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We report an investigation of gene dosage at 9p21.3 and mutations in BRAF and NRAS, as predictors of relapse and histo-

logical markers of poor melanoma prognosis. Formalin-fixed primary melanomas from 74 relapsed and 42 nonrelapsed

patients were sequenced for common BRAF and NRAS mutations (N ¼ 71 results) and gene dosage at 9p21.3 including the

genes CDKN2A (which encodes CDKN2A and P14ARF), CDKN2B (CDKN2B), and MTAP was measured using multiplexed

ligation-dependant probe amplification (MLPA), (N ¼ 75 results). BRAF/NRAS mutations were detected in 77% of relapsers

and 58% of nonrelapsers (Fisher’s exact P ¼ 0.17), and did not predict ulceration or mitotic rate. There was no relation-

ship between BRAF/NRAS mutations and gene dosage at 9p21.3. Reduced gene dosage at MTAP showed a borderline associ-

ation with BRAF mutation (P ¼ 0.04) and reduced gene dosage at the interferon gene cluster was borderline associated

with wild type NRAS (P ¼ 0.05). Reduced gene dosage in the CDKN2A regions coding for CDKN2A was associated with

an increased risk of relapse (P ¼ 0.03). Reduced gene dosage across 9p21.3 was associated with increased tumor thick-

ness, mitotic rate, and ulceration (P ¼ 0.02, 0.02, and 0.002, respectively), specifically in coding regions impacting on

CDKN2B and P14ARF and CDKN2A. Loss at MTAP (P ¼ 0.05) and the interferon gene cluster (P ¼ 0.03) on 9p21 was

also associated with tumor ulceration. There was no association between reduced gene dosage at 9p21.3 and subtype or

site of tumor. This study presents supportive evidence that CDKN2B, P14ARF, and CDKN2A may all play a tumor sup-

pressor role in melanoma progression. VVC 2010 Wiley-Liss, Inc.

INTRODUCTION

The AJCC staging system for melanoma uti-

lizes the Breslow thickness of primary melanoma,

the presence of ulceration, and staging by senti-

nel node biopsy to give the best estimate of prog-

nosis (Balch et al., 2001). Use of the staging

system is associated with a range of estimates of

outcome (Balch et al., 2001; Gimotty et al., 2005),

so that a significant proportion of the variance in

survival remains unexplained. Therefore, it is im-

portant to seek molecular markers of metastatic

potential for use in clinical practice. In recent

years, progress has taken place in understanding

the somatic events that occur in melanoma pri-

mary tumors. However, there is comparatively lit-

tle known of the correlation between these

events and outcome, and it is therefore important

to increase our understanding of the carcinoge-

netic process so that logical approaches to treat-

ment can be developed.

A number of signal transduction and cell cycle

regulatory pathways have been implicated in the

etiology and progression of melanoma, including

the retinoblastoma (RB1) and p44/42 mitogen-

activated protein kinase (MAPK) pathways. A
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key region is 9p21.3, which contains the CDKN2A
and CDKN2B genes. These genes encode three

separate tumor suppressor proteins. CDKN2A enc-

odes both CDKN2A and, using a separate first

exon and alternate reading frame, P14ARF.

Although both transcripts use exons 2 and 3 of

CDKN2A, the CDKN2A and P14ARF proteins

share no homology at the amino acid level and

have distinct tumor suppressor functions in the

RB1 and TP53 pathways; CDKN2B encodes

CDKN2B, which has its own open reading frame

(Sharpless and DePinho, 1999; Weber et al.,

1999). The CDKN2A protein controls passage

through the G1 checkpoint of the cell cycle by

inhibiting the phosphorylation of the RB1 protein

(Roussel, 1999) and of the three tumor suppres-

sors at this locus is the one longest recognized to

have a significant role in melanoma. It is known

to play a key role in normal melanocyte senes-

cence (Ha et al., 2008). The P14ARF protein acts

on the TP53 cell cycle control pathway by inter-

action with the human double minute (HDM2)

protein to stabilize TP53 and allow cell cycle

arrest at the G1/G2 phase (Weber et al., 1999).

CDKN2A was identified first as a tumor suppres-

sor gene commonly deleted/mutated in tumor

cell lines (Kamb et al., 1994a) and subsequently

its role as a high-risk susceptibility gene in mela-

noma families was elucidated (Kamb et al.,

1994b). Germline mutations have been identified

in �20% of tested melanoma families (Goldstein

and Tucker, 2001; Bishop et al., 2002). Some

mutations impact on CDKN2A protein alone,

some on P14ARF, and some on both proteins.

