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Abstract

B-RAF is the most frequently mutated protein kinase in human cancers.1 The finding that 

oncogenic mutations in BRAF are common in melanoma2 followed by the demonstration that 
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these tumors are dependent on the RAF/MEK/ERK pathway3 offered hope that inhibition of B-

RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided 

discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. 

Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK 

pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts.4 Toxicology 

studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling 

Phase 1 clinical trials using a crystalline formulation of PLX4032.5 In a subset of melanoma 

patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment 

initiation and following two weeks of treatment. This analysis revealed substantial inhibition of 

ERK phosphorylation, yet clinical evaluation did not show tumor regressions. At higher drug 

exposures afforded by a new amorphous drug formulation,4,5 greater than 80% inhibition of ERK 

phosphorylation in the tumors of patients correlated with clinical response. Indeed, the Phase 1 

clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients 

treated at an oral dose of 960 mg twice daily.5 These data demonstrate that BRAF-mutant 

melanomas are highly dependent on B-RAF kinase activity.
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PLX4032 belongs to a family of mutant B-RAF kinase inhibitors discovered using a 

scaffold-based drug design approach.6 The crystallography-guided approach allowed 

optimization of a compound with modest preference for the mutated form of B-RAF (B-

RAFV600E) in comparison to wild-type B-RAF. Supplementary Table 1 summarizes the 

differential ability for PLX4032 to inhibit the activity of over 200 kinases. PLX4032 

displays similar potency for B-RAFV600E (31nM) and c-RAF-1 (48nM) and selectivity 

against many other kinases, including wild type B-RAF (100nM). While the vast majority of 

kinases are minimally affected, several were found that were also inhibited at <100 nM 

concentrations in biochemical assays; to date, inhibition of these non-RAF kinases such as 

ACK1, KHS1 and SRMS has not been tested in cellular assays. As previously demonstrated 

for the related B-RAF inhibitor PLX4720,6 the biochemical selectivity of PLX4032 

translates to cellular selectivity: potent inhibition of ERK phosphorylation and proliferation 

occurs exclusively in BRAF-mutant cell lines.4

PLX4032 was crystallized with a protein construct that contained the kinase domain of B-

RAFV600E.PLX4032 (Figure 1A) binds in the active site of one of the protomers in the non-

crystallographic-symmetry related dimer (Figure 1). As previously described for the related 

RAF inhibitor PLX4720 (PDB ID: 3C4C),6 the PLX4032-bound protomer adopts the DFG-

in conformation to enable the formation of a unique hydrogen bond between the backbone 

NH of Asp594 and the sulfonamide nitrogen of PLX4032 (Figure 1B). In addition, 

PLX4032-binding causes an outward shift in the regulatory αC helix, which may explain 

why the effect of PLX4720 and PLX4032 on RAF dimerization is so different from other 

RAF inhibitors such as AZD-628 and GDC-0879 (Figure 1C).7 The apo-protomer displays 

the DFG-in conformation with the activation loop locked away from the ATP-binding site 

by a salt-bridge between Glu600 and Lys507 (Figure 1D).
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In BRAFV600E-mutant xenograft studies, PLX4032 demonstrated dose-dependent inhibition 

of tumor growth, with higher exposures resulting in tumor regression (Figure 2A and 

reference 4). Efficacy could be demonstrated in cell lines and xenografts bearing either 

homozygous or heterozygous BRAF mutations. By contrast, no effect was observed on 

melanoma xenograft growth if both BRAF alleles were wild-type.4,6 Due to their consistent 

pharmacokinetics in rodents, PLX4032 and PLX4720 were prioritized over a panel of 

related compounds that all displayed similar activities in vitro and in vivo. For further drug 

development, PLX4032 was chosen (over PLX4720) because its pharmacokinetic properties 

scaled appropriately in beagle dogs and cynomolgus monkeys.

