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Abstract

Background: CD1d is a nonpolymorphic MHC class I-like molecule which presents nonpeptide ligands, e.g. glycolipids, to
NKT cells. These cells are known to have multiple effects on innate and adaptive immune responses and on the
development of pathological conditions. In order to analyze CD1d expression and function in the rat, the first rat CD1d-
specific monoclonal antibodies (mAbs) were generated.

Methodology/Principal Findings: Two mAbs, WTH-1 and WTH-2, were generated which bound equally well to cell surface-
expressed rat and mouse CD1d. Their non-overlapping epitopes were mapped to the CD1d heavy chain. Flow cytometry
and immunohistological analyses revealed a nearly identical degree and pattern of CD1d expression for hematopoieitic cells
of both species. Notable is also the detection of CD1d protein in mouse and rat Paneth cells as well as the extremely high
CD1d expression in acinar exocrine cells of the rat pancreas and the expression of CD4 on rat marginal zone B cells. Both
mAbs blocked a-galactosylceramide recognition by primary rat and mouse NKT cells. Interestingly, the two mAbs differed in
their impact on the activation of various autoreactive T cell hybridomas, including the XV19.2 hybridoma whose activation
was enhanced by the WTH-1 mAb.

Conclusions/Significance: The two novel monoclonal antibodies described in this study, allowed the analysis of CD1d
expression and CD1d-restricted T cell responses in the rat for the first time. Moreover, they provided new insights into
mechanisms of CD1d-restricted antigen recognition. While CD1d expression by hematopoietic cells of mice and rats was
extremely similar, CD1d protein was detected at not yet described sites of non-lymphatic tissues such as the rat exocrine
pancreas and Paneth cells. The latter is of special relevance given the recently reported defects of Paneth cells in CD1d2/2

mice, which resulted in an altered composition of the gut flora.
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Introduction

CD1 molecules are glycoproteins, which are non-covalently

associated with b2-microglobulin and possess an antigen binding

groove formed by the a1 and a2 domains. Despite these structural

similarities with antigen presenting MHC class I molecules, they

considerably differ in other aspects [1,2,3]: i) CD1d molecules are

rather non-polymorphic whereas classical MHC class I molecules

are highly polymorphic, ii) CD1d proteins bind and present

antigens containing a lipid or other hydrophobic moieties while

MHC class I molecules accommodate and present peptides, iii) so

far, CD1 genes have only been identified in mammals and

chicken, while MHC class I genes are present in all jawed

vertebrates and iv) whereas classical MHC class I molecules are

rather similar to each other with respect to function and

expression, CD1 genes and molecules differ remarkably between

each other and between species in number, expression pattern,

type of presented antigens and mode of antigen loading. In

humans, the CD1 gene family is composed of five members

(CD1A, -B, -C, -D and -E) which are subdivided into two groups

based on the amino acid sequence similarity of the a1 and a2

domains of the encoded proteins [4]. CD1a, -b, and -c belong to
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group 1; CD1d is the only member of group 2 and CD1e cannot

clearly be assigned to either group. In contrast, mice and rats

possess only representatives of group 2: mice have two CD1d

orthologues (CD1d1 and CD1d2) [5] and rats have one [3,6,7].

During the past ten years, the role of CD1 proteins, except for

CD1e, as molecules presenting lipid antigens to T cells has been

well established [1,2,3,8].

CD1d-restricted T cells often, but not always, express receptors

shared with natural killer (NK) cells and are therefore named

NKT cells [9]. These cells recognize ligands of endogenous and

microbial origins and after activation they secrete very rapidly a

wide range of cytokines. NKT cells play an important role in

antimicrobial responses, antitumor immunity and the regulation of

the balance between tolerance and immunity [10,11]. NKT cells

are divided into type I and II depending on the genes used for the

generation of the T cell receptor (TCR) a chain and the reactivity

of the TCR to a-galactosylceramide (a-GalCer) which is the first

lipid identified to be presented by CD1d. In mice, type I NKT

cells (also designated as invariant NKT cells (iNKT cells) or Va14

NKT cells) express an invariant TCR a chain characterized by

AV14-AJ18 rearrangements which pair only with certain b chains

resulting in an also limited Vb repertoire (BV8S2, BV7 and BV2).

In the rat, the corresponding a chains are generated by

rearrangement of one of its multiple AV14 genes with AJ18.

Pairing of these a chains with BV8 containing b chains form a-

GalCer reactive TCRs [10,12,13]. The type II category includes

all CD1d-restricted T cells which do not express the canonical a
chain. Although the specificities of this diverse group remain

largely unclear, reactivity to endogenous sulfatides has been

demonstrated [14,15,16,17].

Of the two CD1d genes present in mice, CD1d2 is only

expressed on thymocytes and is of limited functionality with

respect to antigen presentation and NKT cell selection [18].

Notably, in C57BL/6 mice a frame shift mutation prevents

CD1d2 surface expression [19]. The functional orthologue is

CD1d1, which is constitutively expressed on hematopoietic cells

although surface expression levels vary among different cell types:

Dendritic cells, macrophages and marginal zone (MZ) B cells are

the cells with highest levels, followed by B cells and T cells,

respectively [19,20,21]. Expression in non-lymphatic organs such

as liver and lung has also been reported [5,20,22]. However, in

other tissues like the intestine, the precise localization of CD1d

molecules is still a matter of debate [1]. In spite of this, a recent

study by Blumberg and colleagues has demonstrated the

importance of CD1d expression for gut function since pathogenic

and non-pathogenic bacterial intestinal colonization of CD1d

deficient mice was increased in comparison to wild type mice [23].

Paneth cells in which CD1d mRNA has been detected by in situ

hybridization [24] play a crucial role in controlling intestinal

homeostasis. Localized at the bottom of the crypts of Lieberkühn,

these specialized cells control the microbiota content by secreting

antimicrobial peptides (defensins) into the intestinal lumen.

Interestingly, Blumberg and colleagues also showed that in

CD1d knockout mice, compared to wild type mice, the

morphology and content of the secretory granules of the Paneth

cells were altered, and more importantly, that degranulation of

these cells was defective. Moreover, in wild type mice, degranu-

lation of Paneth cells could be triggered in vivo after injection of a-

GalCer and in vitro after stimulation with a-GalCer and type I

NKT cells [23].

Rats serve to investigate numerous biological functions and

pathological conditions including models for autoimmune diseases

for which a role for CD1d-restricted T cells has been proposed

based on studies in mice. Nevertheless, analysis of such cells in the

rat has been strongly hampered due to the lack of suitable reagents

[13]. The actual knowledge about rat CD1d expression is based on

experiments using reverse transcription-polymerase chain reaction

(RT-PCR), in situ hybridization or polyclonal antiserum. These

studies found CD1d to be widely distributed within and outside the

hematopoietic system and, as in mice, high levels of CD1d mRNA

were detected in Paneth cells [6,25]. In two additional studies

mAbs originally generated against mouse CD1d have been

reported to cross-react with rat CD1d. In the first study, the rat

IgMs 1H1 and 3C11 [26] were shown to bind a CD1d-like

molecule which was detected in the liver but not in the thymus

[27]. In the second study, reactivity of mAb 3H3 with rat

thymocytes and splenocytes was reported but not further

investigated [28]. Hence, prior to our study, appropriate

monoclonal antibodies for the analysis of CD1d expression and

function in this species were still missing.

Here we report the generation of two monoclonal antibodies

with high affinity and similar binding capacities to both, rat CD1d

and mouse CD1d1. Both antibodies recognize two distinct

epitopes on the CD1d heavy chain and interfere with antigen

recognition by CD1d restricted T cells. Apart from this direct

demonstration of rat CD1d function and its physiochemical

properties, these antibodies allowed us to directly compare CD1d

expression of both species revealing only small differences in

CD1d expression on corresponding hematopoietic cell subsets.

Outside the hematopoietic system we detected high levels of CD1d

protein in rodent Paneth cells and exocrine cells of the rat

pancreas. The possible implications of CD1d expression by these

cells as well as species-specific features of CD1d expression are

discussed.

Results

Production of two monoclonal antibodies with similar
binding capacities to rat CD1d and mouse CD1d1

In order to produce rat CD1d-specific monoclonal antibodies,

CD1d2/2 BALB/c mice were immunized with rat CD1d-

transduced M12.4.1.C3 cells. Splenocytes of immunized mice

were fused with Sp2/0 cells and hybridoma supernatants were

screened for reactivity with CD1d by fluorescence activated cell

sorting (FACS) analysis of rat CD1d-transduced and untransduced

human or mouse cell lines. Two mAbs produced by the

hybridomas WTH-1 and WTH-2 were purified and further

characterized. To test and compare the binding properties of these

antibodies to rat CD1d and mouse CD1d1, transduced cell lines

and primary thymocytes (from LEW rats and from C57BL/6

mice) were stained with increasing concentrations of the mAbs and

were analyzed by flow cytometry. Both antibodies bind with

similar efficacy to mouse or rat CD1d-transduced Raji cells as well

as to mouse or rat thymocytes (Fig. 1A). Depending on the

antibody preparation, half maximal binding of mAb WTH-2 was

observed between 0.2 and 0.5 nM. For the mAb WTH-1 three to

five times more antibody was necessary to achieve half maximal

binding (Fig. 1A). Not shown is the lack of binding to

untransduced Raji cells and thymocytes of CD1d2/2 mice.

Cross-competition experiments demonstrated that these mAbs

recognize different non-overlapping epitopes on CD1d (Table 1).