Most melanoma cell lines show deletion/muta-

tion of CDKN2A (Flores et al., 1996; Walker et al.,

1998). The majority of primary tumors have allelic

loss at microsatellite markers mapping to the

CDKN2A locus, indicating that deletions are the

principal genetic event in vivo (Flores et al., 1996;

Rodolfo et al., 2004). More recent reports showed

biallelic deletion in �45% of melanoma metasta-

ses, supporting the role of this locus in melanoma

progression (Grafstrom et al., 2005) and we have

shown that epigenetic silencing of P14ARF is also

common in metastatic disease (Freedberg et al.,

2008). There are few data from primary tumors on

the role of deletion at the locus on outcome (Koy-

nova et al., 2007) and none on the effect of dele-

tion across the larger region, which we have

addressed using Multiplex ligation-dependent

probe amplification (MLPA) (Nygren et al., 2005)

rather than by studying the small intragenic

regions previously reported.

More recently there has been some suggestion

that CDKN2B may also have tumor suppressor

functions in melanoma. Krimpenfort et al. (2007)

showed that mice null for CDKN2B, CDKN2A,

and P14ARF were more tumor prone than

CDKN2A/P14ARF null mice and developed a

predominance of skin tumors (Krimpenfort et al.,

2007). The authors suggested that CDKN2B

might act as critical ‘‘back up’’ tumor suppressor

in cells null for CDKN2A.
Activating mutations of the NRAS and BRAF

genes occur in �20 and 50% of malignant mela-

nomas respectively, and are almost always mutu-

ally exclusive (Omholt et al., 2003; Garnett and

Marais, 2004). BRAF and NRAS mutations have

also been found in benign nevi (Poynter et al.,

2006) and are therefore thought to be involved

early in melanoma carcinogenesis. In cultured

human melanocytes, mutant BRAF protein has

been shown to induce cell senescence by increas-

ing the expression of CDKN2A (Michaloglou

et al., 2005). It is postulated, therefore, that to

become an invasive melanoma, arrest of the cell

cycle caused by normal CDKN2A must subse-

quently be overcome by mutation or deletion of

CDKN2A or by alterations to other cell cycle reg-

ulators. Moreover, a recent in vitro study showed

that simultaneous knockdown of BRAF and

expression of CDKN2A in melanoma cells led to

potent growth inhibition and apoptosis, whereas

knockdown of BRAF or expression of CDKN2A

alone did not (Zhao et al., 2008). Studies of

BRAF mutated nevi using the senescence marker

SA-b-gal, however, revealed a marked mosaic

induction of CDKN2A, which the authors sug-

gested was indicative of a role for multiple tumor

suppressors in the prevention of BRAF oncogene-

sis (Michaloglou et al., 2005).

In this study, we have investigated the gene

dosage of multiple tumor suppressors at 9p21 in

formalin-fixed, paraffin-embedded (FFPE) pri-

mary melanoma tumors. Furthermore, we have

investigated the relationship between reduced

gene dosage at the CDKN2A locus and BRAF/
NRAS mutations using tumors from patients who

have relapsed and from patients with similar

tumors who have not relapsed, to determine the

prognostic value of these events. The presence of

ulceration is an important prognostic factor for

melanoma even in stage III or metastatic disease

(Balch et al., 2001) and, therefore, we also assessed

the associations between CDKN2A deletion and

BRAF/NRAS mutation and ulceration. In other

series, mitotic rate has important prognostic
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significance (Elder and Murphy, 2008), and there-

fore, we also examined genetic markers in relation

to mitotic rate. CDKN2A is a cyclin D kinase

(CDK) inhibitor and therefore loss of CDKN2A

would likely be related to increased mitotic rate.

The methylthioadenosine phosphorylase (MTAP)
gene is also located at 9p. It has been suggested

that loss of expression of the gene has prognostic

implications for melanoma (Behrmann et al., 2003)

and codeletion of MTAP with CDKN2A has been

investigated in a number of cancers (Chen et al.,

1996). There is evidence that loss of MTAP results

in an inhibition of STAT signalling pathways regu-

lated by interferon, so it is of interest that response

of melanoma patients to interferon used as an adju-

vant therapy for this cancer has been reported to

be related to MTAP status (Wild et al., 2007). We

were able in this study to look at deletion of

MTAP in primary melanomas.