In order to estimate PLX4032 exposures (as defined by AUC 0-24, the Area Under the 

plasma Concentration time curve over the dosing period of 24 hours) that correlated with 

tumor response, conventionally formulated daily oral doses of PLX4032 were administered 

in the BRAFV600E-bearing colorectal cancer COLO205 xenograft model. In this model, 

tumor growth inhibition was modest at 6 mg/kg (AUC 0-24 ~ 50 μM*hr), tumor stabilization 

was seen at 20 mg/kg (AUC 0-24 ~ 200 μM*hr), and significant tumor regressions were 

observed at 20 mg/kg BID (AUC 0-24 ~ 300 μM*hr). BRAFV600E-bearing melanoma 

xenograft models, including NCI-LOX and COLO829 are also sensitive to PLX4032.4

Rats and beagle dogs were dosed for 28 days with increasing doses up to 1000 mg/kg/day, 

and no toxicity was detected at any dose level. Likewise, no adverse effects were detected in 

a standard battery of safety pharmacology studies. Subsequent toxicology studies of longer 

duration, 26 weeks in rats and 13 weeks in dogs, further confirmed the tolerability of the 

compound. This safety profile was achieved in spite of very high compound exposures, 

reaching 2600 μM*h in rats and 820 μM*h in dogs. The rat exposures exceeded those that 

were effective in patients (see below). Importantly, no histological changes were observed in 

the skin in any animal at any dose or duration of treatment, contrasting to results observed 

with other RAF inhibitors.7

These preclinical findings provided the necessary support in order to initiate Phase 1 clinical 

testing in cancer patients. Clinical and pharmacokinetic results from this Phase 1 study 

recently have been reported.5 In the initial stage of the Phase 1 study, cohorts of patients 

with advanced solid tumors were treated with escalating doses of PLX4032 (ranging from 

200 to 1600 mg), administered twice-daily as oral capsules. The initial crystalline 

formulation yielded modest drug exposures, so PLX4032 was reformulated as a 

microprecipitated bulk powder (MBP) and doses ranging from 160 to 1120 mg BID were 

sequentially evaluated. Preclinical experiments in mice (Figure 2B and reference 4) and 

dogs demonstrated that the MBP formulation substantially increased drug bioavailability by 

ten-fold. This improved bioavailability also was observed in patients, with mean exposures 

at a 160 mg BID dose of the MBP formulation (day 15 AUC 0-24 = 185 μM·h) similar to a 

1600 mg BID dose of the original formulation (day 15 AUC 0-24 = 203 μM·h).

During the dose-escalation phase of the clinical trial, twenty-one patients with metastatic 

melanoma, sixteen with and five without BRAF-mutations, were treated at doses that 

achieved AUC 0-24 > 300 μM·h.5 Tumor dimensions were measured by computed 

tomography (CT). Ten patients with BRAF-mutant melanoma achieved tumor regressions 
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qualifying as partial responses (PR, by Response Evaluation Criteria in Solid Tumors 

[RECIST 1.0], >30% reduction in tumor dimensions) and one patient had a complete 

response (CR); none of the patients with melanomas lacking BRAF mutations achieved PR. 

These data along with preclinical evidence of selectivity for BRAF-mutant cell lines strongly 

justified limiting all further enrollment to patients with BRAF-mutant tumors. Dose-limiting 

toxicities detected at the 1120 mg BID dose included fatigue, rash, and joint pain.5 

Therefore, 960 mg BID was identified as the maximum tolerated dose (MTD), and a cohort 

of 32 patients with BRAF-mutant melanoma was enrolled at this dose in an extension of the 

Phase 1 study.

At the 960 mg BID dose, the steady state PLX4032 concentration was 86 μM and the 

AUC 0-24 was 1741 μM·h; the half-life was estimated to be 50 hours.5 Out of the 32 patients 

treated at this dose, 24 experienced tumor regressions qualifying as PRs and two patients 

had CRs. BRAFV600E mutation status was assessed by a real-time polymerase chain reaction 

(PCR) assay as described under methods,5,8 and many of the samples were sequenced for 

verification of the PCR result. The reliability of the PCR assay is currently being assessed in 

concurrent Phase 2 and Phase 3 trials. The BRAFV600E allele was detected in 46 of the 48 

BRAF-positive patients described above. Interestingly, subsequent sequencing revealed that 

tumors from the two patients lacking the BRAFV600E mutation were found to carry the 

BRAFV600K mutation and were among the better responders (71% and 100% reduction in 

tumor dimensions); and an additional BRAFV600K response has been recently published.9

During the dose escalation stage of the study, a cohort of patients had paired tumor biopsies 

to evaluate pathway inhibition, one taken prior to initiation of PLX4032 treatment and the 

second taken after 14 days of PLX4032 treatment. Patients on the paired biopsy cohort 

varied widely in plasma exposures. In addition to expected inter-patient variability in drug 

clearance, these patients were treated at different doses and with the two different 

formulations (one crystalline and one amorphous). To monitor ERK pathway activity, 

phosphorylated-ERK (pERK) levels were determined by immunohistochemistry (IHC), both 

in the nucleus and in the cytoplasm. To monitor proliferation, Ki67 levels also were 

measured.

