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Abstract

Neprilysin (NEP) is a type II membrane metalloproteinase that cleaves physiologically active peptides at the cell surface thus
regulating the local concentration of these peptides available for receptor binding and signal transduction. In addition, the
cytoplasmic N-terminal domain of NEP interacts with the phosphatase and tensin homologue deleted on chromosome 10 (PTEN)
thereby regulating intracellular signaling via Akt. Thus, NEP serves dual functions in extracellular and intracellular signal
transduction. Here, we show that NEP undergoes phosphorylation at serine residue 6 within the N-terminal cytoplasmic domain. In
vitro and cell culture experiments demonstrate that Ser 6 is efficiently phosphorylated by protein kinase CK2. The phosphorylation
of the cytoplasmic domain of NEP inhibits its interaction with PTEN. Interestingly, expression of a pseudophosphorylated NEP
variant (Ser6Asp) abrogates the inhibitory effect of NEP on insulin/insulin-like growth factor-1 (IGF-1) stimulated activation of Akt.
Thus, our data demonstrate a regulatory role of CK2 in the interaction of NEP with PTEN and insulin/IGF-1 signaling.
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Introduction

Neutral endopeptidase 24.11 (NEP, neprilysin, CD10) is a zinc

metallopeptidase that has broad substrate specificity and cleaves

several important peptides, including bombesin, ET-1, and the

Alzheimer-associated amyloid b-peptide, thereby regulating their

turnover and physiological and pathophysiological activities

[1,2,3,4]. NEP is a type II integral membrane protein with a

small N-terminal cytoplasmic tail, a single transmembrane domain

and a larger extracellular C-terminal domain that contains the

catalytic center [1]. NEP is post-translationally modified by N-

glycosylation of the luminal/extracellular domain that regulates its

subcellular transport and enzymatic activity [5,6].

Accumulating evidence indicates that NEP is also involved in

tumor formation. The expression of NEP is downregulated in

androgen-independent prostate cancer cells [7,8,9,10]. In addition,

overexpression of NEP in tumor cells could inhibit proliferation [9].

Beside the functions of NEP in the metabolism of extracellular

peptides, recent studies also indicate a role of its cytoplasmic

domain in intracellular signaling [10]. The cytoplasmic N-terminal

domain of NEP interacts with the scaffolding proteins Ezrin/

Radixin/Moesin (ERM) [7,11] that link particular plasma

membrane proteins to the actin cytoskeleton at specialized

domains of plasma membranes such as microvilli and cell–cell

or cell–substrate adhesion sites [12,13].

In addition, the cytoplasmic domain of NEP could also interact

with PTEN (Phosphatase and tension homologue deleted on

chromosome 10), a major tumor suppressor protein [14,15]. PTEN

has phosphatase activity and dephosphorylates phosphatidylinositol

(3,4,5)-trisphosphate (PIP3) to phosphatidylinositol (4,5)-bisphosphate

(PIP2) in cellular membranes. Thus, PTEN antagonizes the activity of

phosphatidylinositide-3-kinase (PI3K) that is activated by several

receptor tyrosine kinases (RTKs) upon binding of ligands, like insulin,

insulin-like growth factor-1 and epidermal growth factor [16,17,18].

PIP3 dependent signaling involves recruitment of proteins that

contain pleckstrin homology (PH) and PH-like domains to the plasma

membrane [19]. One important member of PIP3 binding proteins is

the protein kinase (PK) B/Akt that phosphorylates several protein

substrates and thereby regulates a variety of cellular functions,

including cell survival, differentiation and proliferation [20,21]. Akt

could exert anti-apoptotic activity by phosphorylation and inhibition

of pro-apoptotic proteins [22,23]. Accordingly, enhanced expression

of PTEN can induce apoptosis by inhibition of the Akt pathway [24],

whereas decreased expression or inactivation of PTEN in tumors

results in increased activity of Akt [25,26].

The catalytic center of PTEN is localized within its N-terminal

domain, whereas the C-terminal C2 domain mediates binding to

phospholipids and recruitment to cellular membranes [27,28]. The

C-terminal tail of PTEN can be phosphorylated on serine and

threonine residues by protein kinase CK2 which negatively

regulates its phosphatase activity [29,30]. The activity and/or

expression of CK2 is increased in several cancers [31,32,33,34], and

transgenic overexpression of CK2 results in formation of tumors

and lymphomas [33,35]. Interestingly, CK2 also phosphorylates
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NEP in vitro [36]. However, the site and a functional role of

phosphorylation in the regulation of NEP remained unclear.

