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Post-translational modification of proteins with prokaryotic
ubiquitin-like protein (Pup) is the bacterial equivalent of
ubiquitination in eukaryotes. Mycobacterial pupylation is a two-
step process in which the carboxy-terminal glutamine of Pup is
first deamidated by Dop (deamidase of Pup) before ligation of the
generated c-carboxylate to substrate lysines by the Pup ligase
PafA. In this study, we identify a new feature of the pupylation
system by demonstrating that Dop also acts as a depupylase in the
Pup proteasome system in vivo and in vitro. Dop removes Pup
from substrates by specific cleavage of the isopeptide bond.
Depupylation can be enhanced by the unfolding activity of the
mycobacterial proteasomal ATPase Mpa.
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INTRODUCTION
In eukaryotes, post-translational modification of proteins with
ubiquitin has been linked to important cellular processes, such as
protein degradation, signal transduction and differentiation
(Kerscher et al, 2006). Only recently it was discovered that
certain bacteria, among them Mycobacterium tuberculosis (Mtb),
have a related modification pathway termed ‘pupylation’ (Pearce
et al, 2008; Burns et al, 2009). Although ubiquitination is carried
out by the sequential action of three enzymes (E1, E2 and E3;
Kerscher et al, 2006), in the pupylation process, prokaryotic
ubiquitin-like protein (Pup) is ligated to target proteins by the Pup
ligase PafA (Striebel et al, 2009). PafA forms an isopeptide bond
between the g-carboxylate of Pup’s carboxy-terminal gluta-
mate and the e-amino group of a lysine side chain of the target
protein (Sutter et al, 2010). In mycobacteria, Pup is encoded with
a C-terminal glutamine residue necessitating a preparation step

before ligation that converts this glutamine to a glutamate. The
deamidation of the glutamine residue is carried out by Dop
(deamidase of Pup; Striebel et al, 2009)—an enzyme homologous
to the Pup ligase PafA and to the g-glutamyl cysteine ligase family
(Iyer et al, 2008). Although, in Mtb, pupylation has been linked to
proteasomal degradation of target proteins (Pearce et al, 2008;
Wang et al, 2009; Striebel et al, 2010), the role of the Pup
modification pathway in actinobacteria that do not have
proteasomal subunit genes (for example, corynebacteria) is less
clear. It is possible that pupylation has additional roles similar to
non-degradative ubiquitination in eukaryotes.

Ubiquitination in eukaryotes is reversible due to the existence
of deubiquitinases acting on the isopeptide linkage between
ubiquitin and target lysines (Reyes-Turcu et al, 2009). Deubiqui-
tinases oppose the ubiquitination process and thus provide a
crucial regulative element in the ubiquitin modification pathway
in addition to ensuring recycling of ubiquitin at the proteasome
(Finley, 2009).

To investigate the potential existence of enzymatic activities
able to reverse the modification of proteins with Pup, we assessed
the depupylating activity of mycobacterial and corynebacterial
lysates, demonstrating that they can depupylate an exogenously
added Pup-modified proteasomal substrate. We identify the
depupylating enzyme as Dop, the enzyme that also prepares
Pup for ligation in mycobacteria. Furthermore, we provide
evidence that substrate unfolding by the mycobacterial proteasomal
ATPase Mpa can enhance depupylation in vitro.

RESULTS
Actinobacteria depupylate a Pup-tagged substrate
Pup is a small protein modifier conjugated to substrate lysine
residues through an isopeptide bond (Pearce et al, 2008; Burns
et al, 2009). To test for an activity that can reverse the
modification of target proteins, we first conjugated purified His6-
tagged proteasomal substrate PanB (ketopantoate hydroxymethyl-
transferase; Pearce et al, 2006) to His6-tagged Pup in vitro by using
recombinantly produced Pup ligase PafA and Pup-GGE (a Pup
Q64E variant). The PanB–Pup conjugate was then incubated with
mycobacterial or corynebacterial lysates and samples were drawn
at the indicated time points (Fig 1A). The samples were analysed
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by sodium dodecyl sulphate–polyacrylamide gel electrophoresis
(SDS–PAGE) followed by anti-His6 detection of the PanB and
PanB–Pup bands to check for depupylation activity. In both
Mycobacterium smegmatis (Msm) and Corynebacterium glutami-
cum (Cglu) lysate, the intensity of the PanB–Pup band decreases
over the course of 5 h while concomitantly the PanB band
appears. By contrast, the PanB–Pup band is stable in lysate of
Escherichia coli, which does not harbour the Pup proteasome
system, demonstrating that the activity is specific for actinobacter-
ial lysates. Degradation of the exogenously added substrate is not
observed, indicating that in the prepared lysates, the depupylation
takes place on a faster time scale than degradation.