MATERIALS AND METHODS

Patients

Ethical approval for this study was obtained

from the Multi-Regional Ethical Committee

(MREC) and from the patient information advi-

sory group (PIAG) and all living patients gave

informed written consent to the use of their

stored tissues for research. Melanoma cases had

all been diagnosed at least 3 years previously.

Recruitment was irrespective of family history.

Cases were then eligible as ‘‘relapsers’’ if relapse

occurred after 3 years or as ‘‘nonrelapsers’’ if they

were free of relapse. Participants had a tumor

thickness greater than 0.75 mm and were

recruited between May 2000 and January 2005.

Full details of the study were reported previously

(Beswick et al., 2008). There were 424 patients

eligible for the study, of which 66% (278) partici-

pated. The median Breslow thickness was 1.6

mm (range 0.8-20). From the 278 participating

patients, 116 (74 relapsers and 42 nonrelapsers)

had FFPE primary tumor samples that were

available for further sampling and DNA extrac-

tion. There was no selection of these blocks,

other than that we used blocks which could be

traced.

Histology

Sections from the primary tumors were exam-

ined (blind to relapse status) by one pathologist

according to protocol (AB). The following were

recorded: Breslow thickness, site of the primary

tumor, histological sub-type, presence of ulcera-

tion, and mitotic rate in three categories (0, 1 to

6 and more than 6 per mm2).

DNA Extraction

DNA was extracted from 116 FFPE primary

melanoma tumors, sampled horizontally at the

advancing edge of the tumor, in the vertical

growth phase, using a 0.8 mm � 2 mm core bi-

opsy needle and haematoxylin and eosin stained

slides as a guide. The intent was to choose tissue

representative of the deepest part of the tumor

but which was sufficiently surrounded by tumor

that the sample contained minimal normal stroma

and inflammatory cell infiltrate. Horizontal sec-

tions of cores were taken during development of

the methodology to ensure the technique allowed

minimal sampling of normal tissue as described

previously (Conway et al., 2009). DNA extraction

from cores was carried out using the QIAamp

DNA Mini kit (Qiagen, Sussex, UK) (Conway

et al., 2009).

Copy Number Analysis of Chromosome 9p21

Gene dosage ratios for 12 CDKN2A/CDKN2B
locus sites and 11 other 9p gene sites were deter-

mined using the 9p21 MLPA kit (P024 MRC-

Holland, Amsterdam, the Netherlands) (Schouten

et al., 2002). The genes included in this screen

were TEK, ELAV2, CDKN2B, CDKN2A, MTAP,
KIAA1354, INFW1, INFB1, MLLT3, and DOCK8
(Fig. 1A). The kit was used in accordance with

instructions for all experiments but in 1/4 vol-

umes of those recommended by the supplier,

based on previous optimization in our laboratory:

30–100 ng of extracted tumor DNA was dena-

tured and target gene probes were hybridized to

the target DNA prior to probe ligation in the

presence of ligase-65. The ligation products were

subject to polymerase chain reaction (PCR) ampli-

fication performed on a GeneAmp PCR System

9700 Thermal Cycler (Applied Biosystems,

Warrington, UK) with a hot-start PCR program.

MLPA fragments were visualized on an ABI

3130XL Automated DNA Sequencer with a 36 cm

capillary array, ABI POP-7 polymer, and GeneS-

can-ROX 500 size standards (Applied Biosystems).

Peak detection analysis has been automated using

ABI PRISM Genescan
VR
Analysis software version

3.1 (Applied Biosystems) and GeneMarker soft-

ware (Softgenetics, State College, Pennsylvania,
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USA). In each set of experiments, one negative

control (no DNA) sample and four normal control

samples (human genomic DNA with normal gene

dosage at 9p from four different individuals) were

included.

MLPA Data Analysis

Gene dosage analysis was automated using

the MLPA analysis program included with

GeneMarker software version 1.6 (Softgenetics,

Pennsylvania, USA) according to the manufac-

turer’s instructions. Data were normalized using

the ‘‘population normalization’’ mode (as recom-

mended by the MLPA kit manufacturers for anal-

ysis of tumor DNA). Peak heights were

normalized according to the median height of all

test and control peak heights of similar fragment

size. Normalized peak heights were then com-

pared to a synthetic control sample (average of

Figure 1. MLPA for analysis of gene dosage at chromosome 9p21.
A, a diagrammatical representation of the 9p21 region covered by
the P024A MLPA kit. Locations of probed genes are shown in green
and MLPA probes in orange with probe names outlined in bold.
Probe groupings used in data analysis are represented by orange bars