Here, we sought to characterize the phosphorylation of NEP

and its implications in insulin-dependent signal transduction. We

demonstrate that NEP is efficiently phosphorylated by CK2 on

serine residue 6 within its cytoplasmic N-terminal domain in vitro

and in cultured cells. Phosphorylation strongly inhibits the

interaction of NEP with PTEN and impairs the inactivation of

Akt upon stimulation of RTKs with insulin or insulin-like growth

factor-1. These data provide novel insight into molecular

mechanisms that regulate the NEP dependent activity of PTEN

and support important roles of CK2 and NEP in insulin/IGF-1

dependent signaling via Akt.

Materials and Methods

Antibodies, peptides, and chemicals
The following primary antibodies were used: mouse monoclonal

NEP (F-4; western immunoblotting [WB] 1:1,000), mouse mono-

clonal CK2a (1AD9; immunofluorescence [IF] 1:200), rabbit

polyclonal calnexin (H-70; WB 1:1,000; IF 1:300) (all Santa Cruz

Biotechnology, Santa Cruz, CA, USA), mouse monoclonal c-myc

(9E10; WB 1:1,000; IF 1:500; immunoprecipitation [IP] 1:200;

Abcam, Cambridge, UK), rabbit polyclonal phospho-Akt (serine

473; #9271; WB 1:1,000; Cell Signaling Technology, Danvers,

MA, USA), rabbit monoclonal Akt (AW24; WB 1:3,000; Millipore,

Billerica, MA, USA), mouse monoclonal GFP (clones 7.1 and 13.1;

WB 1:3,000; IF 1:1,000; Roche, Mannheim, Germany), rabbit

polyclonal TGN46 (T7576; IF 1:300; Sigma-Aldrich). HRP coupled

streptavidin protein (ab7403; WB 1:1,000) was obtained form

Abcam, Cambridge, UK. Secondary HRP-conjugated antibodies

were purchased form Sigma-Aldrich and used in a 1:50,000

dilution. Secondary Alexa 594- and Alexa 488-conjugated antibod-

ies were purchased form Invitrogen and used in a 1:500 dilution.

Peptides representing the N-terminal domain (aa 2–23) of NEP and

conjugated with biotin on a C-terminal lysine were obtained from

Peptide Specialty Labs (PSL, Heidelberg, Germany). Radiochem-

icals were purchased from Hartmann Analytic. 2-Dimethylamino-

4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), 49,6-Diamidino-2-

phenylindole dihydrochloride (DAPI), insulin-like growth factor-1

(IGF-1) and insulin were from Sigma-Aldrich.

cDNAs and fusion proteins
The cDNAs encoding human NEP and Ezrin were kindly provided

by Drs. Takaomi Saido and Monique Arpin. The cDNA of human

PTEN was obtained from the German Resource Center for Genome

research (RZPD, Berlin, Germany). A C-terminal myc/his-tagged

variant of NEP was generated by PCR using the oligonucleotides 59-

tttggtaccatgggcaagtcagaaagtc-39 and 59-cccgcggccgcccaaacccggcac-

39. The resulting fragment was subcloned into the KpnI/NotI

restriction sites of pcDNA4 Myc/His containing a Zeocin resistance

gene (Invitrogen, Karlsruhe, Germany). The phosphorylation site

mutants of NEP were generated by PCR using the following forward

oligonucleotides: S6A: 59-tttggtaccatgggcaagtcagaagctcagatg-39;

T15A: 59-tttggtaccatgggcaagtcagaaagtcagatggatataactgatatcaacgctc-

caaag-39. The oligonucleotide 59-cccgcggccgcccaaacccggcac-39 was

used as reward primer for all constructs. The resulting PCR fragments

were subcloned into the KpnI/NotI restriction sites of the expression

vector pcDNA4 Myc/His Zeo.

NEP variants tagged with green fluorescent protein (GFP) were

generated by PCR using the following primers: 59-tttggtaccatggg-

caagtcagaaagtc-39, 59-cccggatccaatgcatagagtgcgatc-39. The result-

ing fragments were subcloned into the KpnI/BamHI restriction

sites of pEGFP-N1 (Clontech, Mountain View, CA, USA). The

serine 6 to aspartate mutant was generated by PCR using

oligonucleotides 59-tttggtaccatgggcaagtcagaagatcagatg-39 and 59-

cccggatccaatgcatagagtgcgatc-39.

Fusion proteins of the NEP N-terminus (aa 1-28) and glutathione S-

transferase (GST) were generated by PCR using the primers 59-

ccgaattcatgggcaagtcag-39 and 59-cccgtcgacctactccagtggagtcc-39. The

resulting fragments were cloned into the EcoRI/SalI restriction sites of

pGEX-5X-1 (GE Healthcare, Little Chalfont, UK). A fusion protein

of the maltose binding protein (MBP) and the N-terminus of Ezrin

(amino acids 1–310; MBP-Ezrin-NT) was generated using primers 59-

cccgaattcatgccgaaaccaatcaat-39 and 59-tttgtcgacttaccgggcctgggccttcat-

39. The resulting fragment was cloned into the EcoRI/SalI restriction

sites of pMAL-c2 (Promega, Mannheim, Germany).