CD1d specificity of the antibodies was further confirmed by

immunoprecipitation of biotinylated surface proteins derived from

CD1d transductants and primary cells (Fig. 1B). Sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of

precipitates under reducing conditions revealed two bands with

molecular weights similar to those reported for mouse CD1d1 (49–

58 kDa) and b2-microglobulin (about 12 kDa) [21]. In SDS-

Rat CD1d
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PAGEs using lower acrylamide concentrations (10%) and other set

of commercially available molecular weight markers, the precip-

itated rat CD1d heavy chain appeared with a molecular weight of

50–55 kDa under reducing conditions (data not shown). More-

over, rat CD1d and mouse CD1d1 expressed by human

lymphoma cells (Raji) as transgenes had the same molecular size

as CD1d expressed by rat and mouse thymocytes. The antibodies

were also tested in Western blot analysis. Separation of whole cell

lysates under reducing conditions severely impaired the binding of

the antibodies (data not shown) but under non-reducing conditions

a broad band of about 45–50 kDa appeared, indicating abundant

glycosylation (Fig. 1C). These results demonstrate a direct binding

of the mAbs to the mature CD1d heavy chain, independent of b2-

microglobulin. The mobility of the CD1d heavy chain under non-

reducing conditions in SDS-PAGE is also consistent with previous

reports on mouse CD1d [26]. Interestingly, in contrast to cell

surface staining, both antibodies bound rat CD1d much better

than mouse CD1d1 in immunoblots of protein extracts derived

from transduced cells which express similar CD1d levels by criteria

of cell surface staining and intensity of the EGFP reporter (Fig. 1A

and 6B). Moreover, and also in contrast to surface staining, WTH-

1 was much more efficient than WTH-2 in Western blot analyses.

The right part of Fig. 1C depicts an immunoblot of protein

extracts from rat spleen, thymus and pancreas, which demon-

strates CD1d expression in these organs. Densitometric evaluation

of the films revealed the following ratios between CD1d and

ERK2 signals: Spleen, 0.8; thymus, 1.02 and pancreas, 1.72. In

Figure 1. Characterization of two novel anti-CD1d monoclonal antibodies. (A) Titration of WTH-1 and WTH-2 mAbs on rat CD1d or mouse
CD1d1 Raji transductants (left) and on C57BL/6 or LEW thymocytes (right). Cells were stained with the indicated concentrations of CD1d-specific
antibodies (X axis). After washing, antibodies were detected with PE-labeled donkey anti-mouse IgG and analyzed by flow cytometry. On the Y axis,
the geometric mean fluorescence intensity (MFI) is shown for the different antibody concentrations. (B) Immunoprecipitation of biotinylated surface
proteins with WTH-1 (1), WTH-2 (2) or isotype control antibodies. Immunoprecipitated material was size separated under reducing conditions on a
15% SDS-PAGE, blotted onto a membrane and detected by addition of streptavidin-HRP. (C) Western blot analysis of proteins derived from rat CD1d
(r) or mouse CD1d1 (m) transduced cells - left blots - and from rat tissues: spleen (spl), thymus (thy) and pancreas (pan) - right blots -. Proteins were
separated on a 10% polyacrylamide gel under non-reducing conditions and blotted to a membrane. CD1d was detected with the WTH-1 or WTH-2
mAbs. The duration of film exposure for the CD1d immunoblots is indicated under the mAb names. After CD1d detection, the blots were stripped
and re-probed with a polyclonal ERK2-specific antibody as protein loading control (lower blots).
doi:10.1371/journal.pone.0013089.g001

Table 1. WTH-1 and WTH-2 mAbs recognize distinct
epitopes.

Cell type mCD1d1 transductants
LEW rat
thymocytes

Detection mAb 1B1 WTH-1 WTH-2 WTH-1 WTH-2

Experiment 1 2 1 2 1 2 1 2 1 2

Blocking mAb WTH-1 0 0 100 99 0 0 100 93 7 7

Blocking mAb WTH-2 3 9 7 6 100 100 0 7 100 96

Numbers indicate percentages of binding-inhibition of biotinylated WTH-1 and
WTH-2 antibodies by unconjugated blocking antibodies used as ‘‘cold’’
competitors. Biotinylated antibodies were visualized with SA-PE. Inhibition of
binding was investigated with mouse CD1d1 transduced Raji cells or LEW
thymocytes. Two independent experiments (1 and 2) are shown.
doi:10.1371/journal.pone.0013089.t001

Rat CD1d
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SDS-PAGE, pancreatic CD1d had a slightly higher mobility than

that from lymphatic tissues. CD1d expression in the pancreas was

further analyzed and is described in more detail in a later section

of the results.

CD1d expression on rat and mouse hematopoietic cells
The WTH-1 and WTH-2 mAbs allowed us to directly compare

CD1d surface expression on mouse and rat hematopoietic cells by

flow cytometry. The results obtained with the two mAbs were

nearly the same, therefore, only stainings performed with the

WTH-2 mAb are shown. At first thymocytes and splenocytes of

five different inbred rat strains which represent two different

CD1d alleles were analyzed; F344 versus LEW, BN, PVG and

DA. This analysis revealed no allele specific differences in cell

surface CD1d expression levels but inconsistencies between our

data and published results on CD1d sequences and strain

specificity of these alleles, which are described in greater detail

in the supplementary material (Table S1 and Fig. S1). Comparison

of CD1d expression in LEW rats and C57BL/6 mice showed very

similar staining intensities on thymocytes and most splenocytes

(Fig. 2A). The only striking difference was the higher proportion of

CD1d high cells among rat splenocytes which, as shown later, can

be attributed to MZ B cells [21]. This is consistent with the very

broad marginal zone and large number of these cells found in rats

[29,30,31].

Co-staining of CD1d and TCR in thymocytes revealed that in

rats, as in mice [19], TCR low cells, which are double positive

thymocytes, express higher levels of CD1d than TCR high cells,

which are single positive thymocytes (Fig. 2B). CD1d expression by

mouse T and B cells of the spleen and lymph nodes has been

extensively studied [19,20,21,32]. CD1d surface expression is

lower on T cells compared to B cells and among T cells, is higher

on CD4 T cells than on CD8 T cells. Using the WTH-1 and

WTH-2 antibodies we reproduced the findings obtained in mice,

and observed that rat B cells also express higher CD1d levels than

T cells (Fig. 2C and Fig. S2). However, in rats the pattern of CD1d

distribution among T cell subpopulations is different than in mice.

CD1d levels on rat CD4 T cells are not higher than those on CD8

T cells of the rat, as demonstrated by different staining and gating

strategies (Fig. 2C and Fig. S3).

In the mouse, in addition to MZ B cells, other antigen

presenting cells [21] also show very high CD1d levels. Analysis of

mouse MZ B cells (CD21high/CD23low) with the mAbs reported

here confirmed their high CD1d expression levels (Fig. 3A). Rat

MZ B cells defined either by combinations of the B cell marker

CD45RA (OX-33) and the MZ B marker HIS57 or by gating on

IgM high/IgD low cells [29] are CD1d high as well (Fig. 3A).

Surprisingly, most MZ B also expressed CD4 and nearly half of

them as much as other splenocytes (e.g. CD4 T cells) (Fig. 3A).

These findings were confirmed with a second CD4 specific mAb

(OX-38) and in another inbred rat strain (F344) (data not shown).

Mouse MZ B cells were CD4 negative (Fig. 3A). CD1d expression

on rat dendritic cells (OX-62+) and macrophages (CD11b/c+) was

also analyzed and compared to that of MZ B cells, identified as

HIS57+ cells in this case. The stainings depicted in figures 3B and

C show that, similar to mouse antigen presenting cells, CD1d

levels on rat dendritic cells and macrophages are as high as those

of MZ B cells. Moreover, these stainings exclude that the CD4+

cells observed among the HIS57+ gated cells are macrophages or

dendritic cells. Last, we also analyzed CD1d expression on natural

killer cells from the spleen which were defined as NK1.1 or NKR-

P1A positive cells in mice and rats, respectively. In C57BL/6 mice,

NK1.1 positive cells express lower CD1d levels compared to the

rest of splenocytes, whereas in rats NKR-P1A positive cells and T

cells express CD1d at similar levels (data not shown).

Immunohistological analysis of CD1d expression in
lymphatic organs

CD1d distribution was analyzed in rat and mouse thymus and

spleen by immunohistology with mAbs WTH-1 and WTH-2. In

rats, results obtained with both antibodies were almost identical

except for certain cell types such as endothelia in large vessels

which were less efficiently stained by mAb WTH-2. Thus, staining

results are only shown for mAb WTH-1 (Fig. 4). The histological

expression pattern of CD1d in both organs was identical in rats

and mice, but mice exhibited overall a lower staining intensity.