with black dots at top of the picture. B, gene dosage ratios for a rep-
resentative primary melanoma sample showing an almost total loss of
gene dosage (representing �80% loss) from MTAP exon 6 to
CDKN2B intron.
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peak heights from four human genomic DNA

samples with normal gene dosage at 9p) with

default analysis parameters to determine gene

dosage ratios where the median point within the

data set is considered to be 1, and a gene dosage

ratio for each probe region was calculated with

reference to the synthetic control (Fig. 1B). In

previous publications using MLPA on FFPE-

derived DNA, gene dosage cut-offs of 0.7 for loss

and 1.3 for gain have been used according to

manufacturer’s instructions (van Dijk et al., 2005;

Takata, 2008; Buffart et al., 2009) (and author

correspondence with MRC-Holland). In our anal-

ysis, gene dosage was treated as a continuous

variable to account for the effect of any possible

contaminating normal DNA.

Mutation Analyses

Gene fragments of hotspot mutation regions in

BRAF (exon 15) and NRAS (exon 2) were ampli-

fied by PCR in separate reactions to screen for

common mutations found in melanomas. Stand-

ard PCR reactions were carried out using Ampli-

taq Gold DNA polymerase in 1� PCR buffer

(Applied Biosystems) according to manufacturer’s

instructions. Primers: BRAF exon 15 Forward:

50-TCA TAATGCTTGCTCTGATAGGA and

Reverse: 50-GGCCAAAAATTTAATCAGTGGA

(annealing temperature 59�C); and NRAS exon 2

Forward: 50-GGTGAAACCTGTTTGTTGGA

and Reverse: 50-TTCAGAACACAAAGATCATC

(55�C).
BRAF and NRAS PCR products were

sequenced in both directions using an ABI3100

Automated DNA Sequencer with a 36 cm capil-

lary array, ABI POP-7 polymer and ABI Prism

BigDye Terminator Cycle Sequencing Kit ver-

sion 1.1 (Applied Biosystems) according to the

manufacturer’s instructions. Sequence analysis

was carried out using CodonCode Aligner

sequencing software (CodonCode Corporation,

Dedham, MA, USA) and mutation detection was

based on BRAF and NRAS cDNA sequences

(Genbank accession nos. NM_004333 and

NM_00254, respectively).

CDKN2A Immunohistochemistry

A representative set of 17 tumors from the

MLPA data set were selected for immunohisto-

chemistry using antibodies to CDKN2A to evi-

dence the validity of the MLPA results. The

samples chosen consisted of four samples with

gene dosage ratios of �0.2 (80% gene dosage

loss) at the CDKN2A promoter, or coding regions

for CDKN2A; seven samples with gene dosage

ratios �0.5 (50% gene dosage loss) at the

CDKN2A promoter, coding regions for CDKN2A

or intronic regions upstream of the promoter; and

six samples with gene dosage ratios between 0.7

and 1.3 (normal gene dosage). Positive and nega-

tive controls for kit and antibody performance

were included. The positive control was a paraf-

fin-embedded section of bladder carcinoma with

high CDKN2A expression determined by West-

ern blot analysis. The negative control was a sec-

tion from the same bladder tumor without the

addition of primary antibody.

Sections (5 lm) were cut and fixed on Super-

frost plus glass slides before dewaxing and rehy-

dration. Expression of CDKN2A was examined

using a CDKN2A monoclonal antibody (1:1500

for 1 hr; Ab-7; Labvision, Freemont, CA, USA)

and the catalyzed signal amplification system

(CSA system; DakoCytomation, Cambridgeshire,

UK) according to the manufacturer’s instructions.

Endogenous biotin or biotin-binding proteins

were blocked using the Avidin Biotin blocking

kit (Vector Laboratories, Peterborough, UK)

according to manufacturer’s instructions and en-

dogenous peroxidase activity was blocked using

3% hydrogen peroxide in water for 5 min (CSA

system). Sections were counterstained with hema-

toxylin, dehydrated and mounted in Depex

mounting medium (VWR International, Leices-

tershire, UK). Expression of CDKN2A was exam-

ined by light microscopy and scored in tumors as

absent (0), expressed (1) or highly expressed (2).