The fusion protein of GST and the C-terminal domain (aa 367–

403) of PTEN (GST PTEN-CT) was generated by PCR using

primers 59-cccgaattcgatgttagtgacaatg-39 and 59-cccctcgagatcagact-

tttgtaatttgtg-39. The resulting fragment was cloned into the EcoRI/

XhoI restriction sites of pGEX-5X-1 (GE Healthcare, Little

Chalfont, UK). All fusion proteins were expressed in Escherichia coli

DH5a. GST and MBP fusion proteins were precipitated by GSH-

resin and Amylose-resin (GE Healthcare, Little Chalfont, UK)

respectively according to the supplier’s instructions. All constructs

were verified by sequencing of both strands.

Cell culture, transfection, and treatment
Human embryonic kidney (HEK) 293 and human HeLa cells

(both ATCC, Manassas, VA, USA) were cultured in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

calf serum at 37uC in a 5% CO2 atmosphere. DMAT was

dissolved in DMSO at concentrations of 10 mM and applied to

cells at a final concentration of 20 mM. Control cells were

incubated with the carrier alone. Transfections of the cells with

cDNA constructs were carried out using Lipofectamine 2000

(Invitrogen, Karlsruhe, Germany) according to supplier’s instruc-

tions. Cells were analyzed 36–48 hrs after transfection. For the

activation of Akt, HEK293 cells were starved in DMEM without

serum for 16 hrs and then treated with 100 nM insulin or 1 ng/ml

(0.13 nM) IGF-1 (Sigma-Aldrich, Munich, Germany) for 20 min.

Cell lysis, immunoprecipitation and Western
immunoblotting

Cells were washed twice with PBS, collected by scraping from the

culture dish and lysed for 30 min on ice (lysis buffer: 50 mM Tris/

HCl, pH 7.6, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 1%

Igepal, Complete protease inhibitor mixture, PhosSTOP phospha-

tase inhibitor (Roche, Mannheim, Germany)). The lysate was then

cleared by centrifugation (16,0006 g, 4uC, 30 min). Proteins were

immunoprecipitated from cleared lysates using primary antibodies

(5 mg/ml) and protein G-conjugated sepharose (GE Healthcare,

Little Chalfont, UK) for 3 hrs at 4uC. Precipitates were washed three

times with washing buffer (50 mM Tris/HCl, pH 7.4, 500 mM

NaCl, 2 mM EDTA, 0.2% Igepal) for 10 min at 4uC. Precipitates

were collected by centrifugation (4,0006g, 4uC, 5 min) and eluted by

incubation with SDS sample buffer (25 mM Tris/HCl, pH 6,8, 10%

Glycerin, 1,5% SDS, 20 mM DTT) for 10 min at 95uC.

Proteins were then separated by SDS-PAGE, electro-transferred to

nitrocellulose membranes (Whatman, Dassel, Germany), and detected

with appropriate antibodies by enhanced chemiluminescence (ECL)-

imaging (ChemiDoc XRS, Bio-Rad, Munich, Germany).

In vivo and in vitro phosphorylation of NEP
Phosphorylation of NEP in cultured cells was carried out as

described earlier [37]. Briefly, cells were grown on 28 cm2 dishes
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to subconfluency and then incubated for 1 h in phosphate-free

media (Sigma-Aldrich, Munich, Germany). The media was

aspirated, and phosphate-free media was added, together with

0.25 mCi of [32P] orthophosphate (Hartmann Analytic, Braunsch-

weig, Germany) for 2 hrs at 37uC. The conditioned media were

aspirated, cells washed three times with PBS and immediately

lysed on ice with lysis buffer. Cell lysates were centrifuged for

10 min at 16,0006 g, and supernatants were immunoprecipitated

with anti-myc antibodies. Radiolabeled proteins were separated by

SDS-PAGE as described above and detected by autoradiography

and western immunoblotting. In vitro phosphorylation assays with

recombinant CK2 (alpha and beta subunit; New England Biolabs)

were carried out according to the manufacturer’s instructions.

Phosphorylation reactions were started by addition of 10 mM

[c-32P] ATP and allowed to proceed for 10 min at 32uC.

Reactions were stopped by the addition of 5 mM EDTA. GST-

fusion proteins were precipitated by GSH-sepharose (GE Health-

care, Little Chalfont, UK) and separated by SDS-PAGE.