In both species monocytes, certain macrophages and dendritic

cells were the most strongly reactive cells in the organs investigated

Figure 2. Comparison of CD1d expression levels by rat and
mouse primary cells. Representative data from one out of a total of
three experiments are shown. (A) Staining of total thymocytes or
splenocytes with biotinylated WTH-2 or isotype control antibodies and
SA-PE. Gray and black lines correspond to C57BL/6 and LEW cells,
respectively. Filled histograms are control stainings. (B) Co-expression of
CD1d and TCR on thymocytes was analyzed by two-color flow
cytometry. CD1d was stained using the WTH-2 mAb and PE-labeled
donkey anti-mouse IgG. For staining of mouse and rat TCRs, H57-597-
APCy and R73-bio + SA-APCy were used respectively. Numbers indicate
the MFI of anti-CD1d mAb for the gated populations. (C) CD1d
expression by B and T cells in the spleen. In C57BL/6 mice, CD1d was
analyzed with the biotinylated WTH-2 mAb followed by SA-PE and in
LEW rats, since biotinylated mAbs were used for B and T cell
identification, CD1d was stained with unconjugated WTH-2 mAb
followed by PE-labeled donkey anti-mouse IgG. Filled histograms are
control stainings carried out as WTH-2 stainings but with an isotype
control antibody. (Upper row) Relative CD1d expression by B and T
cells. Histograms show separate multicolor experiments with same
overall CD1d staining intensity (Fig. S2), since both, T and B cells, were
identified using APCy visualized antibodies in order to avoid unspecific
signal due to fluorescence spectral overlap into the PE channel. The
gating strategy and the antibodies used are explained in detail in figure
S2. Gray and black lines correspond to B and T cells, respectively. (Lower
row) Histograms show CD1d expression by CD4 and CD8 positive T
cells. The gating strategy and used antibodies are explained in detail in
the figure S3. Gray and black lines represent CD4+ and CD8+ T cells,
respectively.
doi:10.1371/journal.pone.0013089.g002

Rat CD1d
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(Fig. 4A–D). Reactivity of endothelial cells was variable.

Macrophages and dendritic cells were especially abundant in the

thymic medulla of 12-week-old rats and were less conspicuous in

8- to 10-week-old mice (Fig. 4A, D). Cortical and medullary

thymocytes were clearly positive in both species and there were

only minimal differences in staining intensity among both cell

types (Fig. 4A, D).

In rat spleens a graded intensity of CD1d expression was evident

in white pulp lymphocytes, which corresponded to the data

obtained by flow cytometry (Fig. 4 B, C). MZ B cells were most

strongly stained, follicular B cells exhibited intermediate staining

and T cells in the periarteriolar lymphatic sheath (PALS) were the

least reactive cells. Marginal metallophilic macrophages surround-

ing the follicles and dendritic cells in the PALS were the most

conspicuous cells in the rat white pulp (Fig. 4B, C). In the splenic red

pulp, monocytes and granulocytes were the most strongly stained

cells. The red pulp also contained a large number of cells with

intermediate CD1d levels whose identity remains to be identified.

Figure 3. CD1d and CD4 expression by MZ B cells, dendritic cells and macrophages from the spleen. One representative of three
independent experiments is shown. Dot plots illustrate gating strategies. Numbers indicate the percentages of gated cells. Histograms show CD1d
and CD4 expression levels. (A) MZ B cell analysis. In C57BL/6 mice, CD1d was stained with biotinylated WTH-2 mAb + SA-Cy5-PE and CD4 with RM4-
APCy. In LEW, CD1d was detected with unconjugated WTH-2 mAb followed by PE-labeled donkey anti-mouse IgG antibody and CD4 with OX-35
labeled with PE-Cy5 unless otherwise indicated. Upper row histograms show gated MZ B cells, whereas, lower row histograms show total
lymphocytes. MZ B cells in C57BL/6 mice were identified by gating on CD21 hi (7G6-FITC) and CD23 low/negative (B3B4-PE) cells. In LEW rats, MZ B
cells were stained with two different marker combinations: CD45RA (OX-33-FITC)/HIS57-biotin + SA-APCy and IgM (G53-238-FITC)/IgD (MARD-3-biotin
+ SA-APCy), respectively. Analysis of CD1d and CD4 in MZ B cells defined as HIS57 and CD45RA positive cells was carried out with one single
multicolor experiment. Expression of CD1d and CD4 in MZ B cells defined as IgD low and IgM high cells was determined in separated multicolor
experiments as both, the CD1d and the CD4 specific antibodies, were visualized with the PE fluorochrome (CD1d: WTH-2 + PE-donkey anti-mouse
IgG, CD4: OX-35-PE). (B) CD1d and CD4 expression by LEW dendritic cells (OX-62 + PE donkey anti-mouse IgG secondary antibody) and MZ B cells
(HIS57-biotin and SA-APCy). CD1d was detected with WTH-2-FITC and CD4 with OX-35-PE-Cy5. (C) CD1d and CD4 expression by LEW macrophages -
defined as CD11b/c+ cells (OX-42-PE) - and MZ B cells (HIS57-biotin + SA-APCy). CD1d was stained with unconjugated WTH-2 followed by FITC-
labeled donkey anti-mouse IgG. For CD4 detection, OX-35-PE-Cy5 antibody was used.
doi:10.1371/journal.pone.0013089.g003

Rat CD1d
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Flow cytometric studies had revealed that rat MZ B cells express

CD4 (Fig. 3). Therefore, we also analyzed the presence of CD4

and the HIS57 antigen in the spleen by immunohistology and

confirmed that mAb HIS57 predominantly stained MZ B cells

(Fig. 4E). A subpopulation of follicular B cells in a superficial cap-

like accumulation and dendritic-like cells in the PALS were also

positive, but their staining intensity was low. Consistent with flow

cytometric data using anti-CD4 mAbs OX-35 and OX-38,

immunohistology with mAb W3/25 clearly visualized that CD4

was not only expressed by a large number of T lymphocytes in the

PALS and by typical monocytes and macrophages in the red pulp,

but also by MZ B cells. Follicular B cells, however, remained

unstained (Fig. 4F).

CD1d expression in non-lymphatic organs
Using mAbs WTH-1 and WTH-2 the in situ expression of CD1d

was also investigated in the liver, heart, small intestine and

pancreas of rats. Since CD1d was detected in unexpected sites in

the rat pancreas and small intestine, these organs were also

analyzed in the mouse. In the rat, both antibodies produced very

similar staining patterns in each organ with an intensity

comparable to that found in lymphatic organs.

CD1d was widely expressed by rat non-lymphatic parenchymal

cells such as hepatocytes, cardiomyocytes and pancreatic acinar

cells (Table S2, Fig. 4 G–I, L). Moreover, capillary and large vessel

endothelia, interstitial macrophages and dendritic cells were

strongly positive in all organs investigated. Due to the intense

endothelial staining it was however difficult to identify cells directly

adjacent to microvessels such as von Kupffer cells and stellate cells

in the liver (Fig. 4G). Capillary endothelial reactivity also

precluded unequivocal recognition of intercalated duct epithelia

in the pancreas. Likewise, enteroendocrine cells could not be

distinguished among the mass of CD1d+ enterocytes (Fig. 4I). In

contrast, smooth muscle cells expressed CD1d at the detection

limit.

Two peculiarities deserve a detailed comment. First, in the rat

ileum Paneth cells, which were easily identified due to their large

apical granules and their location at the bottom of the crypts, were

the most strongly stained epithelial cells. The strong staining

reaction appeared to be predominantly associated with the

exocrine granule membranes (Fig. 4I). Second, rat pancreatic

acinar cells also exhibited massive staining of apical exocrine

granules. This phenomenon was still visible at mAb WTH-1

dilutions of more than 1:100.000 (Fig. 4L) and it corresponded to

the results of the Western blot analyses (Fig. 1C). CD1d expression

in rat endocrine islet cells was variable. Some, but not all, of the

endocrine cells located more centrally in the islet (most likely

insulin-producing beta cells) were strongly stained while the

peripheral rim of glucagon-producing alpha cells were hardly

reactive (Fig. 4L).

When comparing the staining patterns observed in rats with

those in mice, mAbs WTH-1 and WTH-2 gave inferior staining in

mouse than in rat organs. This discrepancy was especially evident

in non-lymphatic organs. In addition, mAb WTH-2 produced

a much lower signal in mice than mAb WTH-1. Thus, mAb

WTH-1 was preferentially used. In order not to miss low-grade

expression, mouse non-lymphatic organs were stained using a

highly sensitive tyramide amplification procedure with inclusion of

C57BL/6 CD1d2/2 mouse organs as negative controls (Fig. 4J,

K, M, N). Mouse non-lymphatic organs exhibited a much reduced

reactivity for CD1d in parenchymal cells and large vessel

endothelia, while expression in macrophages, dendritic cells,

putative fibroblasts and certain epithelial cells did not differ from

that in the respective rat cells (Table S3 and Fig. 4I, J, L, M). In

the ileum of mice, enterocytes appeared negative, while enter-

oendocrine cells, the apical granules (or a subpopulation of them)

in Paneth cells and the villous stroma were unequivocally positive

(Fig. 4J). In contrast to rat pancreas, only few cells in mouse

exocrine pancreatic acini contained weakly CD1d+ granules

(Fig. 4M). The strongest expression of CD1d in mouse pancreas

occurred in the epithelium of larger ducts and in elongated

interacinar cells which might correspond either to intercalated

duct epithelia or to capillary endothelia (Fig. 4M). Endocrine islet

cells were negative to faintly positive (Fig. 4M). Identical results

were obtained in mouse strains, which express CD1d2, such as

BALB/c or CBA/N (data not shown).

In summary, in non-lymphoid organs CD1d expression varies

considerably between different cell types and between rat and

mouse. Moreover, our results show CD1d expression by

unpredicted cell types as rat exocrine pancreatic cells.

Effects of WTH-1 and WTH-2 mAbs on CD1d antigen
presentation to type I and II NKT cells

Upon stimulation with the potent antigen a-GalCer, type I

NKT cells secrete Th1 and Th2 cytokines very rapidly, being the

only lymphocytes described to date that can secrete large amounts

of interleukin (IL) 4 within a few hours after first antigen contact.

