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Summary: Microglia are the primary mediators of the im-
mune defense system of the CNS and are integral to the
subsequent inflammatory response. The role of microglia in
the injured CNS is under scrutiny, as research has begun to
fully explore how postinjury inflammation contributes to
secondary damage and recovery of function. Whether mi-
croglia are good or bad is under debate, with strong support
for a dual role or differential activation of microglia. Mi-
croglia release a number of factors that modulate secondary
injury and recovery after injury, including pro- and anti-
inflammatory cytokines, chemokines, nitric oxide, prosta-

glandins, growth factors, and superoxide species. Here we
review experimental work on the complex and varied re-
sponses of microglia in terms of both detrimental and ben-
eficial effects. Addressed in addition are the effects of mi-
croglial activation in two examples of CNS injury: spinal
cord and traumatic brain injury. Microglial activation is
integral to the response of CNS tissue to injury. In that light,
future research is needed to focus on clarifying the signals
and mechanisms by which microglia can be guided to pro-
mote optimal functional recovery. Key Words: Microglia,
spinal cord injury, traumatic brain injury, inflammation.

INTRODUCTION

The role of microglia in the injured CNS is under scru-
tiny, as research has begun to determine how microglia-
mediated inflammation contributes to secondary injury and
recovery of function following trauma. Whether microglial
response to injury is good or bad is under debate, with
strong support for a dual role and differential activation.

Microglia, which were first described by del Rio-Hor-
tega' in the early part of the 20th century, represent 10—
20% of the total cell population in the adult CNS.? These
cells are the resident immune cells of the CNS, belonging to
the mononuclear phagocyte lineage, and are the primary
mediators of the brain’s innate immune response to infec-
tion, injury, and disease. It is commonly believed that these
cells migrate into the CNS during development, and may
continue to invade over the course of life, particularly after
injury or insult.?

This review will explore the current research on micro-
glial responses to CNS injury. The argument for a positive
versus negative role of microglia will also be discussed.
Two models of CNS injury, brain and spinal cord trauma,
will be used to exemplify these responses in vivo. A large
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variety of CNS injury models have been used in investigat-
ing microglial and inflammatory responses to CNS injury,
and microglial responses vary depending on the injury
model used and the severity of the injury inflicted. Data
from brain and spinal cord trauma models, in which direct
mechanical forces are applied to the CNS, were chosen in
this review to reflect both the similarities and differences in
responses, and to show the generality that one can expect
from microglia in vivo (FIG. 1). Reviews of microglial
responses in other models of CNS injury and disease, in-
cluding stroke and ischemia,* infection,’ multiple sclero-
sis,® and neurodegenerative diseases,”® should also be con-
sulted for a fuller understanding of microglial activity.

GENERAL RESPONSE OF MICROGLIA TO
INJURY

Microglia are dynamic cells, constantly surveying their
microenvironment for noxious agents and injurious pro-
cesses.” They respond to extracellular signals and are re-
sponsible for clearing cellular debris and toxic substances
by phagocytosis, thereby maintaining normal cellular ho-
meostasis in the CNS. To detect potential harmful insults,
microglia express a set of pattern recognition receptors that
recognize small molecular motifs found on pathogens or
factors associated with tissue damage. These highly con-
served pattern recognition receptors detect exogenous
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FIG. 1. Schematic of the microglial (MG) activation timeline after CNS injury, including inflammatory events and neurotoxic profiles in
the acute and chronic phases. Also indicated are the proposed M1 and M2 microglial ratios over time.

pathogen-associated molecular patterns and endogenous
danger-associated molecular patterns and enable microglia
to identify and react to noxious stimuli and harmful
events.'” Microglia also express receptors for a number of
factors that are released by injured neurons, including ATP,
glutamate, growth factors, and cytokines.

In the healthy adult brain, microglia are in a resting
state and have a dendritic morphology with many pro-
cesses.'! In response to injury, however, microglia un-
dergo dramatic changes in cell morphology and behav-
ior. For example, upon activation microglia contract their
processes and transform from a ramified to an ameboid
morphology resembling that of blood-borne macro-
phages, followed by proliferation and migration toward
the site of injury.'! This convergence upon the site of
injury is in response to ATP and other signals released by
injured cells'*'3; once there, microglia act as a barrier
between the injured and healthy tissue.'?