Statistical Methods

Gene dosage was treated as a continuous vari-

able in the analysis (Fig. 1). To investigate the

effect of dosage in relation to each of the tran-

scripts at 9p21, five separate probe groups were

created. Probe groups contained all probes located

within the coding exons and promoter for each

transcript. The probe groups were: (1) CDKN2B
(probes: CDKN2B promoter and exon 1), (2)

regions coding for P14ARF (probes: CDKN2A
CpG island, CDKN2A 1b promoter and exons 1b,
2, and 3), (3) CDKN2A (probes: CDKN2A 1a pro-

moter and exons 1a, 2, and 3), (4) MTAP (probes:

MTAP exons 1, 6, and 7), and (5) the interferon

gene cluster (probes: KIAA1354 [between IFNA5
and IFNA6], INFW1, and INFB1). A ‘‘CDKN2A’’
group containing all CDKN2A probes was created
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to investigate the effect of overall loss at the

CDKN2A locus (probes: CDKN2A CpG island,

CDKN2A 1b promoter, exon 1b, CDKN2A introns 1

and 2, CDKN2A 1a promoter plus exons 1a, 2 and

3). To investigate the effect of loss across the

whole 9p21.3 region, an overall 9p21.3 group

defined by all of the probes in the region was also

considered. Median gene dosage ratio was used to

represent the overall gene dosage ratio of the

region where there was more than one probe

within the region.

A rolling average heatmap was used to repre-

sent graphically the overall gene loss. The rolling

average of the gene dosage was calculated as the

average gene dosage ratio of the probe itself and

adjacent probes. The Wilcoxon two-sample rank

test using normal approximation was performed

to assess the difference between gene dosage ra-

tio by relapse status (relapse versus no relapse),

ulceration status (yes versus no), tumor site

(head/neck/foot/hand versus others) and BRAF
and NRAS mutation status. The Kruskal Wallis

test was applied to assess the difference between

tumor histological sub-type (superficial spreading

versus nodular) and mitotic rate per mm2

(grouped as 0, 1–6, >6). Spearman correlations (r)

were used to assess association between gene

dosage ratio and Breslow thickness. Fisher’s exact

test was used to assess the association between

BRAF/NRAS mutation and relapse status, mitotic

rate and ulceration. These analyses were carried

out using the SAS/STAT statistical software ver-

sion 9.1 for PC (Copyright, SAS Institute Inc.

Cary, NC, USA). The rolling average heatmap

was illustrated using heatmap.2<gplots> function

in R version 2.9.0 (Vienna, Austria).

RESULTS

Samples

In total, 116 primary tumor blocks from 116

patients (74 relapsers and 42 non-relapsers) were

sampled for DNA extraction and molecular analy-

sis. The median DNA concentration was 28 ng/ll
(range 4–493 ng/ll) with elution volumes of 25 ll
resulting in a median total yield of 0.7 lg/tumor.

The median tumor block age was 11 years (range

5-36 years). From the 116 tumor blocks sampled,

50 produced DNA of sufficient quality for both

MLPA and BRAF/NRAS analysis, 25 produced

results for MLPA only, 21 produced results for

BRAF/NRAS only and 20 did not produce any

results. Therefore, the success rate for MLPA

was 65% (75/116) and that for BRAF/NRAS was

61% (71/116). There was no significant difference

in the distribution of block age between samples

with a MLPA result (median 10 years, range

5–36) and those that failed (median 12 years,

range 5–24), P ¼ 0.3 (Wilcoxon rank test). The

strongest predictor of assay success was DNA

quantity. Failure was much more likely to occur

in assays with <100 ng DNA input (44% fail rate

at <100 ng DNA compared to 17% fail rate at

>100 ng DNA), according to the DNA quantity

control peaks within each MLPA assay.

Gene Dosage at 9p21

Gene dosage at 9p21 was successfully meas-

ured in 75 vertical growth phase primary melano-

mas (48 relapsers and 27 non-relapsers) using

MLPA. Gene dosage ratios for 12 CDKN2A/
CDKN2B locus sites and 11 other 9p gene sites

were determined. Reduced gene dosage was

more frequent in relapsers (Fig. 2). It can be

seen that although loss of gene dosage occurred

across 9p (especially in relapsers) the most com-

mon region of loss was between CDKN2A exon

1a (coding for CDKN2A) and MTAP. The me-

dian gene dosage at eight key regions across 9p,

and their association with relapse or histological

indicators of poor prognosis are presented in Ta-

ble 1. Relapse was associated with loss at 9p21.3

overall (P ¼ 0.04) and loss in regions coding for

CDKN2A (one sided P ¼ 0.03, two sided P ¼
0.05), and (borderline) associated with loss any-

where in the CDKN2A region (from CDKN2A
CpG island probe to CDKN2A exon 3 probe)

(one-sided P ¼ 0.05, two-sided P ¼ 0.1) but not

elsewhere across 9p.