Depupylase activity is carried out by Dop
We previously identified Dop as the enzyme that deamidates
mycobacterial Pup at its C-terminal glutamine residue to render
it competent for ligation to substrate lysines by the Pup-ligase
PafA (Striebel et al, 2009). The deamidation of Pup’s terminal
glutamine by Dop shows mechanistic similarities to reactions
carried out by isopeptidases (see later). Therefore, we investigated
whether lysate produced from a dop-deficient Msm strain
(Msm Ddop) could remove Pup from His6-tagged PanB–Pup.
Noticeably, PanB–Pup is stable in the dop deletion strain, whereas
complementation of Msm Ddop with dop restores depupylation
(Fig 1B). This demonstrates that Dop accounts for the observed
depupylating activity.

In agreement with a function of Dop as depupylase, our recent
characterization of Msm Ddop showed that the deletion strain
produces a greater increase in pupylated substrates than the

respective parent strain when expressing Pup-GGE (Imkamp et al,
2010). This was detectable as an increase not only in total
intensity but also in amount of bands.

Dop cleaves the isopeptide bond of Pup-tagged substrates
Next we analysed the depupylase activity of Dop in vitro. We had
previously shown that deamidation of the C-terminal glutamine of
Pup by Dop requires ATP as a cofactor (Striebel et al, 2009). To
observe depupylation of PanB–Pup, we mixed PanB–Pup with
Dop (Fig 2A). In the presence of ATP, but not in its absence, we
observed a decrease in the PanB–Pup band over time that
correlates with the appearance of the PanB band. Consistent with
this, a Dop variant with a point mutation in the predicted ATP-
binding motif (DopE10A; Imkamp et al, 2010) does not exhibit
depupylating activity (supplementary Fig S1 online). Another
previously identified proteasomal substrate, FabD–Pup (malonyl-
CoA transacylase; Pearce et al, 2006), was also depupylated by
Dop (supplementary Fig S2 online).

Analysis of nucleotides present after depupylation of 20 mM
PanB–Pup or 20mM Pup-Lys—a model substrate in which Pup has
been ligated to the e-amino group of free lysine—by corynebac-
terial Dop, showed the production of only 2.7 and 0.5 mM ADP,
respectively. This is equivalent to 0.14 and 0.03 ADP produced
per substrate turned over (Fig 2B). No generation of AMP was
observed. In comparison, the ligase PafA was shown to produce
1.1 ADP per Pup ligated (Striebel et al, 2009). This clearly argues
against stoichiometric turnover of ATP during depupylation and is
in agreement with the finding that deamidation by Dop also does
not require ATP turnover.
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Fig 1 | Actinobacterial lysates exhibit depupylating activity that is due to Dop. (A) PanB–Pup (0.3mM), a substrate modified with Pup using

the ligase PafA, was added to cell extracts of Mycobacterium smegmatis (Msm), Corynebacterium glutamicum or Escherichia coli, and depupylation

activity was monitored by anti-His6 immunoblot. (B) In Msm Ddop lysate, PanB–Pup is stable over the course of the experiment. Depupylation

is restored in the complemented strain Msm Ddop–dop. Purified PanB–Pup and PanB are shown for comparison. The asterisk denotes expressed

Dop-His6. Dop, deamidase of Pup; Pup, prokaryotic ubiquitin-like protein.
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Linear fusions of Pup to substrates, in which Pup is amino-
terminally fused to either FabD or GFP (Fig 2C) by way of a regular
peptide bond rather than an isopeptide bond, were not cleaved by
Dop. This suggests that the Dop depupylase activity is specific for
the isopeptide bond. To confirm that Pup is cleaved at the
isopeptide bond, aliquots of a time course carried out with Dop
acting on PanB–Pup were analysed by using electrospray mass
spectrometry (Fig 2D). The observed masses correspond to the
molecular weights expected for unmodified PanB and for free

Pup-GGE. This provides direct proof that the isopeptide bond
between the substrate lysine and Pup is cleaved by Dop and no
additional residues remain on PanB after the reaction.