No markers are currently available that can distinguish
cells in the CNS as resident activated microglia versus
infiltrating macrophages. The two cell types have similar
morphology, gene expression, and antigen presentation ca-
pabilities (for a review, see Streit et al.'*). Microglia do,
however, have significant differences from their blood-
borne relatives, differences that are most likely related to
their local microenvironment. For example, recent studies
have suggested differences in protein expression profiles
between macrophages and microglia, including differences
in the level of CD45 expression'>'® and galectin-3/MAC-2
expression.!” Furthermore, macrophages have twice as
much proteolytic activity as microglia, and microglia have
a more robust response to cytokine stimulation, in vitro.'®"”

Preliminary proteomic analysis shows differences in 19
proteins, including superoxide dismutase, among microglia,
bone marrow macrophages, and spleen macrophages'®; in
that study, however, the microglia and macrophages were
isolated from different aged mice. Because age can affect
macrophage activity,'*?° the reported differences in protein
expression must be considered with caution.

DETRIMENTAL RESPONSES OF ACTIVATED
MICROGLIA

The production of vast numbers of cytotoxic chemi-
cals and their association with neuronal cell death has
long contributed to the view that microglia play a detri-
mental role in the CNS (FIG. 2). A large number of
studies have shown that microglia release proinflammatory
mediators that contribute to neuronal dysfunction and cell
death in response to injury and various immunological stim-
uli.>'~ These neurotoxic substances include proinflamma-
tory cytokines, chemokines, nitric oxide (NO), and super-
oxide free radicals that generate reactive oxygen species
(ROS) and reactive nitrogen species (RNS).

Using the lipopolysaccharide (LPS) model of micro-
glial activation, much research has shown that microglia
can develop a neurotoxic phenotype. Lipopolysaccharide
acts through either the Toll-like receptor 4 (TLR4) or
CD11b/CD18 (MAC1) receptor; both receptors induce a
signal transduction cascade that modulates NFxkB-medi-
ated proinflammatory gene expression, potentially result-
ing in neuronal cell death. Knockout of the MACI1 re-
ceptor or MyD88 within the TLR4 pathway blocks
microglia-mediated neuronal cell death.**** Activation
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FIG. 2. Schematic of detrimental and beneficial effects of activated microglia. Red arrows indicate potential cytotoxic activities; green

arrows indicate the pathways that may be protective.

of the MACI receptor also results in a phagocytic and
toxic microglia phenotype, which is characterized by
activation of NADPH oxidase and ROS production,m as
well as tumor necrosis factor-a (TNF-a) release.”

Numerous other factors can induce a neurotoxic pheno-
type in microglia. For example, exposure of microglia to
myelin in a cell culture model to mimic myelin debris
produced after injury resulted in the release of NO, TNF-a,
and glutamate, with subsequent neuronal death.?® The ATP
and glutamate released by damaged neurons can also in-
duce microglial activation,>” and abnormal protein aggre-
gates, such as amyloid-3 (Af) and a-synuclein, activate
microglia to secrete proinflammatory mediators such as
TNF-a, NO, and superoxide species.28*3° Exposure of cul-
tured microglia to dying neurons results in the release of
cytokines such as TNF-q, interleukins IL-12 and IL-6, and
RNS, as well as an increase in the expression of cell-surface
antigens, CD40, major histocompatibility complex II
(MHC-II), CD11b, and enzymes, such as inducible nitric
oxide synthase (iNOS) and cyclooxygenase 2 (COX-2).!
Notably, media from microglia exposed to dying neurons
induced subsequent neuronal death.®!

The mechanisms by which microglia induce neuronal
cell death are not fully understood, but several pathways
have been shown to be involved. For example, microglial
NADPH oxidase-related ROS release leads to increased
internal zinc and potassium concentrations, resulting in
neuronal apoptosis.*> The NADPH oxidase enzyme is
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activated by exposure of microglia to damaged neurons,*
neurotoxins such as rotenone®® and 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP),*** LPS*¢37 AB
and a-synuclein.”® This multicomponent enzyme has two
membrane components (p22P"°* and gp91P"™), as well as
cytosolic components (p47P"°*, p67°"*, and p40P"ox).38
Stimulation results in the transport of the cytosolic com-
ponents to the membrane to form the active enzyme
complex and enables the production of extracellular
ROS. NADPH oxidase is also thought to be a crucial
component of microglial signaling, one that regulates the
NFkB pathway and proinflammatory gene expression in
these cells.’”** NADPH oxidase knockout results in at-
tenuated proinflammatory production and reduced mi-
croglia-mediated neurotoxicity.>’