Loss anywhere in the CDKN2A region was

associated with ulceration (P ¼ 0.002). However,

ulceration of the tumor was most significantly

associated with reduced gene dosage at CDKN2B
(one sided test P ¼ 0.006, two sided P ¼ 0.01)

and regions coding for P14ARF (one sided P ¼
0.002, two sided P ¼ 0.004). There was some evi-

dence of an association between ulceration and

reduced gene dosage at CDKN2A coding for

CDKN2A, MTAP, and the interferon gene cluster

(Table 1).

Relative loss across the region was associated

with increasing tumor thickness (Fig. 3). Spear-

man correlation coefficients are given for thick-

ness and reduced gene dosage across the

CDKN2A region (Table 1). The most significant

correlation was with reduced gene dosage at
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CDKN2B (P ¼ 0.007 one-sided test) but there

was some association across 9p21.3 (P ¼ 0.02).

To summarize, at 9p increasing thickness corre-

lated with loss impacting on the coding regions of

CDKN2B, CDKN2A, but not with loss in

intronic regions of CDKN2A, MTAP or the inter-

feron gene cluster. Increased mitotic rate was

associated with reduced gene dosage across

CDKN2A and especially in regions coding for

P14ARF and CDKN2A (one sided P ¼ 0.0006

and 0.004, respectively). There was no association

between reduced gene dosage at 9p and tumor

site or melanoma subtype (Table 1).

There was no significant association between

BRAF and NRAS mutation status and reduced

gene dosage in the CDKN2A/CDKN2B regions

with the Wilcoxon Two-Sample test, but there

was a trend toward an association between the

presence of BRAF mutations and loss at regions

coding for CDKN2A (one sided P ¼ 0.06, two

sided P ¼ 0.12). The absence of BRAF mutation

was associated with reduced gene dosage at

MTAP (one sided P ¼ 0.04, two sided P ¼ 0.09)

and the absence of an NRAS mutation was (bor-

derline) associated with reduced gene dosage at

the interferon gene cluster (one sided P ¼ 0.05,

two sided P ¼ 0.10).

BRAF and NRAS Mutations

Seventy-one tumors were successfully assayed

for common mutations activating the MAPK

pathway in melanoma, i.e., BRAF exon 15 and

NRAS exon 2 mutations. Seventy-seven percent

Figure 2. Heatmap of gene dosage at chromosome region 9p21 by relapse status. Gene dosage ratios
are shown for tumors from 45 relapsed patients (above) compared with tumors from 27 patients who
had not relapsed. Blue coloration indicates reduced gene dosage, red coloration indicates increased
gene dosage.
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of relapsers had NRAS/BRAF mutation compared

with 58% of nonrelapsers (Fisher’s exact P ¼
0.17). There was no association between NRAS/
BRAF mutation and mitotic rate or presence of

ulceration (Fisher’s exact P ¼ 0.42), nor with

thickness (P ¼ 0.97). 71% of non-acral tumors

had a mutation compared with 50% of acral

tumors (P ¼ 0.25). There were a slightly higher

proportion of superficial spreading tumors than

nodular tumors with a mutation (78 and 60%,

respectively).

Expression of CDKN2A in Primary Melanomas

High specificity of staining was achieved in the

control sections, where in the absence of primary

antibody only haematoxylin staining is observed

(Fig. 4A). In the presence of primary antibody,

intense nuclear and cytoplasmic staining was

observed for CDKN2A in some samples (Fig.

4B). In the 17 melanomas tested, the staining

pattern varied from absent to strong cytoplasmic

and nuclear staining. The level of positive

expression of CDKN2A was associated with

MLPA results of gene dosage in CDKN2A coding

regions for CDKN2A in the majority of tumors

(13/17) (Table 2). In the four samples with 80%

gene dosage loss, there was a complete absence

of CDKN2A expression in the region sampled for

DNA extraction (Fig. 4C). In the seven samples

with 50% gene dosage loss of the intronic, pro-

moter or coding regions of CDKN2A, there was

Figure 3. Heatmap of gene dosage at chromosome region 9p21 by Breslow thickness. Gene dosage
ratios are shown for 18 tumors with Breslow thickness <2 mm (above), 30 tumors with Breslow thick-
ness 2–4 mm (middle) and 27 tumors of thickness >4 mm. Blue coloration indicates reduced gene dos-
age, red coloration indicates increased gene dosage.
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moderate or absent CDKN2A expression in four

samples, while the remaining three showed

strong CDKN2A expression. In the six samples

that showed normal gene dosage at CDKN2A 5/6

showed strong to moderate CDKN2A expression

(Fig. 4D) and one showed no expression of

CDKN2A.