Although corynebacteria do not harbour proteasomal subunit
genes, they do have genes for Pup, the ligase PafA, Dop and ARC
(ATPase forming ring-shaped complexes; the corynebacterial
homologue of Mpa). Interestingly, in these organisms Pup is
sometimes encoded as the deamidated form (Pup-GGE), as in
Cglu. In agreement with the observed depupylation activity of
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Fig 2 | Dop specifically cleaves the isopeptide bond between Pup and the substrate lysine residue. (A) PanB–Pup (3mM)—a substrate modified with

Pup using the ligase PafA—is depupylated by Dop (0.5mM) only in the presence of ATP as analysed by SDS–PAGE and Coomassie staining (first two

panels). The expected amounts of Pup (3mM) and PanB (3mM) after complete cleavage are shown in the right panel. (B) Depupylation activity of Dop

does not require stoichiometric ATP turnover. PanB–Pup (20 mM) or Pup-Lys (20mM) were incubated in the presence of DopCglu (10 or 4mM)

and ATP (50mM). Nucleotides were analysed after completion of the depupylation reaction (see inset). Error bars represent s.d. values from three

experiments. (C) Pup-GFP (3 mM) and FabD–Pup (1.5mM), in which Pup is amino-terminally fused to the substrates, are not depupylated by Dop

(0.5mM). (D) Depupylation reaction as described in (A) analysed by ESI-MS at t¼ 0 h (upper panel) and t¼ 5 h (lower panel). The theoretical masses

are: 37,300.7 (PanB–Pup), 30,229.3 (PanB) and 7,089.4 (Pup-GGE). (E) PanB–PupCglu is depupylated by Corynebacterium glutamicum Dop (DopCglu).

Assay conditions were as described under (A). C. glutamicum proteins are labelled with the subscript Cglu. Dop, deamidase of Pup; ESI-MS,

electrospray ionization-mass spectrometry; GFP, green fluorescent protein; Pup, prokaryotic ubiquitin-like protein; SDS–PAGE, sodium dodecyl

sulphate–polyacrylamide gel electrophoresis.
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Cglu lysate, corynebacterial PupCglu coupled to mycobacterial
PanB is removed from PanB after incubation with corynebacterial
DopCglu, suggesting that in corynebacteria Dop also acts as a
depupylase, counteracting the PafA ligase (Fig 2E). Notably,
DopCglu was heterologously expressed in E. coli and thus purified
from a source that does not show depupylase activity (see Fig 1A)
and that does not contain any enzyme related to the Pup
proteasome pathway. Therefore, one can conclude that DopCglu

accounts for the observed depupylation activity. As with
mycobacterial Dop, linearly fused Pup is not removed by DopCglu

(supplementary Fig S3A online).
To investigate the substrate specificity of Dop in depupylation,

we carried out depupylase reactions using the affinity-purified
‘pupylome’ of Msm as a substrate pool. A decrease in the intensity
of the ladder of pupylated substrates is observed, which is absent
in the reaction without Dop (Fig 3). This indicates that Dop has
broad substrate specificity and might act as the main depupylase
in mycobacteria.

The proteasomal ATPase Mpa can enhance depupylation
Intriguingly, corynebacteria maintain a proteasomal ATPase gene
despite the absence of the proteasomal subunit genes. This led us
to hypothesize that Mpa might have a role in assisting other, non-
degradative features of the Pup-tagging system. To test this with
respect to depupylation, we carried out PanB–Pup depupylation
assays in the absence or presence of the ATPase Mpa (Fig 4A).
Remarkably, Mpa enhances the depupylation activity of myco-
bacterial Dop significantly. Similar results are obtained with
depupylation reactions using DopCglu (supplementary Fig S3B
online). We previously showed that the mycobacterial ATPase
Mpa alone can unfold a pupylated model substrate (Striebel et al,
2010). We thus speculated that Mpa might unfold PanB–Pup, and
thereby increase the accessibility of the isopeptide bond for
interaction with the depupylase Dop.