Therefore, in order to test possible effects of WTH-1 and WTH-2

mAbs on CD1d antigen presentation to rat or mouse type I NKT

cells, splenocytes from both species were cultured with a-GalCer

in the presence or absence of the anti-CD1d mAbs and after 24

hours, culture supernatants were removed and IL-4 concentrations

were determined by enzyme-linked immunosorbent assay

(ELISA). As controls, splenocytes were incubated in parallel with

b-GalCer, concanavalin A (Con A) or culture medium only (Table

S4). As shown in figure 5A, addition of the antibodies blocked IL-4

release in cultures stimulated with a-GalCer, regardless of the

species origin. A toxic or unspecific effect of the antibodies could

be ruled out as they did not inhibit cytokine production after Con

Figure 4. CD1d distribution in lymphatic and non-lymphatic organs. ABC technique with unconjugated mAb WTH-1 unless otherwise
stated. (A) LEW thymus. Bar = 500 mm. (B) Longitudinal section of LEW spleen. Hemalum counterstain. Bar = 250 mm. (C) Cross-section of LEW splenic
white pulp. WTH-1 biotin-conjugated primary antibody. Bar = 250 mm. (D) C57BL/6 mouse thymus. Arrows indicate cortico-medullary boundary.
Biotin-conjugated antibody. Bar = 250 mm. (E) HIS57 staining in LEW splenic white pulp. Bar = 250 mm. (F) CD4 (mAb W3/25) expression in LEW
spleen. Bar = 500 mm. (G) LEW liver. Bar = 250 mm. (H) LEW heart. Hemalum counterstain. Bar = 250 mm. (I) LEW ileum. The epithelium at the tips of
the villi (left rim of picture) is not preserved. Biotinylated WTH-1 and hemalum counterstain. Bar = 100 mm. (J) C57BL/6 ileum. Arrows indicate CD1d
positive enteroendocrine cells in the epithelium. Biotin-conjugated primary antibody, tyramide-amplified ABC technique and hemalum counterstain.
Bar = 50 mm. (K) C57BL/6 CD1d2/2 ileum. Biotin-conjugated primary antibody, tyramide-amplified ABC technique and hemalum counterstain. Bar
= 50 mm. (L) LEW pancreas. Biotinylated WTH-1. Bar = 50 mm. (M) C57BL/6 pancreas. Biotin-conjugated primary antibody, tyramide-amplified ABC
technique. and hemalum counterstain. Bar = 50 mm. (N) C57BL/6 CD1d2/2 pancreas. Biotin-conjugated primary antibody, tyramide-amplified ABC
technique and hemalum counterstain. Bar = 50 mm. Abbreviations in lymphatic organs: m, medulla; c, cortex; rp, red pulp; pals, periarteriolar
lymphatic sheath; mz, marginal zone and f, follicle. Abbreviations in non-lymphatic organs: c, crypts; lp, lamina propria; m, smooth muscle cells of the
gut wall; i, islet of Langerhans and d, interlobular duct.
doi:10.1371/journal.pone.0013089.g004
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A stimulation and the isotype control did not affect a-GalCer-

dependent cytokine release (Table S4 and Fig. 5A).

To investigate the impact of the antibodies on CD1d recognition

by type II NKT cells, IL-2 production by two different CD1d-

restricted autoreactive T cell hybridomas was analyzed in the

presence of WTH-1, WTH-2 or an isotype matched control

antibody. The mouse derived VIII24.1 hybridoma which expresses

a non-invariant TCR containing the AV3S2 and BV9 gene

segments [14] was co-cultured with LBB cells transduced with

mouse CD1d1. A dose dependent inhibition of IL-2 production was

observed when the anti-CD1d mAbs were added in comparison to

the isotype matched control which had no significant effect (Fig. 5B).

This demonstrates that both antibodies were able to prevent the

presentation of LBB endogenous ligands by CD1d to the VIII24.1

hybridoma. Effects on recognition of endogenous ligands presented

by mouse CD1d1-transduced Raji cells to the XV19.2 hybridoma

were also tested (Fig. 5B). While WTH-2 efficiently blocked the

activation of the XV19.2 cells, WTH-1 increased activation of this

hybridoma in a dose dependent manner.

Epitope mapping of mAbs WTH-1 and WTH-2
In order to better understand the different effects of the mAbs

on antigen presentation by CD1d, we aimed to identify the

epitopes recognized by each antibody. In addition to the two CD1d

genes present in commonly used inbred mouse strains which are

derived from Mus musculus or Mus domesticus, recently, different

CD1d1 sequences from Mus spretus and Mus castaneus have been

reported [33]. Moreover, the human CD1d amino acid sequence

is highly conserved when compared to mouse CD1ds and rat

CD1d (Fig. 6A). To allow a first screening of possible epitope

candidates, some of these CD1d variants were expressed in Raji

cells and the antibody binding capacity was assessed by flow

cytometry (Fig. 6B). Furthermore, chimeras between mouse

CD1d1 and human CD1d (m/h CD1d and h/m CD1d) were

produced and were also tested for their reactivity with the

antibodies WTH-1 and WTH-2. The arrow in figure 6A points

out the position where the regions of mouse CD1d1 and human

CD1d were exchanged. The structure models shown in figure 6C

illustrate the species origen of the different parts of the chimeric

CD1d molecules.

The WTH-1 antibody recognized rat CD1d (rCD1d) and

CD1d1 from Mus musculus (mCD1d1), whereas it did not bind to

the Mus spretus CD1d1 variant (sCD1d1) and stained only very

weakly Mus musculus CD1d2 (mCD1d2) transductants (Fig. 6B).

Only three amino acid residues are unique to the sCD1d sequence

when compared to rCD1d and mCD1d1: alanine (A), isoleucine (I)

and threonine (T) at positions 93, 118 and 162, respectively. The

aspartic acid 93 and the methionine 162 which are exposed at the

surface of mCD1d1 were exchanged by their sCD1d counterparts:

alanine and threonine, and named as: mCD1d1D93A and

mCD1d1M162T (Fig. 6). These mutants, as the other CD1d

molecules, were expressed in Raji cells and analyzed by flow

cytometry (Fig. 6B). The aspartic acid at positions 92 and 93 of rat

CD1d and mouse CD1d1, respectively, were identified as part of

the WTH-1 epitope because cells expressing mCD1d1D93A were

not stained by this mAb. Moreover, staining of the cells transduced

with the mouse/human chimeras confirmed these results. WTH-1

mAb bound only very weakly, if at all, to mCD1d2 despite the

conserved aspartic acid at position 93 (Fig. 6A and B). There are,

in principle, several unique substitutions from which this could

result. Among these substitutions, the hydrophobic isoleucine in

mCD1d2 which substitutes the positively charged arginine at

position 21 of mCD1d1 (blue sphere in Fig. 6C) most likely affects

the orientation of the aspartic acid 93 or the direct contact with the

antibody.

The WTH-2 antibody detected all murine CD1d molecules

tested but did not bind to human CD1d (hCD1d). hCD1d cell

surface expression was confirmed with the CD1d42 mAb [34],

which also bound to m/hCD1d but not to h/mCD1d chimeras

(data not shown). Staining of the chimeras, mapped the epitope

recognized by WTH-2 to the a1 domain and the first 26 amino

acids of the a2 domain of mCD1d1, since binding to the h/m

chimera was lost, but binding to the m/h chimera was conserved.

The aspartic acid 93 can be excluded to be part of the WTH-2

epitope since this mAb also stained mCD1d1D93A-transduced

cells (Fig. 6B).

Furthermore, we also tested antibody reactivity of the com-

mercially available anti-mouse CD1d mAb 1B1 [20] against all

CD1d variants. 1B1 bound all mouse CD1d molecules, stained

rCD1d transductants very weakly and did not recognize hCD1d-

transduced cells at all. However, there was a moderate binding of

1B1 to both human/mouse chimeras, suggesting that both parts of

the mouse molecule contribute to the formation of the epitope

(Fig. 6B). These results and the competition experiments make

Figure 5. Effects of anti-CD1d mAbs on antigen presentation to
type I and II NKT cells. (A) Blocking of type I NKT cells responses by
the mAbs WH1-1 and WTH-2. IL-4 production was analyzed by
measuring cytokine release into the culture supernatant 24 hours after
initiation of the cultures by ELISA. Total splenocytes from C57BL/6 mice
or F344 rats were cultured with a-GalCer (10 ng/ml), in the presence or
absence of WTH-1, WTH-2 or isotype control antibodies (with a final
saturating concentration of 3.6 mg/ml). Results were normalized to
100% for IL-4 production without antibody. Bars show means +
standard deviation (SD) of the results obtained in three independent
experiments. IL-4 concentrations without antibody were 9.9, 3.3 and
6.5 pg/ml and 15.8, 28.4 and 20.9 pg/ml for rat and mouse cultures,
respectively. (B) Effects of the antibodies on CD1d antigen presentation
to type II NKT cells. IL-2 was measured by ELISA in supernatants of co-
cultures of type II NKT cell hybridomas and CD1d-transduced cells. Raw
data were normalized to IL-2 production without antibody equaling
100%. The graphics represent the mean values + SD obtained from
three independent experiments. The left graph shows IL-2 production
by 56104 VIII24.1 T cell hybridoma cells after co-culture with 56104