DISCUSSION

We have examined the role of BRAF and

NRAS mutations and reduced gene dosage at 9p

in melanoma relapse. The study was carried out

using formalin-fixed paraffin-embedded (FFPE)

tumors because of the difficulties in accessing

cryopreserved primary tumors; melanomas are

generally too small to allow cryopreservation. In

the study, 65% of tumors sampled yielded

enough DNA for MLPA screening and 61%

were successfully sequenced for BRAF/NRAS
mutations.

Figure 4. Immunohistochemistry of CDKN2A in primary tumors.
(A) Bladder tumor control minus primary antibody. Some nonspecific
stromal staining is visible in the stroma. (B) Strong specific cytoplasmic
and nuclear staining in a bladder positive control in presence of pri-
mary antibody. (C) Results from representative tumors show very low

cytoplasmic staining of CDKN2A from a tumor with a large homozy-
gous deletion of CDKN2A. (D) Strong nuclear and cytoplasmic staining
of CDKN2A and unstained normal stromal cells from a tumor which
retained 2 copies of CDKN2A. Scale bar ¼ 25 lm.

TABLE 2. Summary of CDKN2A Protein Expression Results
Determined by Immunohistochemistry

Sample Relapse CDKN2A gene dosage
CDKN2A
expression

1 N � 80% loss intron/promoter 0
2 Y � 80% loss whole gene 0
3 Y � 80% loss whole gene 0
4 Y � 80% loss whole gene 0
5 Y 50% loss promoter 2
6 N 50% loss intron 0
7 N 50% loss intron/gene 1
8 N 50% loss gene 2
9 N 50% loss intron 2

10 Y 50% loss intron 0
11 Y 50% loss intron/promoter 0
12 Y Normal 2
13 N Normal 2
14 N Normal 0
15 N Normal 2
16 Y Normal 2
17 Y Normal 1

Intensity of staining was scored as absent (0), expressed (1), or highly

expressed (2). CDKN2A gene dosage determined by MLPA analysis is

shown for each tumor sample.
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The observation that the MLPA and sequenc-

ing failure rate was higher in samples with lower

DNA quantity indicates a potential for bias to-

ward successful sampling of thicker, poorer prog-

nosis tumors. However, failure rate was

comparable in both relapse and nonrelapse

groups, and over 40% low DNA input samples

gave reliable results.

We found deletion (reduced gene dosage) at

the CDKN2A locus to be common in primary mel-

anoma. This is consistent with previous studies

which have shown that deletion at CDKN2A
appears to be the major mechanism of CDKN2A

inactivation in primary melanomas (Funk et al.,

1998; Fujimoto et al., 1999; Rizos et al., 1999;

Cachia et al., 2000; Straume et al., 2002; Zhang

and Rosdahl, 2004). We did not screen for muta-

tions as previous studies have consistently shown

small sequence alterations to be uncommon

(Ruiz et al., 1998; Cachia et al., 2000). Epigenetic

silencing of CDKN2A by methylation (Gonzalgo

et al., 1997; von Eggeling et al., 1999; Straume

et al., 2002) could not be investigated in this

study due to constraints on DNA availability

from small tumors. However, protein expression

of CDKN2A by immunohistochemistry correlated

well with gene dosage ratios as determined by

MLPA in the majority of tumors investigated,

and is consistent with the view that deletion

remains the dominant method of CDKN2A silenc-

ing in primary melanoma.

Reduced gene dosage impacting on CDKN2A

was predictive of relapse. Loss impacting on

P14ARF was, however, more strongly associated

with poor prognostic factors such as increased

Breslow thickness but particularly with mitotic

rate and ulceration, than was loss impacting on

CDKN2A. This suggests that loss of P14ARF has

a key role in the progression of melanoma. This

is consistent with our recent work in metastases,

which demonstrated the loss of P14ARF by

methylation or deletion to be common in metas-

tases (Freedberg et al., 2008). This is the first

study to report on loss across the critical region of

9p in primary melanoma, although loss of

CDKN2A coding for CDKN2A has been sug-

gested by others to be associated with poorer

prognosis (Cachia et al., 2000; Grafstrom et al.,

2005) and loss of CDKN2A expression immuno-

histochemically correlates with histological inva-

sion (Talve et al., 1997; Pavey et al., 2002).