As we previously demonstrated, a Pup variant lacking the
eight N-terminal residues (PupD8N) can still bind to Mpa, but

the substrate modified with truncated Pup (PanB–PupD8N) can
no longer be unfolded, which is in agreement with a role of the
N-terminal segment in the initiation of unfolding (Striebel et al,
2010). In this study, we show that depupylation of PanB–PupD8N
is not enhanced by Mpa but is inhibited slightly by its presence
(Fig 4A), suggesting that unfolding by Mpa is the mechanism by
which depupylation of this substrate is enhanced. Consistent with
this, a translocation-deficient variant of Mpa (Mpa F341A) cannot
enhance depupylation (Fig 4A). For another proteasomal substrate
of Mtb, FabD–Pup (supplementary Fig S2 online), we also observe
enhancement of the depupylation rate in the presence of Mpa,
demonstrating that the observed effect is not restricted to PanB as a
substrate. However, the depupylation of a pupylated substrate
with a completely accessible isopeptide linkage to Pup should be
unaffected by Mpa. Concordantly, the model substrate Pup-Lys
(Sutter et al, 2010) is depupylated at the same rate whether Mpa is
present or not (Fig 4B).
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Dop and PafA adjust the pupylation state in vitro
To assess whether ligation of Pup to a substrate protein and
depupylation of the same substrate occur in similar time windows,
we carried out pupylation and depupylation reactions at similar
concentrations of PafA or Dop and PanB or PanB–Pup,
respectively (supplementary Fig S4A online). The appearance of
the PanB–Pup product in the ligation reaction shows a similar time
course as the disappearance of the PanB–Pup band in the
depupylation reaction. This suggests that the two processes
contribute in a competitive way to the adjustment of the
pupylation level of substrate proteins in the cell (Fig 5B). When
the respective opposing enzyme activity was added to either the
ligation or the depupylation reaction (supplementary Fig S4B
online), the overall ligation or depupylation was slowed and

both reactions ultimately reach a similar equilibrium ratio of
PanB to PanB–Pup.

DISCUSSION
Until recently, the use of small protein modifiers, such as
ubiquitin, was thought to be a feature of eukaryotic cells. Since
the discovery of pupylation in actinobacteria (Pearce et al, 2008;
Burns et al, 2009) and the observation of conjugates between
small archaeal modifier proteins and substrate lysine residues in
archaea (Humbard et al, 2010), it is clear that the post-
translational modification repertoire in prokaryotes also includes
macromolecular tags. A key feature of most post-translational
modification mechanisms is reversibility to allow for a highly
dynamic system that can respond quickly. In eukaroytes,
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ubiquitination is mediated by hundreds of ubiquitin ligases
and is counterbalanced by deubiquitinating enzymes (Wilkinson,
2009). Although the prokaryotic pupylation pathway seems
to represent a more reductionist version of eukaryotic ubiquitina-
tion, an opposing activity to tagging of target proteins with Pup
would seem an important element as a means of regulating
pupylation levels.

In our study, we demonstrate that Dop acts as an opposing
activity to the PafA ligase, by efficiently depupylating Pup-
modified proteins (Fig 5B). Reversibility greatly increases the
functional and regulatory potential of pupylation, not only with
respect to the Pup proteasome pathway, but also for use of
pupylation as a degradation-independent modifier.

The fact that we identified Dop, the enzyme that renders Pup
ligation competent in mycobacteria, as the depupylase in the
Pup-modification pathway seems at the same time surprising and
consequential. Mycobacteria encode a Pup protein that has a
glutamine as its C-terminal residue, necessitating the action of
Dop as a deamidase to generate the g-carboxylate that can be
coupled to substrate lysine residues by PafA (Striebel et al, 2009;
Sutter et al, 2010). Dop thus acts as an enzyme that is ‘on
pathway’ for the pupylation of target proteins in mycobacteria.
That the same enzyme can act on the final product of this
pathway, the Pup-coupled substrate, to reverse the tagging
process, is interesting. Possibly, in mycobacteria there is more
evolutionary pressure to keep the level of pupylated substrates
tightly controlled than in those bacteria that encode Pup with a
C-terminal glutamate. Mechanistically, it is not surprising that Dop
has depupylase activity, as the chemical steps and intermediates
involved in either deamidation of the glutamine residue of Pup or
in the cleavage of an isopeptide bond are similar (Fig 5A).

The depupylase activity of Dop also explains why some
bacteria that encode a Pup with a C-terminal glutamate maintain
Dop in their genome, even though they do not need it for
deamidation (Striebel et al, 2009). The function of Dop as the
opposing activity to pupylation makes it a crucial element of any
Pup-modification pathway.