Immunocytochemistry and fluorescence microscopy
Cells were grown on poly-L-lysine-coated glass coverslips to 50–80%

confluency and fixed with 4% paraformaldehyde/PBS at room

temperature and processed for immunofluorescence as described

previously [38]. Bound primary antibodies were detected by Alexa

488- or Alexa 594-conjugated secondary antibodies (Invitrogen,

Karlsruhe, Germany). GFP-tagged proteins were detected directly by

fluorescence microscopy. The samples were analyzed with an Axiovert

200 Fluorescence Microscope (Carl Zeiss, Jena, Germany).

Surface plasmon resonance measurements
Surface plasmon resonance (SPR) measurements were carried

out on a Biacore3000 (GE Healthcare, Little Chalfont, UK) as

described previously [39,40]. Synthetic peptides with a C-terminal

biotin-label that represent amino acids 2–23 of the human NEP

cytosolic domain with serine 6 in phosphorylated or non-

phosphorylated state, were coupled to streptavidine (SA) chip

(GE Healthcare, Little Chalfont, UK) until ,1000 response units

(RU) were reached. The chip was washed with HEPES buffer

(10 mM, pH 7.4) containing 150 mM NaCl and 0.005% Surfac-

tant P20 (HBS-P buffer; GE Healthcare, Little Chalfont, UK) at

25uC and a constant flow rate of 30 ml/min. To avoid bulk effects,

a reference surface (no coupled peptide) was continuously

subtracted from the signal of the active surface. To calculate the

association and dissociation rates of the respective sensograms and

the resulting equilibrium dissociation constant (KD) the BIAeva-

luation 3.1 software was used [41,42].

Pull-down assays with immobilized peptides
The above described biotin-labeled NEP NT peptides were coupled

to Streptavidin (SA)-agarose beads (GE Healthcare, Little Chalfont,

UK) and incubated with GST PTEN-CT (2 mM), MBP Ezrin-NT

(100 nM) or CK2 (30 nM; alpha and beta subunit; New England

Biolabs, Frankfurt, Germany) in binding buffer (10 mM Tris/HCl,

pH 7.4, 150 mM NaCl, 0.4% Igepal) for 2 hrs. After washing with the

same buffer, bound proteins were eluted with SDS sample buffer,

separated by SDS-PAGE, and detected by Western immunoblotting

with polyclonal antibodies against MBP, (MBP Ezrin-NT), PTEN

(GST PTEN-CT) or monoclonal antibody against CK2a.

Biotin-labeling of cell surface proteins
Cells were washed three times with ice-cold PBS and incubated

on ice with PBS containing 0.5 mg/ml EZ-Link sulfo-N-hydro-

xysuccinimide-biotin (Thermo, Bonn, Germany) for 30 min. Cells

were then washed three times with ice-cold PBS supplemented

with 20 mM glycine and finally lysed on ice with lysis buffer.

Biotinylated proteins were precipitated from cleared lysates with

SA-agarose beads (GE Healthcare, Little Chalfont, UK) and

separated by SDS-PAGE. The respective proteins were then

detected by Western immunoblotting.

Data Analysis and Statistics
For enhanced chemiluminescence detection, signals were

measured and analyzed using an ECL imager (ChemiDoc XRS;

Bio-Rad, Munich, Germany) and the Quantity One software

package (Bio-Rad, Munich, Germany). Statistical analysis was

carried out using Student’s t test. Significance value: *, p,0.05.

Results

CK2 phosphorylates NEP within its cytoplasmic domain
at serine 6

The N-terminal cytoplasmic domain of NEP contains several

potential phosphorylation sites (Fig. 1A). To assess whether NEP

Figure 1. NEP is phosphorylated by CK2 at serine 6. A, Alignment
of the N-terminal amino acid sequences of NEP from several
mammalian species. Potential phosphorylation sites predicted by the
NetPhos 2.0 server (with score .0.9) are indicated by asterisks. B, C, D
HEK293 cells transiently expressing myc-tagged NEP wt or respective
mutants were labeled with [32P] orthophosphate in presence or
absence of okadaic acid (OA) (B) or DMAT (D) as indicated. After
immunoprecipitation, the radiolabeled proteins were detected by
autoradiography (upper panels). Subsequently, NEP was detected by
immunoblotting with antibody 9E10 on the same membrane (lower
panel). E, GST-fusion proteins representing amino acid 1–28 of the NEP
N-terminus (GST-NEP) were incubated with CK2 in the presence of
[c-32P]ATP. The radiolabeled proteins were detected by autoradiogra-
phy (upper panels). Subsequently, GST-fusion proteins were detected
by immunoblotting with antibody against GST on the same membrane
(lower panel). m = mature; im = immature; ctr. = untransfected cells.
doi:10.1371/journal.pone.0013134.g001
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undergoes phosphorylation, HEK293 cells transiently expressing

myc-tagged variants of full-length NEP were labeled with 32P-

orthophosphate. Phosphate incorporation into non-glycosylated

immature (,90 kDa) and N-glycosylated mature (,110 kDa)

forms of NEP was detected [5]. Addition of okadaic acid (OA)

