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Abstract 

Tumor suppressors refer to a large group of molecules that are capable of controlling cell 
division, promoting apoptosis, and suppressing metastasis. The loss of function for a tumor 
suppressor may lead to cancer due to uncontrolled cell division. Because of their importance, 
extensive studies have been undertaken to understand the different functional mechanisms of 
tumor suppressors. Here, we briefly review the four major mechanisms, inhibition of cell 
division, induction of apoptosis, DNA damage repair, and inhibition of metastasis. It is 
noteworthy that some tumor suppressors, such as p53, may adopt more than one mechanism 
for their functions.  
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Introduction 
Cancer cells are basically transformed from 

normal cells (1). The transformation usually requires 
genetic mutations in proto-oncogenes and/or tumor 
suppressors (1). These mutations can be directly in-
duced by specific cancer-causing agents such as radi-
ations, chemicals, hormones, viruses and genetic fac-
tors (2). After transformation, the cancer cells lose 
their ability to control cell division, but still maintain 
certain characteristics of the cells from which they are 
derived. Tumor suppressors prevent cancer by relia-
bly controlling cell division, promoting apoptosis, and 
suppressing metastasis (3). Once a tumor suppressor 
becomes inactive, cell division may proceed out of 
control and this may lead to cancer. Tumor suppres-
sors affect both the initiation and the development of 
cancer, and generally follow the classic “two-hit” 
model (3-5). They are encoded by two alleles because 
chromosomes are paired in humans (3). If one allele 
becomes mutated (heterozygosis) or underexpressed, 
the other can still express the appropriate tumor sup-
pressor to inhibit cell division (5).  When both alleles 

are mutated or underexpressed, the inhibition of cell 
division is reduced and even lost (5). However, there 
are also exceptions, such as tumor suppressor p27.  
The production of p27 from the unmutated allele is 
not sufficient enough to bring the cell to its original 
condition in the heterozygote, and the cell mitosis can 
only be arrested when both alleles are unmutated (6). 

Mechanisms of Tumor Suppression 
Many tumor suppressors have activity in both 

normal and tumor cells; whereas the others, such as 
p53, are inactive in normal cells and only activated by 
potential cancer risks. A tumor suppressor may pos-
sess multiple mechanisms to suppress cancer cell 
growth (3). For example, the most important tumor 
suppressor p53, which is associated with about 50% of 
human cancer cases (7), can trigger DNA repair 
processes, induce the transcription of other tumor 
suppressors, such as p21 and p16, and initiate cell 
apoptosis (3, 8, 9). Despite the tremendous growth in 
cancer research and identification of numerous tumor 
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suppressors (10), the exact underlying mechanisms 
through which the tumor suppressors function are not 
always clearly revealed. To date, four major mechan-
isms have been revealed for tumor suppressors: sup-
pression of cell division, induction of apoptosis, DNA 
damage repair and inhibition of metastasis. 
Suppression of Cell Division 

Suppression of cell division is the main mechan-
ism for most tumor suppressors. The tumor suppres-
sors that adopt this mechanism include retinoblasto-
ma protein (Rb), adenomatosis polyposis coli (APC), 
alternate reading frame (ARF), RIZ1, p15, p16, p18, 
p19, p21, p27, and p53 (8, 9, 11-21). Rb, which is the 
first discovered tumor suppressor, inhibits the tran-
scription of specific genes required for mitosis 
through binding to transcription factors such as E2Fs, 
which are key cell proliferation regulators (12, 13). 
Tumor suppressor p53, which can also bind to DNA, 
stimulates the expression of other genes, such as 
WAF1/CIP1 encoding p21 (8, 22). APC stabilizes mi-
crotubules to inhibit mitosis (15) and interferes with 
cell adhesion to its growing matrix (23). The interfe-
rence with cell adhesion results in indirect suppres-
sion of cell division due to contact inhibition. It has 
been observed that a few tumor suppressors may act 
in cooperation to inhibit cell mitosis (3). Tumor sup-
pressors p15, p16, p18, p19, p21 and p27 inhibit cyc-
lin-dependent kinases (CDKs), which, in turn, inhibit 
Rb (11, 24). When CDKs are inhibited, Rb is kept ac-
tive to suppress cell division (24). ARF is capable of 
relocating the murine double minute (MDM2), a crit-
ical negative regulator of p53 inhibitor, into nuclei to 
activate cellular p53 (25). In addition, epigenetic reg-
ulation may play a role in tumor suppressing actions. 
Histone methyltransferases are recently deemed as a 
special group of tumor suppressors, which can di-
rectly inhibit mitosis via changing the conformation of 
histone to block double-strand DNA unwinding (26). 
Induction of Apoptosis 