mCD1d1-transduced LBB cells. IL-2 concentrations without addition of
antibodies, in the three independent experiments, were 575, 415 and
572 pg/ml, respectively. The right graph gives the corresponding
results for 16104 XV19.2 T cell hybridoma cells after co-culture with
56104 mCD1d1 transduced Raji cells. IL-2 concentrations without
added antibody in the three independent experiments were 33.9, 101.6
and 22.6 pg/ml, respectively. To determine differences between
cultures where isotype control antibody or anti-CD1d mAbs were
added, two-tailed paired t-test was used. * and ** indicate p-values
,0.05 and ,0.005, respectively.
doi:10.1371/journal.pone.0013089.g005
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Figure 6. Epitope mapping of CD1d-specific mAbs. (A) Alignment of the amino acid sequences of the extracellular domains of the CD1d
molecules used in this study. a-helical regions are illustrated in bold. The open triangle points out the localization of the rat CD1d allelism. Mutations
in mouse CD1d1 are highlighted with closed triangles. The arrow indicates where mouse/human chimeras were joined. Numbers show rat CD1d
amino acid positions. Accession numbers for the amino acid sequences can be found in GenBank: rCD1d (Rattus norvegicus CD1d), BAA82323;
mCD1d1 (Mus musculus CD1d1), NP_031665; sCD1d1 (Mus spretus CD1d1), ACM45455; hCD1d1 (Homo sapiens CD1d), NP_001757. The mCD1d2 (Mus
musculus CD1d2) amino acidic sequence differs in one amino acid in the signal peptide (tryptophan, position 213) from the sequence published
under the accession number: P11610. (B) Binding capacity of mAbs to different CD1d molecules. Raji cells were transduced with CD1d molecules
using a retroviral expression system. Bicistronic EGFP in the CD1d expression vectors served as reporter gene. Cells were stained with unconjugated
WTH-1 or WTH-2 mAbs followed by PE-labeled donkey anti-mouse IgG or PE-labeled 1B1 mAb and were analyzed by flow cytometry. All primary
antibodies were used at a final concentration of 250 ng/ml. (C) Localization of relevant amino acids in the CD1d tertiary structure. The model depicts
part of the co-crystal of the PBS25 glycolipid and mouse CD1d (PDB: 3GMP) and it was visualized using PDB Swiss Viewer Deep View v4.0 [52] (http://
www.expasy.org/spdbv/). The a1 and a2 domains are shown. Gray and green ribbon diagrams highlight the regions constituting the N- and C-
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clear that all these mAbs bind to rather distinct parts of the CD1d

molecules.

Discussion

Up to now, the analysis of rat CD1d expression and function

was limited by the lack of CD1d-specific monoclonal antibodies.

Here we report the production and detailed characterization of

two monoclonal antibodies of dual specificity for rat CD1d and for

mouse CD1d1. These mAbs are not only valuable tools for the

functional and biochemical characterization of CD1d in either

species but also allow a side by side comparison of CD1d

expression in mice and rats.

At saturating conditions, both mAbs bound mouse CD1d1 and

rat CD1d expressed at the cell surface equally well, i.e.

irrespectively of whether they had been expressed by a transduced

human B cell lymphoma, thymocytes or other lymphoid cells

(Fig. 1A, 2 and 6B). In these experiments the avidity of mAb

WTH-2 was three to five-fold higher than that of WTH-1. This

was in contrast to what was found in Western blot analyses

(Fig. 1C), immunohistology (Fig. 4), and sometimes also immuno-

precipitation (Monzon-Casanova and Herrmann, unpublished

data), where WTH-1 was superior to WTH-2 and where binding

to rat CD1d was more efficient than to mouse CD1d1. Altogether,

these findings suggest that the WTH-1 epitope is more resistant to

denaturation than the WTH-2 epitope and also that denaturation

affects more the epitopes recognized in mouse CD1d1 than in rat

CD1d. Nonetheless, it remains to be investigated, whether these

differential binding efficacies result from protein denaturation

and/or effects of detergents or alcohols on CD1d bound lipid-

containing antigens.

Both mAbs precipitated CD1d heavy chain and b2-micro-

globulin from extracts of rat or mouse CD1d transductants as well

as from rat or mouse thymocytes. In Western blot analyses, the

mobility of the CD1d heavy chain was slightly higher when the

extracts were separated by SDS-PAGE under non-reducing as

compared to reducing conditions (data not shown), probably as

consequence of its more compact structure maintained by the

intact intramolecular disulfide bridges. These last results demon-

strate the localization of both epitopes on the CD1d heavy chain

and, to our knowledge, are also the first demonstration of IgG

mAbs binding to mouse or rat CD1d heavy chains in a Western

blot.

The competition experiments revealed that the mAbs bind to

distinct non-overlapping epitopes. This property allows validation

of results e.g. in tissue distribution analysis by using two such

antibodies, as it has been done in this study. In addition, the

antibodies are highly suitable for the design of a Sandwich ELISA

and can be used to detect CD1d in serum or to monitor

concentrations of CD1d during preparation and purification of

soluble CD1d (Monzon-Casanova and Herrmann, unpublished

data). Analysis of mAb reactivity against various CD1d transduc-

tants allowed a partial mapping of the epitopes as discussed in the

results section, which in case of the mAb WTH-1 is likely to

contain the loop linking the a1 and the a2 domains of the CD1d

molecule.

CD1d expression levels at the cell surface of different

hematopoietic cells in the rat and in the mouse were highly

similar. The only notable difference between these species was

observed among CD4 and CD8 peripheral T cells. Nonetheless,

the difference was rather small and a physiological role for CD1d

on mature T cells still has to be described. The nearly identical

CD1d expression in thymocytes is of special interest because, apart

from mediating the selection of NKT cells [35], different levels of

CD1d in this cell type considerably affect NKT cell frequency and

state of activation [36].

At a first glance, CD1d expression by dendritic cells and

macrophages was also quite similar for both species. It will be

interesting to learn whether it can be used as a marker to further

differentiate antigen presenting cell subsets, or in the analysis of

other cell types such as granulocytes or monocytes. Altogether, it

can be expected that CD1d-restricted immune responses show no

qualitative differences between mice and rats, and if that was the

case, that such differences would not be intrinsic to differences in

CD1d expression on hematopoietic cells.

A major surprise was the previously undescribed substantial

CD4 expression on rat MZ B cells, which was shown to be specific

using three different monoclonal antibodies which bind to two

different domains of the CD4 molecule [37]. Retrospectively, it is

difficult to explain, why this observation has not been reported

before. The functional implications of this finding are unclear, but

it is important to know that any experimental setting addressing

CD4, e.g. in depletion studies with CD4 specific antibodies in the

rat, can be expected to affect not only CD4 T cells and to some

extent antigen presenting cells but MZ B cells as well. Since rats

and humans are more similar to one another with respect to CD4,

CD8 and MHC class II expression by immune cells than rats and

mice [38,39,40], it may be worthwhile to reinvestigate CD4

expression on human MZ B cells as well.

Rat CD1d is also widely expressed outside the hematopoietic

system being found in unexpected sites as the exocrine pancreas.

In contrast to lymphatic tissues, big differences were observed

between mice and rats in certain non-hematopoietic cells. In the

rat pancreas, the vast expression of CD1d by exocrine acinar cells

detected by immunohistochemical analyses is not only supported

by our Western blot results, but also by two independent

proteomic analyses which also identified CD1d in pancreatic

exocrine granules [41,42]. The slightly lower molecular weight of

the pancreatic CD1d compared to that from extracts of spleen or

thymus, could indicate different processing of CD1d during

intracellular maturation e.g. proteolytic cleavage of membrane

bound material or generation of a truncated form. In the small

intestine, CD1d expression varied considerably between mouse

and rat enterocytes, but detection of CD1d was possible in Paneth

cells of both species. The biological function of CD1d in acinar

pancreatic cells and in Paneth cells in the rat remains to be

investigated. Nonetheless, since CD1d is mainly found in exocrine

granules and mouse CD1d-deficient Paneth cells presented

intrinsic alterations in their degranulation capacity as well as in

their granular content and morphology [23], CD1d expressed by

exocrine cells might participate in a biological process other than

antigen presentation. Indeed, the human CD1e isoform is an

example of such a different function because it is cleaved into a

soluble form which facilitates glycolipid processing [8,43].

Interestingly, although a substantial variability has been found

between number and types of CD1 isoforms in different clades of

placental mammals, complete CD1 deficiency has not been

reported yet [3]. This not only supports the idea that CD1

molecules fulfill essential biological functions, but also implies that

the function of CD1 isoforms may vary between species and that at

terminal parts, respectively, of the chimeric molecules. Spheres visualize the amino acids discussed in the text: aspartic acid (D) 93 in red, methionine
(M) 162 in green, valine (V) 118 in gray and arginine (R) 21 in blue.
doi:10.1371/journal.pone.0013089.g006
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least to some extent, CD1 isoforms could functionally substitute

each other. In muridae CD1d is the only CD1 isoform. Therefore,

one may speculate a need for ‘‘multitasking’’ of CD1d in these

species. Such a requirement may explain the – in comparison to

humans – less restricted intracellular distribution and tissue

expression [1].

An a-GalCer response of rat primary cells has already been

shown by us [13]. Here we demonstrate the CD1d dependence of

such a response, since the WTH-1 and WTH-2 monoclonal

antibodies efficiently inhibited the a-GalCer response of rat and

mouse primary cells. These results are consistent with WTH-1

recognizing an epitope in the loop connecting the a1 and the a2

domains of the CD1d molecule, as determined by our mapping

studies. According to the CD1d/a-GalCer/TCR crystal structure,

this loop is located at the side of the CD1d molecule, where the

type I NKT TCR binds a-GalCer-loaded CD1d molecules [44].

Both mAbs also inhibited the response of the type II NKT cell

hybridoma VIII24.1 to endogenous antigen presented by a CD1d-

transduced B cell tumor. Interestingly, the mAbs exerted opposite

effects on the CD1d-dependent recognition of endogenous ligands

by another type II NKT cell hybridoma (XV19.2). mAb WTH-2

inhibited the response, while WTH-1 increased the cytokine

release. This variability is in line with previous antibody-inhibition

experiments [21] and with studies demonstrating the variable

response of type II NKT TCRs to point mutants of CD1d

[21,33,45]. We speculate that the mAb WTH-1 could mediate

clustering of the CD1d/ligand complexes on the presenting cell

facilitating the formation or improving the function of the

immunological synapse on the XV19.2 responder cell, while it

may interfere with ligand recognition in case of type I NKT TCRs

or the TCR of the other type II NKT-cell hybridoma tested.