during labeling markedly increased the phosphate incorporation

into NEP, indicating that phosphoprotein phosphatases (PP) 1

and/or 2 are involved in its dephosphorylation (Fig. 1B). In order

to identify the phosphorylation sites of NEP we first analyzed its

cytoplasmic domain by the NetPhos 2.0 server (Fig. 1A). cDNA

constructs with mutations of the potential phosphorylation sites

(Fig. 1A) within the cytoplasmic domain of NEP were generated

and expressed in HEK293 cells. 32P-labeling revealed that

substitution of serine residues 6 to alanine (S6A) strongly decreased

phosphate incorporation. As compared to NEP wt, the phosphor-

ylation of the Thr15Ala mutant appeared to be increased in

independent experiments and might be due to effects of the

mutation on substrate recognition (Fig. 1C). Together, these data

indicate that serine 6 within the N-terminus is the main

phosphorylation site of NEP.

Ser6 is localized within a consensus sequence for protein kinase

CK2 (S-X-X-E/D) [43]. To test whether NEP is phosphorylated

by CK2 in vivo, cells were labeled with 32P-orthophosphate in the

presence or absence of the selective CK2 inhibitor DMAT. Cell

treatment with DMAT markedly decreased the phosphorylation of

NEP in cultured cells (Fig. 1D). Next we tested the phosphory-

lation of NEP by CK2 in vitro. CK2 efficiently phosphorylated the

GST-NEP fusion protein, but not GST alone. Importantly, CK2-

mediated phosphorylation of GST-NEP was strongly decreased in

a Ser6Ala variant (Fig. 1E), demonstrating that CK2 predomi-

nantly phosphorylates serine 6 within the cytoplasmic domain of

NEP.

Because cell clones that stably express full-length catalytically

active NEP could not be established (not shown), we generated

NEP variants with substitutions of the extracellular catalytic

Figure 2. Localization of full-length NEP and GFP-tagged
chimeric proteins at the cell surface. A, Schematic representation
of full-length (fl) NEP and the chimeric NEP N-terminal GFP variant (NEP-
NT GFP). B, Non-permeabilized HeLa cells expressing NEP-NT GFP wt or
NEP-NT GFP Ser6Asp (S6D) were stained with mouse monoclonal
antibody against GFP. The primary antibody was detected by Alexa 594-
conjugated anti mouse secondary antibody. Images are representative
for the typical distribution of NEP-GFP variants in several independent
experiments. Note that NEP-NT GFP wt and the S6D Mutant are
transported to the plasma membrane. C, HEK293 cells transiently
expressing full-length NEP wt or NEP S6D and HEK293 cells stably
expressing NEP-NT GFP wt or NEP-NT GFP S6D were cell surface biotin
labeled. Biotinylated proteins were subsequently isolated with SA-
agarose. All NEP variants are transported to the cell surface. Note the
selective biotin labeling of the mature forms of full-length NEP.
m = mature; im = immature; scale bar = 20 mm; ctr. = untransfected cells.
doi:10.1371/journal.pone.0013134.g002

Figure 3. CK2 directly interacts with the N-terminus of NEP in
vitro. A, Biotin-labeled peptides that represent the N-terminal domain of
non-phosphorylated (NEP-NT) or phosphorylated (pNEP-NT) NEP were
coupled to SA-agarose beads and incubated with purified recombinant
CK2. Precipitated proteins were detected by western immunoblotting. B,
HeLa cells transiently expressing NEP-NT GFP were stained with mouse
monoclonal antibody against CK2 alpha. The primary antibody was
detected by Alexa 594-conjugated anti mouse secondary antibody. Scale
bar = 20 mm; ctr. (A) = no peptide; ctr. (B) = untransfected cells.
doi:10.1371/journal.pone.0013134.g003

Neprilysin Phosphorylation

PLoS ONE | www.plosone.org 4 October 2010 | Volume 5 | Issue 10 | e13134



domain by GFP (NEP-NT GFP; Fig. 2A). These constructs

allowed the selection of cell clones that stably express NEP

variants. In addition, the substitution of the extracellular domain

of NEP by GFP allows to specifically assess functions of NEP that

are independent of its proteolytic activity. To assess potential

effects of the substitution of the ectodomain by GFP on the

subcellular localization of NEP, we compared the distribution of

NEP-NT GFP and full-length NEP by fluorescence microscopy.

Both variants showed very similar distribution and localized to

the endoplasmic reticulum and Golgi compartments (Fig. S1).

These data demonstrate that substitution of the NEP ectodo-

main with GFP did not affect its subcellular trafficking and

localization.