Apoptosis, or programmed cell death, is another 
functional mechanism of tumor suppression.  Exam-
ples of this group of tumor suppressors are p53, APC, 
cluster of differentiation 95 (CD95), bridging integra-
tor 1 (Bin1) and phosphatase and tensin homolog 
(PTEN) (27-31). Unlike premature cell death, apopto-
sis maintains normal homeostasis and suppresses 
cancer (32, 33). It is regulated by many different 
pathways integrating both positive and negative reg-
ulations (34). p53 mediates apoptosis through two 
major pathways, the extrinsic pathway, which acti-
vates a caspase cascade including caspase-9, -3, -6 and 
-7, and the intrinsic pathway, which promotes the 

apoptosome formation via the Bcl-2 family (28, 35).  
APC, which has been observed to be frequently mu-
tated in colorectal cancer, promotes transcrip-
tion-independent apoptosis via caspase 8 (27). The 
APC-mediated apoptosis can be abolished by cas-
pase-8 inhibitor Z-IETD-FMK (27). CD95 is overex-
pressed in cancer cells and acts as an important re-
ceptor for cell death (29, 36). Upon being recognized 
immunogenically by a specific ligand expressed in the 
cytotoxic T killer cells, CD95 initiates apoptosis in the 
cancer cells (37). Bin1, which is a cell death agent, 
mediates apoptosis to suppress cancer by c-Myc (30). 
In contrary to the above discussed tumor suppressors 
that directly induce apoptosis, PTEN utilizes an al-
ternative mechanism to promote apoptosis. It inacti-
vates phosphatidylinositol 3,4,5-triphosphate (PIP3), 
which is important for anti-apoptosis and aids in 
cancer cell survival (31). Although some tumor sup-
pressors can both inhibit mitosis and induce apopto-
sis, apoptosis is not necessarily induced by the inhibi-
tion of mitosis (38). 
DNA Damage Repair 

The tumor suppressors that can help in DNA 
damage repair include mutS homolog 2 (MSH2), 
mutL homolog 1 (MLH1), Ataxia-telangiectasia- 
mutated gene product (ATM), breast cancer protein 
(BRCA), Nijmegen breakage syndrome 1 (NBS1), 
Fanconi-Anemia−related tumor suppressor (FA), and 
p53 (3, 39-43). They are able to fix DNA damages, 
including mismatch and vast damage to one of the 
DNA double strands. Generally, p53 can induce nuc-
leotide excision repair to remove damaged DNA por-
tions and mediate synthesis from the other strand; 
whereas MSH2 and MLH1 can repair DNA mismatch 
(3, 39, 40). ATM is a general sensor to DNA damage 
and phosphorylates p53, BRCP, NBS1 and FA to ac-
tivate the DNA repair process (3, 41). BRCA and p53 
work together in nucleotide excision repair of DNA 
adducts (42). NBS1 and FA make DNA resistant to 
crosslinking, and may amplify the phosphorylation 
signal from ATM (43). In addition, thymine-DNA 
glycosylase (TDG) is proposed as a tumor suppressor 
candidate (44-46). Previous studies have shown that 
5-methylation of cytosine could lead to spontaneous 
hydrolytic deamination to produce the C→T transi-
tion mutation and T-G mismatches (44-46). TDG re-
cognizes the T-G mismatch, removes the mismatched 
T through hydrolysis of its N-glycosidic bond, and 
initiates a nucleotide excision repair (44-46).  The 
C→T transition mutation happens frequently in hu-
man tumors and counts for about 24% of p53 muta-
tions (44, 47-50). Recently, TDG was shown to be a 
co-activator of p53 (51). 
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Inhibition of Metastasis 

The majority of cancer death is caused by me-
tastasis (52). During metastasis, tumor cells have sig-
nal interactions with endothelial cells to initiate an-
giogenesis and break down vascular walls.  These 
actions promote their spread. Tumor suppressors that 
can inhibit metastasis consist of metastin, breast can-
cer metastasis suppressor 1 (BRMS1), tissue inhibitor 
of metalloproteinase (TIMP), cofactor required for 
specificity protein 1 activation (CRSP), and 
KAL1/CD82 (53-64). The binding of metastin to the 
metastin receptor (orphan G protein-coupled receptor 
GPR54) increases the expression and activity of focal 
adhesion kinase (FAK) and inhibits the metastasis of 
melanoma cells (53). It has also been shown that me-
tastin triggers phospholipase C activation, arachi-
donic acid release and extracellular signal-regulated 
kinase (ERK) phosphorylation in Chinese hamster 
ovary (CHO) cells overexpressing metastin receptor 
(54, 55). BRMS1 regulates gene transcription through 
interaction with the mSin3 histone deacetylase 
(HDAC) complex (57). TIMPs can bind not only all 
matrix metalloproteinases (MMPs) in their active 
forms but also MMP-2 and MMP-9 in their latent 
forms. TIMPs reduce cancer metastasis by inhibiting 
the cancer cell-released MMPs, maintaining the inte-
grity of extracellular matrices, and preventing the 
penetration of cancer cells through the base mem-
brane of blood vessels (58-60). CRSP can up-regulate 
the expression of metastin (61). CD82 is a cell surface 
glycoprotein activated by p53 (62, 63). The expression 
levels of CD82 and p53 are strongly correlated (63). 
The exact mechanism for CD82 to inhibit cancer me-
tastasis is still unclear; however, it may inhibit cancer 
cell migration/invasion through the 
FAK-Lyn-p130CAS-CrkII pathway (64). 

Summary 
In summary, we briefly reviewed the four major 

functional mechanisms for human tumor suppressors. 
Some tumor suppressors, such as p53, may utilize 
more than one mechanism for their suppressing func-
tions. Recent progress in structural and functional 
studies of tumor suppressors and their interactions 
with other molecules has benefited the design and 
discovery of novel anticancer agents. For example, 
quite a few CDK inhibitors have been developed and 
some are already in clinical trials. 
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