As shown in Supplementary Table 2, levels of pERK and Ki67 were decreased in most 

biopsies following two weeks of dosing with PLX4032, even in patients with modest drug 

exposure. Patients exposed to plasma levels of PLX4032 less than 300 μM·h experienced no 

measurable decreases in tumor burden. In contrast, patients exposed to higher plasma levels 

of PLX4032 experienced tumor regression, often achieving PRs as defined by RECIST 

criteria (Supplementary Table 2). Representative pictures illustrating decreases in ERK 

phosphorylation and Ki67 are shown in Figures 3A and 3B. Interestingly, decreases in 

cytoplasmic pERK correlated well with tumor response (Figure 3C), while changes in 

nuclear pERK correlated poorly (Figure 3D). In general nuclear pERK was more sensitive to 

compound levels than cytoplasmic pERK, consistent with the idea that nuclear ERK 

responds very quickly to phosphorylation/dephosphorylation events, while cytoplasmic ERK 

phospho-events are buffered by the many cytoplasmic scaffolding proteins. As further 

evidenced in Supplementary Table 2, the improved pathway inhibition and tumor responses 

correlate with higher plasma drug exposures. In patients with tumor regressions, pathway 
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analysis typically showed greater than 80% inhibition of cytoplasmic ERK phosphorylation 

(Figure 3C). This result indicates that near-complete inhibition of ERK signaling may be 

needed for significant tumor response.

A growing body of literature shows that oncogenic BRAF is an important stimulator of 

metabolic activity,10,11 and in preclinical studies PLX4032 rapidly inhibits fluoro-deoxy-

glucose (FDG) uptake specifically in BRAFV600E mutant melanoma cell lines.12 Therefore, 

FDG uptake in patients on the PLX4032 trial was assessed using PET imaging before 

treatment and following two weeks of dosing. All of the assessable patients treated with 

MBP-formulated PLX4032 experienced major reductions in FDG uptake. Representative 

FDG-PET images are shown in Fig. 4.

Toxicities such as fatigue, rash, and joint pain in the treated patients are detailed separately.5 

Thirty-one percent of the patients treated at the MTD developed skin lesions described as 

cutaneous squamous cell carcinomas, keratoacanthoma type.5 This toxicity is of particular 

interest, since investigators studying three other RAF inhibitors, sorafenib13-15, XL28116 

and GSK211843617 also have noted these skin lesions in a subset of treated patients. While 

the occurrence of these treatment-emergent tumors warrants careful dermatological 

monitoring of patients during PLX4032 treatment, it should be noted that these lesions were 

resected, and no patients discontinued PLX4032 due to this toxicity.5 These skin lesions 

generally appear within a few months of treatment initiation in sun-exposed areas of skin, 

suggesting that pre-existing oncogenic mutations may potentiate the RAF inhibitor effects.

Recent publications suggest a potential mechanism that may in part account for the 

keratinocyte proliferation noted in the patients on study.7,18,19 These reports follow-up on 

prior descriptions of paradoxical activation of the RAF/MEK/ERK pathway by RAF kinase 

inhibitors.20-22 Current evidence suggests that wild-type RAF kinase activity can be 

activated by RAF dimerization.23 RAF dimerization can be induced by RAF inhibitors: 

binding to one protomer – while inhibiting the kinase activity of that protomer – 

concurrently induces a conformational switch in the partner protomer via an undefined 

allosteric mechanism to activate RAF kinase activity.7,19 This paradoxical activation occurs 

in cells in which RAS is activated either by mutation or by some other priming event. 

Modulation of RAF dimerization may not be the only unexpected effects of RAF inhibitors, 

since multiple additional factors are involved in both positive (e.g. KSR, SRC, CNK) and 

negative (e.g. ERK, 14-3-3, DUSP, RKIP, RASSF) regulation of the RAF/MEK/ERK 

signaling pathway.24 25

The ability of PLX4032 to cause tumor regression in a large proportion of patients with 