In order to mimic phosphorylated NEP we also generated a

(pseudophosphorylated) Ser6Asp variant of NEP. As indicated in

Fig. 2B, GFP signals were observed in juxtanuclear structures

indicative for Golgi compartments for both NEP-NT GFP wild

type (wt) and NEP-NT GFP Ser6Asp. Both variants were also

detected at the plasma membrane indicating transport to the cell

surface (Fig. 2B). The localization of NEP-NT GFP variants as

well as the mature form of the full length NEP variants at the

plasma membrane was also evident upon specific labeling of cell

surface proteins with biotin (Fig. 2C). Thus, these NEP-NT GFP

constructs proved suitable to study the role of the NEP N-terminus

and its phosphorylation in cellular models.

We next analyzed the interaction of CK2 and NEP by pull-

down experiments. As demonstrated in Fig. 3A, recombinant

CK2 efficiently co-precipitated with synthetic peptides that

represent the cytosolic N-terminal domain of NEP (NEP-NT).

Notably, this interaction was strongly decreased with a synthetic

peptide containing Ser6 in a phosphorylated state (pNEP-NT;

Fig. 3A). These data suggested that binding of CK2 decreased

after phosphorylation of NEP. The subcellular localization of

NEP and CK2 was then investigated by fluorescence microscopy.

Consistent with previous data [44], CK2 showed broad

distribution in the cytoplasm and also localization in the nucleus

(Fig. 3A). NEP-NT GFP was mainly localized in juxtanuclear

compartments and at the cell surface. However, there was no

significant alteration in the localization of CK2 upon expression

of NEP-NT GFP. These combined data indicate that CK2

transiently interacts with the N-terminus of NEP to mediate its

phosphorylation.

Figure 4. Phosphorylation of NEP selectively inhibits the interaction with PTEN. A, Biotin-labeled peptides that represent the N-terminal
domain of non-phosphorylated (NEP-NT) or phosphorylated (pNEP-NT) NEP were coupled to SA-agarose beads and incubated with MBP Ezrin-NT (A)
or GST PTEN-CT (D). SA-agarose precipitated proteins were detected by western immunoblotting. B, C, Sensograms of the interactions of MBP Ezrin-
NT (concentrations ranging from 0.05 mM – 0.8 mM) with non-phosphorylated (NEP-NT; B) or phosphorylated (pNEP-NT; C) cytoplasmic domains of
NEP. E, F, Sensograms of the interactions of GST PTEN-CT (concentrations ranging from 1.6 mM–12.8 mM) with non-phosphorylated (NEP-NT; E) or
phosphorylated (pNEP-NT; F) cytoplasmic domains of NEP. Note that phosphorylation of NEP strongly inhibits the interaction with PTEN, while that
with Ezrin is not affected. Arrows indicate start and end of injection, respectively; RU = response units; ctr. = no peptide.
doi:10.1371/journal.pone.0013134.g004
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Phosphorylation of NEP selectively regulates the
interaction with PTEN

The cytosolic domain of NEP interacts with the scaffolding

proteins Ezrin/Radixin/Moesin (ERM) [7,11] as well as the

tumor suppressor PTEN [10]. To assess whether NEP phos-

phorylation affects these interactions, we first performed pull

down assays with peptides representing the N-terminus of NEP in

a non-phosphorylated and phosphorylated.state. Ezrin co-

precipitated with both the phosphorylated and non-phosphory-

lated variants of NEP-NT (Fig. 4A). Surface plasmon resonance

(SPR) spectroscopy revealed that Ezrin binds with very high

affinity to the non-phosphorylated NEP-NT (KD,5.8 nM).

However, no significant difference in the binding of Ezrin to

phosphorylated NEP-NT was observed (KD,5.9 nM; Fig. 4B,

C), indicating that the binding of Ezrin is independent of the

phosphorylation state of NEP at serine 6.

Consistent with previous data [10], the NEP-NT also bound to

the PTEN C-terminus in pull-down assays. Interestingly, this

interaction was strongly decreased with the NEP-NT phosphor-

ylated at Ser6 (Fig. 4D). SPR measurements fully supported

these findings. While PTEN efficiently bound the non-phos-

phorylated NEP-NT (KD,0,71 mM), the binding to the phos-

phorylated NEP-NT was strongly decreased (KD could not be

calculated; Fig. 4E, F). Together, these data demonstrate that the

phosphorylation of NEP negatively regulates its interaction with

PTEN.

To further investigate the effect of phosphorylation on the

interaction of NEP and PTEN in cultured cells, we next

analyzed the co-localization of endogenous PTEN with NEP-

NT GFP wt and pseudophosphorylated NEP-NT GFP Ser6Asp

variants. In non-transfected cells, PTEN revealed a broad

distribution in the cytosol and the nucleus (Fig. 5, upper panels).