The very efficient inhibition of CD1d-dependent antigen

recognition by type I NKT cells has some additional implications

since it will allow, for the first time, an analysis of CD1d-

dependent T cell responses in the rat. This is especially important

due to the extended use of the rat a as model organism for a

multitude of biological functions and pathological conditions

including many autoimmune diseases. In many cases, experiments

with mice as well as observations in humans have provided

evidence for an involvement of CD1 and CD1d restricted immune

responses in these pathological conditions. Now our antibodies do

not only allow testing of these parameters in the rat e.g. by

blocking CD1d-restricted T cell responses, but also permit a direct

comparison of mouse and rat. Furthermore, since the antibodies

have been generated in mice, they are ideally suited for in vivo

studies in this species as they will not provoke a response against

xenogenic Ig. Finally, it will be interesting to test whether

augmented CD1d autoreactivity of type II NKT TCRs by the

mAb WTH-1 as seen with the XV19.2 hybridoma, can also be

seen with primary type II NKT cells, as this may allow definition

of a subset of type II NKT cells with unique antigen specificity.

Materials and Methods

Animals
Animals were kept in cages with filter covers under specific

pathogen free conditions (SPF) in line with FELASA recommen-

dations of 2002. The procedures for performing animal experi-

ments as well as animal care were in accordance with the

principles of the Bavarian state regulations and approved by the

Regierung von Unterfranken (Würzburg, Germany). Animals

were used at 6–12 weeks of age. C57BL/6J, BALB/c, C57BL/6

CD1d2/2 and BALB/c CD1d2/2 mice, as well as LEW/Crl and

F344/Crl rats were bred in the animal facilities of the Institute for

Virology and Immunobiology, University of Würzburg, Würz-

burg, Germany. Breeding pairs for CD1d2/2 mice, previously

bred on a BALB/c background were a kind gift of Heidrun Moll,

Institute for Infection Biology, Würzburg University. C57BL/6

CD1d2/2 [46] were kindly provided by Mandfred Lutz, Institute

for Virology and Immunobiology, University of Würzburg,

Würzburg, Germany. BN/SsNOlaHsd, DA/OlaHsd, PVG/

OlaHsd, BUF/SimRijHsd, AGUS/OlaHsd, AUG/OlaHsD and

WF/NHsd rats were purchased from Harlan laboratories. BH/Ztm

rats and CBA/N mice were provided by Kurt Wonigeit, Medical

School Hannover, Hannover, Germany. In particular, the analysis

of CD1d distribution by immunohistochemistry was carried out

on three male LEW/Ztm rats aged about three months and on

various female mice: three C57BL/6J female mice aged 8–10

weeks, one BALB/c mouse aged 8–10 weeks and one CBA/N

mouse aged about 6 months. One 11 week-old C57BL/6 CD1d2/2

female and one 10 week old BALB/c CD1d2/2 female were used as

controls.

Generation of anti-rat CD1d monoclonal antibodies
BABL/c CD1d2/2 mice were immunized i.p. 5 times in weekly

intervals with 16107 CD1d-transduced (F344 allele) M12.4.1.C3

cells. Three weeks after the last immunization, animals were

boosted i.v. and after 3 days, splenocytes were fused with Sp2/0

myeloma cells using poylethylene glycol and standard procedures.

CD1d specificity of hybridoma culture supernatants was tested by

staining mixtures of rat CD1d-transduced and untransduced Raji

or P80 [13] cells and primary CD1d positive rat cells. Culture

supernatants from 5 hybridomas (WTH-1 (233), 232, WTH-2 (35),

WTH-3 (58), and 244) specifically stained rat CD1d transduced

cells and rat primary cells. WTH-1, WTH-2 and 232 also stained

mouse primary cells. The heavy and light chains of all antibodies

were IgG2a and kappa, respectively, as determined by the

isotyping test kit (MMT1) from AbD Serotec. Additional

sequencing of heavy chain RT-PCR products of hybridomas

revealed identical sequences for 232 and WTH-1 on the one hand

and for WTH-3 and 244 on the other hand. RT-PCR was

performed according to [47] but using the slightly modified

degenerate forward primer mMH2 (59-SARGTNMAGCTG-

SAGSAGTCWGG-39) and the reverse primer IgGrev (59-

CAGACTGCAGGAGAGCTGG-39). Antibodies were purified

by Protein A affinity chromatography from culture supernatants

using standard procedures. Concentrations were calculated by

photometry using the formula: A280 61.46 - A26060.74 = c (mg/

ml), where A is absorbance and c is concentration. Purity was

determined by SDS-PAGE and Coomassie Blue R250 staining.

Fluorescein isothiocyanate (FITC) labeling and biotinylation was

performed using standard procedures. FITC from Sigma was

incubated at a 20–30 fold molar excess with 1–3 mg/ml purified

antibody in sodium (bi)carbonate buffer (0.1 M pH 9.5) for 2 h.

FITC was removed by gel filtration through a PD10 column

(Amersham Buchler) and exchanged against PBS. Biotinylation

was done with Sulfo-NHS-LC-Biotin (Pierce) for 1 h in 0.1 M

sodium borate buffer pH 8. The reaction was stopped by addition

of TrisHCl (pH 7) and free biotin was removed by centrifugation

through ultrafiltration devices such as centricon 30.

Cloning, mutagenesis and expression of CD1d
Rat CD1d cloned into the pczCFG5 IEGZ retroviral expression

vector has been described elsewhere [13]. Mus musculus CD1d1

cDNA was sub-cloned into the pczCFG5 IEGN retroviral vector

after EcoRI digestion from mCD1d-pczCFG5 IZ [13]. Mus

musculus CD1d2 and Mus spretus CD1d1 were cloned into the

EcoRI and BamHI sites of pczCFG5 IEGN [48]. Vectors

Rat CD1d
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containing the cDNA sequences used as templates for PCR

amplification are described elsewhere [18,33]. PCR was carried

out using the mCD1d-EcoRI-Fow (59-GGGGAGAATTCCG-

GCGCTATGCGGTACCTACC-39) and msCD1d-BamHI-Rev

(59-GCATGGATCCTCACCGGATGTCTTGATAG-39) prim-

ers. Human CD1d cDNA was cloned into the EcoRI and BamHI

sites of the pczCFG5 IEGN retroviral vector after RT-PCR using

RNA from peripheral blood mononuclear cells as template and

the specific primers: hCD1d-MfeI-Fow (59-AATTCAATTGC-

GGCGCTATGGGGTGCCTGCTGTTTCTG-39) and hCD1d-

BamHI-Rev (59-AATTGGATCCTCACAGGACGCCCTGA-

TAGG-39). The PCR product was digested with MfeI and

BamHI. The sequence obtained was the same as the human CD1d

mRNA sequence published under the accession number

NM_001766.

mCD1d1-D93A and mCD1d1-M162T mutants were generated by

combining PCR products as described in Ref. [49]. The inner primers:

mCD1d_D93A_Fow (59-CACCTAAAGAAGCCTATCCCATTG-

39) and mCD1d_D93A_Rev (59-CAATGGGATAGG CTTCT-

TTAGGTG-39) were used for the production of mCD1d1-D93A

and mCD1d_M162T_Fow (59-CGTGCAGACGCTCCTGAATG-

39) and mCD1d_M162T_Rev (59-CATTCAGGAGCGTCTGCA-

CG-39) were used for the production of mCD1d1-M162T. In both

cases the outer primers used were mCD1d-EcoRI-Fow and mCD1d1-

BamHI-Rev (59-GGGGATCCAAGAGTCACCGGATGTCTT-

GATAAGGG-39). Final PCR products were cloned into the EcoRI

and BamHI sites of pczCFG5 IEGN vector.

Two chimeras of mouse CD1d1 and human CD1d were

produced by PCR of overlapping mouse or human CD1d

fragments with the respective primers covering the 59 or 39 end

of mouse CD1d1 or human CD1d (sequences are given above).

Mouse 59 and 39 fragments were obtained after EcoRI/BsaI and

BsaI/BamHI digestions, respectively. The human fragments were

generated with human CD1d as template and the primers hCD1d-

MfeI-Fow and T399C-hCD1d-BsaAI-Rev (59-GAAATGC-

TACGTGGAAGAAG-39) for the 59 fragment and the primers

hCD1d-T399-BsaAI-Fow (59-CTTCTTCCACGTAGCATTTC-

39) and hCD1d-BamHI-Rev for the 39 fragment. The final PCR

products containing the chimeric cDNAs were cloned into the

EcoRI and BamHI sites of the expression vector after digestion

with EcoRI/BamHI and MfeI/BamHI in case of mouse-59/

human-39 and human-59/mouse-39 chimeras, respectively. All

CD1d molecules were transduced into Raji cells using retroviral

particles produced as previously described [50]. Transduced cells

were sorted using a FACSVantage (BD Biosciences).

Analysis of rat CD1d alleles
Using genomic DNA from 10 different inbreed rat strains (see

animals) as templates, the exons 1 to 3 of CD1d were amplified by

PCR with gCD1d_fo (59- CAAGGGGAGTTGGCTTTGTA-39)

and gCD1d_re (59-GTGGAGAACCAGGGTGAAAA-39) prim-

ers and sequenced with gCD1d_fo and gCD1d_seq (59-

GCCTGCCACTTCTCAAGC-39). Additionally, CD1d cDNAs

derived from 4 rat strains (LEW/Crl, PVG/OlaHsd, DA/

OlaHsd, and BN/SsNOlaHsd) were cloned into pczCFG5 IZ

and sequenced as previously described for F344 [13].