Our experimental results also shed light on the question
why ARC, the homologue of the proteasomal ATPase Mpa, is
maintained in organisms that contain all elements of the
pupylation pathway but lack the proteasomal genes. Our findings
(Fig 4A) suggest that the ATPase-dependent pulling on the Pup tag
initiates unfolding and renders the isopeptide bond more
accessible, thereby enhancing the depupylation reaction. This
might be particularly important when the pupylated substrate is
part of a larger functional complex. It might be possible that in
certain cases Pup cannot be removed without Mpa activity,
resulting in a constant ‘on’ state of the modification. This
would provide strong evolutionary pressure to maintain the
proteasomal ATPase.

One crucial question is whether depupylation by Dop
promotes or rescues substrates from degradation by Mpa and the
proteasome. In vitro, using Mpa in combination with an open-gate
variant of the proteasome, Pup is not recycled but degraded along
with the substrate (Striebel et al, 2010). Furthermore, the
N-terminal segment of Pup was shown to provide an unfolding
initiation site for Mpa in vitro (Striebel et al, 2010) and in vivo
(Burns et al, 2010), indicating a mechanism in which Pup is a two-
part degron providing tethering and the unfolding initiation site.

However, a combination of in vivo and in vitro approaches will
ultimately be necessary to address this question.

METHODS
Cloning of constructs and purification of proteins. For cloning of
constructs and purification of proteins refer to supplementary
information online. For Mpa, the concentrations refer to the
hexamer, for all others to the monomer. Proteins used in this study
are M. tuberculosis proteins unless stated otherwise.
Production of Pup-modified substrates. Pup-modified substrates
were generated and purified as described previously (Striebel et al,
2010). For details see supplementary information online.
Depupylation assay in vitro. The Pup-modified substrate (3mM)
or substrate linearly fused to Pup (3mM Pup-GFP or 1.5mM
FabD–Pup) was incubated with Dop (0.5mM) in 50 mM Tris (pH
7.5), 150 mM NaCl, 20 mM MgCl2, 10% glycerol (v/v), 1 mM
dithiothreitol (buffer R) supplemented with 5 mM ATP at 30 1C.
Depupylation of Pup-Lys (10mM) was carried out at 23 1C.
Depupylation reactions containing Mpa (0.2mM) were supplemen-
ted with 30 mM phosphocreatine and 0.4 U/ml creatine phospho-
kinase. The reactions were terminated at the indicated time points
with SDS sample buffer and analysed by SDS–PAGE and Coomassie
staining. For electrospray ionization-mass spectrometry, samples
were withdrawn and frozen in liquid nitrogen until analysis.
Depupylation assay in cell extracts. Msm SMR5 (Sander et al,
1995), Msm Ddop and Msm Ddop–dop (Imkamp et al, 2010)
were grown to an OD600 of 1.5 at 37 1C in 7H9 liquid broth
supplemented with 0.025% Tween 80. C. glutamicum (DSM
20300) was grown in medium 53 (DSMZ, Braunschweig,
Germany) at 30 1C, E. coli DH5a was grown in Luria–Bertani
medium at 37 1C. C. glutamicum and E. coli were grown to an
OD600 of B2.0. Cell extracts (4.5 mg/ml) were prepared
as described previously (Imkamp et al, 2010). Purified His6-Pup-
tagged PanB-His6 (0.3mM), dithiothreitol (1 mM), MgCl2 (20 mM),
ATP (5 mM) and ATP regeneration system (creatin phosphate/
creatin phosphokinase) were incubated at 23 1C for 5–10 min. The
reaction was started by adding cell extract and was incubated at
30 1C. Samples were withdrawn at the time points indicated and
analysed by immunoblot using a His6 antibody (Acris). For
detection, a mouse IgG alkaline phosphatase antibody produced
in goat (Sigma) was used with the CDP Star substrate (Roche).
Analysis of nucleotides in the depupylation reaction. DopCglu

(10 or 4 mM) was incubated with PanB–Pup (20 mM) or Pup-Lys
(20 mM), respectively, in the presence of ATP (50 mM) for 30 min at
30 1C. Nucleotides were then analysed and [ADP] calculated
as described previously (Striebel et al, 2009). As control reactions,
DopCglu or the substrate were incubated with ATP. The fraction f of
ADP generated per substrate turned over was calculated as
f¼ ([ADP]depupylation�[ADP]controls)/[substrate].
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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