BRAF-mutant advanced melanoma provides strong support for the hypothesis that the 

oncogenic B-RAF protein is a dominant driver of tumor growth and maintenance. These 

results are particularly interesting in that the BRAF mutation is likely an initiating event in 

melanoma tumorigenesis: the vast majority of benign nevi harbor the same BRAFV600E 

mutation.26 Our current understanding of melanocyte biology suggests that the nevi are 

benign because the BRAF mutation alone induces senescence.27 Clinical evaluation of 

sporadic nevi in patients treated at therapeutic doses revealed no effect of PLX4032 on nevi 

progression or regression.
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The durability of response to PLX4032 is still under evaluation. Median progression free 

survival (PFS) in the Phase 1 extension cohort has not been reached but is currently 

estimated to be at least seven months.5 While this compares rather favorably with a PFS of 

less than two months in historical analysis of large numbers of advanced melanoma patients,

28 tumor re-growth occurs in many of the patients and the mechanisms of resistance are 

currently under investigation. Therefore, improved durability of response will be an 

important goal of further clinical trials. PLX4032 has the potential to anchor future 

treatments in combination with other targeted agents, immunotherapies, or chemotherapies 

and may thereby offer improved treatment options for BRAF-mutant melanoma patients.

METHODS SUMMARY

PLX4032 was synthesized using the general procedures previously described.6 Expression 

and purification of B-RAF, structure determination, protein kinase activity measurements, 

and xenograft studies were carried out as previously described.6 Clinical methods have also 

been recently described.5 Melanoma patients were selected for study using previously 

described TaqMan® methodology.8 Semi-quantitative immunohistochemistry for pERK 

and Ki67 was performed on 5 μm-thick formalin-fixed paraffin-embedded tumor biopsies 

following H&E staining to determine pathologic diagnosis and tissue morphology and 

integrity. The degree of phospho-ERK staining in the nucleus and cytoplasm was interpreted 

semiquantitatively by assessing the intensity and extent of staining on the slides. For Ki67 

staining, the percentage of positive cells was determined.
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Fig 1. Three-dimensional structure of PLX4032 binding to B-RAFV600E

A: The chemical structure of PLX4032.

B: Structure highlights the interactions of azaindole with the kinase hinge and the 

sulfonamide with the DFG loop, with F595 rendered in balls and other key protein residues 

shown as sticks.

C: The structure of the asymmetric dimer of B-RAFV600E is shown with the PLX4032-

protomer bound to PLX4032 colored yellow (consistent with panel B). The surface outline 

of the other protomer (blue) is shown lightly shaded. Highlighted residues are R509 to 

reflect its role in anchoring the dimer and F595 to show that both protomers are in the DFG-

in state. The αc-helix shown in magenta is overlaid on the PLX4032-bound protomer to 

show its typical configuration in an unoccupied protomer; the binding of PLX4032 causes a 

shift of the αc-helix as noted by the arrow.

D. Magnified view of the salt bridge between Lys-507 and Glu-600 that helps prevent 

compound binding to the apo protomer.
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Fig 2. Effect of PLX4032 on COLO205 xenograft tumor growth
Tumor volume measurements of mice treated by oral gavage with the indicated doses of 

PLX4032 or vehicle (n=10 for all groups, error bars indicate standard error) are shown.

A. Administration in conventional formulation occurred daily. Exposures measured on day 7 

are shown. At the 6, 20 and 20 BID doses, 1/10, 1/10, and 8/10 animals achieved CR, 

respectively.

B. Administration in the MBP formulation occurred twice daily. At the 25 mg/kg BID dose 

(blue), 7/10 animals achieved CR and 3/10 animals achieved PR; at the 75 mg/kg BID dose 

(red), all animals achieved CR.
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Fig 3. Semi-quantitative immunohistochemistry in paired tumor biopsies
Matched baseline and day 15 tumor samples are at the same magnification; the measurement 

bar is 70 μm.

A. Representative IHC for Ki67 and pERK staining is shown for patient 12.

B. Representative IHC for Ki67, pERK and H&E staining is shown for patient 42. The 

arrow indicates tumor breakdown with macrophages engulfing the released melanin in the 

day 15 sample.

C. Summary graph showing correlation of reduction in cytoplasmic pERK with tumor 

responses (data from Supplementary Table 2).

D. Summary graph indicating weak correlation of reduction in nuclear pERK with tumor 

responses.
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Fig 4. Representative PET scans for patients taken pre-dose and following 2 weeks of dosing with 
PLX4032
Each of these image pairs demonstrates significant reduction in FDG uptake following 

PLX4032 treatment. Note that tumor regressions were later documented for each of these 

patients: best responses were 70% for patient 45, 70% for patient 59, 68% for patient 61 and 

37% for patient 69.
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