Cell preparation, cell lines and culture
The following cell lines were used either untransduced or

transduced with CD1d or control vectors, respectively [13]: P80,

CD80 transduced mouse mastocytoma P815; LBB3.4.16, mouse

B-cell/B-cell lymphoma hybrid line; M12.4.1.C3, MHC class II

deficient variant of the BALB/c M12 B-lymphoma; Sp2/0, HAT

sensitive non-secreting mouse myeloma line (ATCC); Raji,

Human B-cell lymphoma (ATCC); VIII24.1 and XV19.2, T-cell

hybridomas derived from mouse type II NKT cells [14].

Thymocytes and splenocytes were isolated by passing the organ

through a metal sieve followed by washing with BSS, 0.2% BSA.

Remaining erythrocytes were removed by lysis with TAC buffer

(Tris-ammonium chloride, 20 mM Tris (pH 7.2), 0.82% NH4Cl).

Primary cells and cell lines were cultured at 37uC with 5% CO2

and H2O-saturated atmosphere in RPMI 1640 (Invitrogen Life

Technologies) supplemented with 5 or 10% FCS, 1 mM sodium

pyruvate, 2.05 mM glutamine, 0.1 mM nonessential amino acids,

and 5 mM 2-mercaptoethanol (Invitrogen Life Technologies).

For stimulation assays of primary splenocytes, 107 cells/ml were

cultured for 24 hours in 96 well plates. a-GalCer (Alexis

Biochemicals) and b-GalCer (Sigma) were diluted in DMSO. In

CD1d-blocking experiments, purified antibodies or isotype-specific

controls were added to the culture at a final concentration of

3.6 mg/ml. Blocking of CD1d antigen presentation to the VIII24.1

hybridoma was analyzed by co-culturing 56104 mCD1d1

LBB3.4.16 transductants with 56104 VIII24.1 hybridoma cells

for 16 hours with different concentrations of the anti-CD1d mAbs

or isotype-specific controls. Blocking of CD1d antigen presentation

to the XV19.2 hybridoma was tested with 56104 mCD1d1

transduced Raji cells as stimulators and 16104 XV19.2 hybridoma

cells as responders. Cultures were carried out in 96 well plates.

Cytokine production was quantified using commercial ELISA kits

from BD Biosciences (mouse IL-2 and IL-4 and rat IL-4).

Statistical analysis
In order to analyze the effects of the WTH-1 and WTH-2

mAbs, statistical significance was determined by two-tailed paired

Student’s t test between cultures with isotype control antibody and

WTH-1 or WTH-2 mAbs. A p value of less than 0.05 was

considered statistically significant. To analyze the effect of the

mAbs or the isotype control antibody on IL-4 release by primary

splenocytes cultured with media alone, a-GalCer, b-GalCer or

Con A, one-way ANOVA was conducted. p values smaller than

0.05 were considered to be statistically significant. All analyses

were performed with the statistical software GraphPad Prism.

Immunofluorescence and flow cytometry
In binding studies, 1–26105 Raji transductants or 56105

thymocytes were incubated in 100 ml FACS buffer (PBS pH 7.4,

BSA 0.1%, 0.01% NaN3) and indicated concentrations of

antibody for 1 hour at room temperature. Subsequently, cells

were washed twice with FACS buffer, incubated with phycoery-

thrin (PE)-labeled donkey anti-mouse IgG (H+L) with minimal

cross-reaction to rat and other species serum proteins (Dianova)

for 30 minutes (min) at 4uC, washed again and analyzed.

Unspecific binding was determined using isotype-matched specific

controls (mouse IgG2a).

For competition experiments, 100 ml of cell suspension (1–

26105 Raji transductants or 56105 thymocytes) were first

incubated with 2 mg of unconjugated antibody. After 1 hour of

incubation, cells were washed. Then, 10 ml of appropriately

diluted biotinylated or PE labeled antibody were added, incubated

for a further 30 min at 4uC before cells were washed. Binding of

the biotinylated antibodies was revealed by 20 min incubation

with streptavidin PE-Cy5 (BD Biosciences) at 4uC. In experiment

2, unspecific inhibition was determined by running parallel

samples which were pre-incubated with IgG2a. After a final wash,

cells were analyzed on a FACScan or a FACSCalibur using

CellQuest software (BD Biosciences).

For the analysis of CD1d expression on different primary rat

and mouse cell populations, 106 cells were initially diluted in
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100 ml FACS buffer. When mouse derived cells were stained,

unspecific binding to mouse Fc receptor was first blocked using the

2.4G2 mAb. Combinations of antibodies used in each staining, are

described in the figure legends.

Unless otherwise indicated, antibodies were purchased from BD

Biosciences. When mouse cells were analyzed, the following

antibodies were used: APCy or FITC anti-TCRb chain (H57-597),

APCy or PE-Cy5 anti-CD4 (RM4), FITC anti-CD21 (7G6), PE

anti-CD23 (B3B4), APCy anti-CD19 (1D3) and APCy anti-CD8

(53.6-7). To stain rat cells, the antibodies used were: biotin (bio) or

FITC anti-TCRb (R73), PE, PE-Cy5 or APCy anti-CD4 (OX-35),

PE anti-CD4 (OX-38), bio anti-CD8b (341), PerCP anti-CD8a
(OX-8), unconjugated dendritic cell marker (OX-62), PE anti-

CD11b/c (OX-42), bio or FITC anti-CD45RA (OX-33), bio

HIS57, FITC anti-IgM (G53-238) and bio anti-IgD (MARD-3)

purchased from AbD Serotec. For the analysis of CD1d, the

WTH-1 and WTH-2 antibodies were harvested from hybridomas,

purified and aliquots were conjugated or not to biotin or FITC. PE

labeled anti-mouse CD1d mAb 1B1 [20] was purchased from BD

Biosciences. Anti-human CD1d mAb CD1d42 [34] was a kind of

gift of Ekkehard Kämpgen, Dermatology Dept. University of

Erlangen. Detection of biotinylated antibodies was performed with

streptavidin (SA) labeled with PE, PE-Cy5 or APCy from BD

Biosciences. When mouse derived unconjugated antibodies were

used in multicolor stainings, samples were first incubated with the

unconjugated antibody only, then washed and bound antibody

was detected by incubation with a FITC or PE labeled donkey

F(ab’)2 fragment anti-mouse IgG (H+L) with minimal cross-

reaction to rat and other species serum proteins (Dianova). After a

further washing step, unspecific binding to the donkey anti-mouse

reagent during subsequent stainings was blocked by adding

substantial amounts of serum mouse IgG for 15 min. Flow

cytometry was carried out using a FACSCalibur (BD Biosciences)

and data were analyzed with CellQuest (BD Biosciences) and

FlowJo software (Tree Star).

Immunoprecipitation
Thymocytes and transduced cell lines were biotinylated with

2 mg/ml Sulfo-NHS-LC-Biotin (Pierce) in PBS for 15 min on a

rotating platform at 4uC and washed twice with RPMI

(supplemented as for cultures) followed by two additional

washing steps with BSS/BSA. After biotinylation 106 transduc-

tants or 56107 cells thymocytes were lysed in 1 ml of lysis buffer

I (50 mM Tris, pH 7.4, 150 mM NaCl, 0.25% Na-deoxycho-

late, 1 mM EDTA, 1% NP40 and protease inhibitors (Complete

Mini, Roche)) for 30 min on ice. Nuclei were removed by

pelleting immediately after lysis and the lysate was pre-absorbed

one hour on Protein A Sepharose (GE, Healthcare) at 4uC. For

specific immunoprecipitation, Protein A Sepharose beads were

pre-coated with rabbit anti-mouse IgG (ICN Biomedicals)

before the addition of monoclonal antibodies. Then, the

matrices were covalently linked as previously described [51].

Pre-absorbed lysates were incubated overnight with specific

immunomatrices. Precipitates were then washed four times with

lysis buffer and were resuspended in loading buffer (2% SDS,

62.5 mM Tris pH 6.8, 10% glycerol, 770 mM 2-mercaptoeth-

anol and 0.04% bromophenol blue) and boiled for 5 min before

loading onto SDS-PAGE. The molecular weight marker used,

PageRulerTM Prestained Protein Ladder, was purchased from

Fermentas. After SDS-PAGE and blotting, membranes were

incubated with streptavidin-horseradish peroxidase (HRP) (BD

Biosciences) and detection was carried out by ECL (GE,

Healthcare).

Western blot analysis
Protein preparation from rat tissues was performed by

disrupting the tissues with a rotor-stator homogenizer directly

into lysis buffer II (1% NP40, 0.5% Na-deoxycholate, 0.1% SDS

in PBS) supplemented with protease inhibitors (Complete Mini,

Roche). After protein concentrations had been determined by

using the Bio-Rad protein assay (Bio-Rad), 20 mg of protein were

mixed with non-reducing loading buffer (4x concentrated:

250 mM Tris-HCl pH 6.8, 8% SDS, 40% glycerol and 0.16%

bromophenol blue) and were separated by 10% SDS-PAGE. For

the analysis of cell lines expressing CD1d, whole cell lysates (26107

cells in 1 ml lysis buffer II) were mixed with non-reducing loading

buffer and 18 ml were separated by 10% SDS-PAGE. The

molecular weight marker used, PageRulerTM Prestained Protein

Ladder, was purchased from Fermentas. Proteins were transferred

to a Roti-polyvinylidene difluoride membrane (Roth). For CD1d

detection, WTH-1 and WTH-2 mAbs were used at a final

concentration of 0.75 mg/ml. As protein loading control anti-

ERK2 (C-14, sc-154) rabbit polyclonal antibody (Santa Cruz

Biotechnology) was used at a final concentration of 2 mg/ml.