In cells expressing NEP-NT GFP wt, PTEN was found to co-

localize with NEP in juxtanuclear compartments. More

importantly, there was also significant co-localization of NEP-

NT GFP wt and PTEN at the plasma membrane (Fig. 5, middle

panels and enlarged area). In contrast, very little if any co-

localization of PTEN with the NEP-NT GFP Ser6Asp variant

was observed at the plasma membrane (Fig. 5, lower panels and

enlarged area). These data are consistent with our biochemical

experiments and demonstrate that phosphorylation of NEP

decreases the interaction with PTEN and its localization at the

plasma membrane.

Phosphorylation of NEP uncouples PTEN dependent
inhibition of Akt

Recruitment of PTEN to the plasma membrane leads to

increased dephosphorylation of PIP3 and attenuates the activation

of Akt. To investigate whether the phosphorylation-dependent

interaction of NEP and PTEN could affect the activation of Akt we

used HEK293 cells stably expressing NEP-NT GFP wt and

Ser6Asp variants (see also Fig. 2A).

Cells were starved over night in media without serum and

then treated with insulin to activate PI3K via insulin receptors.

Incubation with insulin led to a time-dependent increase in the

phosphorylation of Akt indicating rapid activation of PI3K.

After 20 min, the phosphorylation of Akt reached a maximum

in untrasfected cells (data not shown). Expression of NEP-NT

GFP wt significantly attenuated the phosphorylation of Akt by

23%, indicating recruitment of PTEN to the cytoplasmic

domain of NEP and increased dephosphorylation of PIP3

(Fig. 6A, B). Interestingly, the pseudophosphorylated NEP-NT

GFP Ser6Asp variant had no inhibitory effect on insulin-

dependent activation of Akt (Fig. 6A, B). Very similar data were

also obtained when IGF-1 was used to stimulate the phosphor-

ylation of Akt (Fig. 6C, D).

Discussion

Our data demonstrate that CK2 phosphorylates NEP and

thereby regulates the recruitment and activity of PTEN at the

plasma membrane. Previous data also indicated that NEP can be

phosphorylated by CK2 in vitro [36], but the phosphorylation site

and functional relevance was unknown. We identified Ser6 as a

major phosphorylation site within the cytoplasmic domain of NEP

in vitro and in cultured cells.

Ser6 and the surrounding amino acid sequence are highly

conserved in mammalian variants of NEP and constitute a

canonical recognition motif for CK2 (see Fig. 1A). In addition,

Figure 5. Decreased interaction of pseudophsphorylated NEP
with PTEN at the cell surface. HeLa cells transiently expressing NEP-
NT GFP wt or NEP-NT GFP S6D were stained with rabbit polyclonal
antibody against PTEN and Alexa 594-conjugated anti rabbit secondary
antibody. Note the selective co-localization of NEP-NT GFP wt and PTEN
at the cell surface. Images are representative for the typical distribution
of NEP-NT GFP variants and PTEN in several independent experiments.
The boxed areas are enlarged in the lower panels. Scale bar = 20 mm;
ctr. = untransfected cells.
doi:10.1371/journal.pone.0013134.g005
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specific inhibition of CK2 by DMAT inhibits NEP phosphoryla-

tion (Fig. 1D).

CK2 is ubiquitously expressed and, in contrast to most other

protein kinases, a constitutively active enzyme. Its regulation is

not well understood and appears to be independent of known

second messengers [45]. Consistent with the large number of

protein substrates, CK2 serves pleiotropic functions in cellular

signaling and metabolism [46,47]. Accumulating evidence

suggests that CK2 promotes cell proliferation and growth [48].

While the underlying mechanisms are not entirely clear, the

phosphorylation of important signaling molecules, including

p53, IkB, and kinases of the MAP/ERK family might be

involved in the CK2-dependent regulation of the cell cycle

[49,50,51,52]. In addition, CK2 has also been implicated in

insulin signaling. Levels of cytosolic CK2 were increased upon

insulin injection [53], and found to be reduced in insulin

resistant rats [54].

Our data demonstrate that the CK2-dependent phosphory-

lation of NEP could affect insulin/IGF-1 dependent intracellular

signaling. Importantly, the phosphorylation of the cytosolic

domain of NEP strongly decreased the interaction with the

tumor suppressor PTEN. As shown previously, PTEN binds to a

stretch of basic amino acids (aa 19–21) close to the transmem-

brane of NEP by electrostatic interaction [10]. While the

identified phosphorylation site is localized outside of the binding

domain of NEP for PTEN, CK2 dependent phosphorylation

might induce a structural change of the NEP N-terminus. This

notion is supported by the finding that synthetic peptides

representing the N-terminal domain in a phosphorylated and

non-phosphorylated state had distinct migration behaviour in

SDS gels (Fig. 3A). In addition, the substitution of Ser6 by an

aspartate residue also changed the migration of GFP-tagged

NEP variants (Fig. 2C, 6A, 6C). Interestingly, amino acids 12–15

that could form a hairpin structure in the NEP N-terminus are

localized between the identified phosphorylation site and the

binding domain for PTEN [11]. Thus, phosphorylation of Ser6

might lead to the electrostatic interaction with a stretch of basic

amino acids (aa 19–21) and thereby inhibit the interaction with

PTEN. In contrast, the interaction of Ezrin with NEP was

independent of its phosphorylation state. While Ezrin was

initially considered to bind to the same region as PTEN, recent

data indicate that Ezrin interacts with amino acids Met8, Ile10,

Thr11, Ile13 and Asn14 [7,11]. Thus, phosphorylation of Ser6

might not affect the conformation of this domain. It remains to

be determined whether PTEN and Ezrin can bind simulta-

neously to NEP.

