a thorough

discussion). For this reason such a comparison might give further

insights into the dynamical processes of financial networks and

their constituting stocks/companies.

We consider our results as an important step that hopefully

facilitates the interest and the usage of networks in the context of

financial markets, because to be able to analyze financial networks,

first, we need to define them. As we pointed out above, the time

scale used to construct the networks plays a crucial role in this

endeavor. In our future work, we will investigate networks that are

constructed by using the relevant time scale found in this article.

We are of the opinion that network-based analysis methods will

gain even more attention in the analysis of financial markets in the

near future, because the analysis of networks implies the analysis

on a systems level [42].
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