Primary antibodies were detected with HRP-conjugated goat anti-

mouse antibody (Santa Cruz Biotechnology). All antibodies were

diluted in PBS, 0.1% Tween and 2.5% non-fat dried milk

(AppliChem). Films were developed by chemoluminescence using

the ECL Developing kit (GE Healthcare).

Immunohistology
Cryosections were stored at 220uC overnight and immediately

fixed in 100% isopropanol for 10 min at 4uC. After washing in

PBS, the sections were treated with a solution of 10 mM glucose,

1 mM NaN3 and 900 U/ml glucose oxidase in PBS for 45 min at

37uC to block endogenous peroxidase activity. Lymphatic organs,

pancreas, liver and gut sections were then preincubated with

0.003 mg/ml avidin in PBS/BSA/NaN3 for 20 h at 4uC to avoid

background staining due to endogenous biotin. After washing in

PBS, biotinylated WTH-1 or WTH-2 antibodies diluted 1:200 in

PBS/BSA/NaN3 containing a final concentration of 0.02 mg

biotin/ml were applied for 20 h at 4uC. After one further wash in

PBS the sections were incubated with the avidin-biotinylated

peroxidase complex (ABC) of the Vectastain ABC elite kit (Vector

Laboratories) according to the recommendations of the manufac-

turer by applying the AB-solution at 1:50 in PBS for 30 min at

room temperature. After washing in Tris-buffered saline, a

standard diaminobenzidine reaction was carried out. Half of the

sections were counterstained with Mayer’s hemalum. The sections

were then dehydrated in increasing concentrations of isopropanol

with two final exchanges of xylene and coverslipped in Eukitt.

Control sections without antibody were always included in the

assay.

With the exception of the thymus, mouse organs were stained

using a tyramide amplification technique, because the staining

intensity in mouse parenchymal cells was reduced compared to

rats. Biotinylated tyramide had been prepared before by

incubating 50 mg Sulfo-NHS-LC-biotin (Pierce) in 20 ml 0.025

borate buffer pH 8.5 with 15 mg tyramine-HCl (Sigma) on a

stirrer overnight. After filtration this solution was aliquoted and

frozen. For application aliquots were thawed and diluted 1:1000 in

Tris-buffered saline pH 7.6 containing 0.09 mM H2O2. Antibody

incubation was performed as described above. After the first

incubation with the ABC the sections were washed and covered

with biotinylated tyramide/H2O2 for 10 min at room tempera-

ture. After a further washing step the ABC was applied, again

followed by the diaminobenzidine reaction. By this procedure the

peroxidase in the first AB-complexes catalyzes the binding of
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biotinylated tyramide to proteins on the surface of the section,

thus, substantially increasing the amount of biotin available for a

second reaction with the ABC.

Immunohistology was also performed on rat organ cryosections

by incubating unconjugated antibodies overnight at the same

dilutions as for the staining with biotinylated antibodies in a

standard ABC-immunoperoxidase system (Vectastain ABC elite

kit, Vector Laboratories). In this case, 0.003 mg/ml avidin was

directly added to the primary antibody and 0.02 mg/ml biotin was

included in the secondary anti-mouse reagent. Both staining

methods gave identical results. W3/25 and HIS57 were purchased

from AbD Serotec and BD Biosciences, respectively. W3/25 was

used at a dilution of 1:200 and HIS57 at a dilution of 1:500

followed by the ABC detection system mentioned above.

Supporting Information

Figure S1 CD1d cell surface expression in five different rat

strains. CD1d cell surface expression was analyzed by flow

cytometry using the biotinylated WTH-1 mAb visualized with SA-

APCy in thymocytes and splenocytes derived from F344, PVG,

BN, LEW and DA rats.

Found at: doi:10.1371/journal.pone.0013089.s001 (0.21 MB

TIF)

Figure S2 CD1d expression by B and T cells analyzed by

multicolor flow cytometry. T and B cells were identified using

antibodies visualized with APCy in order to avoid unspecific signal

due to fluorescence spectral overlap in the PE channel used for

CD1d detection. Therefore, CD1d was analyzed in separate

multicolor experiments with same overall CD1d staining intensity

(Number 2 histograms: gray and black lines correspond to B- and

T-cell stainings, respectively). Number 1 dot plots show gates on

total splenocytes which were further analyzed. For CD1d

detection in C57BL/6 mice, biotinylated WTH-2 mAb followed

by SA-PE was used. In rats, CD1d was detected with

unconjugated WTH-2 mAb followed by PE-labeled donkey anti-

mouse IgG. Number 4 dot plots indicate coexpression of CD1d

and T or B cell markers. Number 3 dot plots represent isotype

control stainings for CD1d mAbs. Gray and black dot plots are B-

and T-cell stainings, respectively. In mouse, B cells were stained

with anti-CD19 (1D3-APCy) mAb and T cells with anti-TCRb
chain mAb (H57-597-APCy). In rat, B cells were defined as

CD45RA (OX-33-biotin + SA-APCy) positive cells and for the

identification of T cells, anti-TCRb chain (R73-biotin + SA-APCy)

antibody was used. Boxes indicate gated cells shown in number 5

histograms and numbers inside the plots correspond to the

percentages of gated cells. These histograms are also shown in

figure 4C. The data shown are one representative of three

experiments performed.

Found at: doi:10.1371/journal.pone.0013089.s002 (1.74 MB TIF)

Figure S3 Relative CD1d expression by CD4 and CD8 positive

T cells analyzed by multicolor flow cytometry. Dot plots on the

left show gated splenocytes which were studied. CD4 and CD8

positive T cell gating strategies are illustrated with the histograms

and dot plots in the middle columns. As indicated in the labelling

of the axes, two different antibody combinations were used to

stain LEW cells: one with biotinylated WTH-2 mAb visualized

with SA-PE (upper row) and other with unconjugated WTH-2

mAb detected with PE-labeled donkey anti-mouse IgG (DaM-

PE, lower row). Numbers in the gated plots indicate percentages

of gated cells. Fluorescence 2 MFI of CD4 and CD8 T cells in

stainings, where instead of the anti-CD1d mAb an isotype control

Ab was used, were: in the staining of C57BL/6 cells, 5.98 and

4.58 in CD4 and CD8 gated cells respectively; in the upper LEW

staining: 10.2 and 10.6 for CD4 and CD8 T cells, respectively,

and in the lower staining of rat cells: 5.32 for CD4, and 5.09 for

CD8 positive T cells. In the histograms on the right, gray and

black lines correspond to CD4 and CD8 positive T cells,

respectively. Filled histograms are control stainings. In the

figure 4C the lowest histogram of rat T cells and the histogram of

mouse T cells are shown. One representative of three experi-

ments is shown.

Found at: doi:10.1371/journal.pone.0013089.s003 (1.11 MB TIF)

Table S1 Rat CD1d alleles. Two different rat CD1d alleles

were identified in this study and were compared to a previous

report and to the rat BN genome. Analysis of copy DNA (cDNA)

of BN, LEW, F344, PVG and DA rats as well as of genomic DNA

covering the exons 1 to 3 of these strains and also of BUF, BH,

AGUS, AUG and WF rats was carried out as described in the

methods section. A single nucleotide substitution encoding a

phenylalanine instead of a valine in the exon 1 (position 24 of

the mature peptide) was found only in F344 rats. The sequence

found in the BN genome at the NCBI is identical to the BN allele

found in this study. A previous report (Katabami et al., 1998),

where the exon 1 was only analyzed for F344 rats, reported a

nucleotide substitution in exon 3 which would encode an alanine

in seven and a valine in five rat strains. In contrast, the CD1d

nucleotide sequences of all the strains analyzed by us and the BN

genomic sequence at the NCBI, encode an alanine at this

position. Katabami, S., Matsuura, A., Chen, H.Z., Imai, K., and

Kikuchi, K. (1998). Structural organization of rat CD1 typifies

evolutionarily conserved CD1D class genes. Immunogenetics

48, 22–31.

Found at: doi:10.1371/journal.pone.0013089.s004 (0.03 MB

DOC)

Table S2 CD1d in rat non-lymphatic organs (mAbs WTH-1

and WTH-2).

Found at: doi:10.1371/journal.pone.0013089.s005 (0.03 MB

DOC)

Table S3 CD1d in mouse non-lymphatic organs (mAb WTH-1).

* only some apical granules. ** only apical granules in few cells.

Found at: doi:10.1371/journal.pone.0013089.s006 (0.03 MB

DOC)

Table S4 IL-4 production by mouse and rat splenocytes.

Splenocytes derived from C57BL/6 mice or F344 rats were

cultured in the presence or absence of mAbs with media alone, a-

GalCer (10 ng/ml), b-GalCer (10 ng/ml) or Con A (2 mg/ml) for

24 hours and IL-4 secretion into the supernatants was determined

by ELISA. Mean values (pg/ml) 6SD obtained from three

independent experiments are shown. To asses the effects of the

antibodies in each culture condition (media only, a-GalCer, b-

GalCer or Con A) one-way ANOVA was conducted. Significant

differences were only obtained in a-GalCer cultures where the p

values obtained were 0.02 and 0.0007 for rat and mouse,

respectively.

Found at: doi:10.1371/journal.pone.0013089.s007 (0.03 MB

DOC)
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