The physiological and pathophysiological relevance of PTEN

is documented by its association with tumorgenesis. Beside p53,

PTEN is the most important tumor suppressor and found to be

inactivated in many human cancers [15,17]. Because PTEN

dephosphorylates PIP3, decreased activity results in elevated

PIP3 levels thereby overactivating Akt signaling. An involve-

ment of NEP in Akt signaling has emerged only recently [10].

The cytoplasmic domain of NEP could directly associate with

PTEN at the plasma membrane and regulate its local activity.

Consistent with previous results, this effect is independent of the

catalytic activity of NEP, suggesting that the extracellular and

intracellular domains of NEP could serve independent functions

[10]. The NEP N-terminus also affects tumor formation by

competing with the hyaluronan receptor CD44 for Ezrin/

Radixin/Moesin (ERM) binding thereby reducing the invasive

capacity of cancer cells [7].

In addition to NEP, PTEN is also phosphorylated by CK2.

This phosphorylation leads to an increased stability of PTEN,

but decreases its catalytic activity [29,55]. Recent data

demonstrated that rather non-phosphorylated PTEN interacts

Figure 6. Selective inhibition of Akt activation by non-phosphorylated NEP upon stimulation with insulin or IGF-1. A–D, HEK293
cells stably expressing NEP-NT GFP wt or NEP-NT GFP S6D cells were incubated for 16 hrs in serum free medium and then treated with 100 nM
insulin (A, B) or 1 ng/ml IGF-1 (C, D) for 20 min. Non-transfected cells served as controls. Cells were lysed and proteins were detected by western
immunoblotting. Quantification of the Akt phosphorylation (serine 473) upon stimulation with insulin (B) or IGF-1 (D) was done by ECL imaging.
Calnexin signals were used as loading control. Values represent means 6 S.D. (n = 3); * p-value,0.05. # = unspecific band; ctr. = untransfected
cells.
doi:10.1371/journal.pone.0013134.g006
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with NEP in vivo and that phosphorylation of PTEN decreases its

binding to phospholipids in cellular membranes [10,56]. Thus,

CK2 could negatively regulate the activity of PTEN at the

plasma membrane by phosphorylation of both PTEN and NEP

allowing an effective and fine-tuned control of PTEN depen-

dent signaling.

In cellular models, we demonstrate that phosphorylation of

NEP attenuates down-regulation of RTK signaling to Akt. While

the expression of a NEP wt variant decreased activation of Akt by

insulin and IGF-1, a pseudophosphorylated (Ser6Asp) mutant

had no significant effect. Thus, increased phosphorylation of

NEP by CK2 could inhibit the dephosphorylation of PIP3 at the

plasma membrane and thereby lead to prolonged activation of

Akt by insulin, IGF-1 and possibly other RTK ligands (Fig. 7).

Thus, overactivation of Akt by increased phosphorylation of NEP

could enhance RTK-dependent signaling, and thereby survival

or proliferation. It will therefore be interesting to further

investigate the role of NEP phosphorylation in these processes

in vivo.

Supporting Information

Figure S1 Similar distribution of full-length NEP and NEP-

NT GFP. HeLa cells were transiently transfected with cDNAs

encoding full-length myc-tagged NEP or NEP-NT GFP. Myc-

tagged NEP was detected by staining with mouse monoclonal

antibody 9E10 and Alexa 488-conjugated anti mouse second-

ary antibody. The localization of NEP-NT GFP was analyzed

by direct fluorescence microscopy. Cells were co-stained with

polyclonal antibodies against TGN46 (A) or calnexin (B) and

Alexa 594-conjugated anti rabbit secondary antibody to

localize the trans-Golgi network and endoplasmic reticulum,

respectively. Both full-length myc-tagged NEP and NEP-NT

GFP showed very similar distribution in the trans-Golgi

network (A) and the endoplasmic reticulum (B). Images are

representative for the typical distribution of full-length myc-

tagged NEP and NEP-NT GFP in independent experiments.

Scale bar = 20 mm.

Found at: doi:10.1371/journal.pone.0013134.s001 (4.47 MB

TIF)
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