Furthermore, the study suggests that within verti-

cal growth phase melanoma, although loss

impacting on CDKN2A was most frequent, wider

deletions involving P14ARF and even CDKN2B

were associated with poorer histological prognos-

tic factors. Loss of CDKN2A is a common occur-

rence even in early melanoma (Tran et al., 2002).

It is perhaps not surprising then, that further loss

of the second melanoma tumor suppressor gene

at 9p (P14ARF) impacts on outcome. There is in

vitro evidence for a tumor suppressive role for

CDKN2B in melanoma (Ha et al., 2008; Peters,

2008; Schlegel et al., 2009). That reduced gene

dosage impacting on CDKN2B also correlates

with poor histological characteristics is supportive

of the view that it too may play a role in tumor

suppression in melanocytes.

One previous study has suggested that BRAF
and NRAS mutations are less common in primary

tumors with allelic loss on 9p (Kumar et al.,

2003), and other studies using microsatellite

markers located in the CDKN2A locus showed

both BRAF/NRAS mutation and LOH at

CDKN2A (Rodolfo et al., 2004). We showed no

significant association between the presence of ei-

ther BRAF or NRAS mutations and reduced gene

dosage at 9p. Mutations in the BRAF/NRAS
genes were not significantly associated with ulcer-

ation or Breslow thickness in these tumors. These

observations are consistent with the view that

these mutations are an early event in melanoma,

required for initiation but not involved in pro-

gression (Platz et al., 2008), although there is one

study which suggested that BRAF and NRAS
mutations are more frequent in cells of the verti-

cal growth phase of a melanoma than in the radial

growth phase suggesting a selection for cells con-

taining the mutations (Greene et al., 2009). Cer-

tainly, BRAF or NRAS mutations present in the

primary tumor were found in the majority of asso-

ciated metastases in another study (Edlundh-

Rose et al., 2006). It is likely that secondary

events are necessary for metastatic progression in

addition to mutations in either BRAF or NRAS,
but this could occur through alteration of other

tumor suppressor genes or oncogenes not investi-

gated here, such as CDK4, PTEN, and TP53, as
well as CDKN2A. As only melanomas with wild-

type BRAF have amplified CDK4 and cyclin D1

genes, the CDKN2A-CDK4/6-cyclin D pathway

is viewed as linearly downstream of BRAF (Zhao

et al., 2008). Inhibition of mutated BRAF using

new specific BRAF inhibitors is reported in 2009

(ASCO) to be effective so that whether BRAF is

a prognostic marker or not, BRAF driven MAPK

pathway activation clearly drives tumor growth in

melanoma tumors.
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ANRIL, an antisense noncoding RNA, has

recently been identified at 9p21.3 (Pasmant et al.,

2007). The first exon of ANRIL is located in the

CDKN2A P14ARF promoter, and the gene over-

laps CDKN2B. There is evidence that ANRIL
may influence transcription of the CDKN2A and

CDKN2B genes (Jarinova et al., 2009; Liu et al.,

2009). The frequency of deletion of ANRIL in

primary melanoma tumors could not be investi-

gated in this study as the MLPA assay used does

not include probes specific for the ANRIL gene.

Deletion of MTAP is of interest as evidence for

reduced expression in poor prognostic tumors has

been reported before (Behrmann et al., 2003) and

there is some evidence that loss may moderate

response to interferon therapy (Wild et al., 2007).

In this study, however, we showed no evidence

for a role for MTAP in melanoma prognosis. We

did see an association between reduced gene dos-

age at MTAP and the absence of a BRAF muta-

tion, although the significance of this observation

remains to be established.

In conclusion, we have identified a high fre-

quency of deletion in the CDKN2A gene in pri-

mary melanoma tumors, which supports previous

evidence that gene deletion is the major mode of

inactivation of CDKN2A and bypass of cell cycle

control required for proliferation and progression

to metastatic disease in malignant melanoma.

Reduced gene dosage at 9p (but not BRAF or

NRAS mutation) was associated with histological

features predictive of a poorer prognosis. The

study also suggests that loss of P14ARF has an

additional role in melanoma relapse and possibly

also a role for CDKN2B coded by CDKN2B.
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