With age, resting microglia have been shown to take on
a more activated phenotype, increasing expression of sev-
eral receptors and markers, such as ionized calcium-binding
adapter molecule 1 (Iba-1)** and MHC-I1.*'** Aged mi-
croglia also exhibit hypertrophic and shortened processes
that resemble an activated cellular morphology.*® Con-
sistent with the view that activated microglia are the
primary source of proinflammatory cytokines in the
brain, several studies have demonstrated age-related in-
creases in IL-1B, IL-6, and TNF-a expression.**~** Fur-
ther, IL-1B-positive microglia have been reported in the
brains of aged individuals,*® and increased expression of
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IL-6 and TNF-a has been associated with age-related
cortical atrophy in humans.*’

Microglia are not only toxic to neurons but to other
glial cells as well. Recently, it was shown that peroxyni-
trite, a short-lived potent oxidant and the reaction prod-
uct of NO and superoxide, was the toxic microglial factor
responsible for LPS-induced death of developing oligo-
dendrocytes .** The presence of astrocytes alters the
LPS-induced cell death mechanisms and shifts LPS-in-
duced microglia-dependent toxicity of oligodendrocytes
from a peroxynitrite-mediated mechanism to a TNF-a-
mediated mechanism.*’

Short-term microglial activation is not considered to
be detrimental (a concept that will be addressed in
greater detail in subsequent sections). Chronic microglial
activation, however, is considered to be the most dam-
aging response of microglia to injury.’® For example, in
the injured or diseased CNS, interactions between dam-
aged neurons and dysregulated, hyperactivated microglia
create a vicious self-propagating positive feedback loop
that leads to uncontrolled, prolonged microglial activa-
tion and neuronal cell death that drives the chronic pro-
gression of neurodegeneration and disease.?

BENEFICIAL RESPONSES OF MICROGLIAL
ACTIVATION

Short-term microglial activation may have beneficial
effects (FIG. 2). As mentioned earlier, microglia phago-
cytose cellular debris and maintain normal cellular ho-
meostasis, thereby preserving and protecting healthy tis-
sue.’' Microglial phagocytosis is dependent upon Clq
expression, among other things.> Notably, Clq expo-
sure has been shown to reduce LPS-induced cytokine
expression, suggesting differences in level of activation
between phagocytic and cytokine-expressing micro-
glia.>? It has been suggested that the level of the inflam-
matory stimulus regulates the level of the microglial
response. For example, Li et al.>®> demonstrated that,
although high levels of LPS (>1 wg/mL) induced proin-
flammatory cytokine expression and neurotoxicity, lower
concentrations (=500 ng/mL) increased neuronal cell
viability and promoted neurite extension.

In recent years, a new classification of microglia has
entered the literature. Described as an alternatively acti-
vated subset of microglia (M2), these cells have markers
that can differentiate them from classically activated mi-
croglia (M1).>*>> The M2 microglia are typically con-
sidered to be less inflammatory than M1 microglia; they
are characterized by reduced NO production and in-
creased anti-inflammatory cytokine production. The M2
microglia express specific antigens such those to argi-
nase 1, mannose receptor, found in inflammatory zone 1
(FIZZ1), and chitinase 3-like 3 (YM1)*® and are in-
volved in tissue repair, wound healing, and extracellular

matrix remodeling.”> After injury or in vitro following
exposure to IL-4 or IL-13, microglia develop this non-
toxic M2 phenotype, resulting in extensive neurite elon-
gation and outgrowth across inhibitory surfaces.”*>’ Fur-
thermore, microglia exposed to IL-4 also demonstrate
reduced proinflammatory cytokine production (e.g.,
TNF-a and IL-1B) and increased anti-inflammatory or
growth promoting factor production.’®®

Microglia produce a number of neuroprotective sub-
stances in response to injury, such as anti-inflammatory
cytokines and neurotrophic factors, including nerve
growth factor, transforming growth factor 8 (TGF-f3),
IL-10, and IL-1 receptor antagonist (IL-1ra).>’~* Be-
cause of its ability to bind to IL-1 receptor (IL-1RI)
without initiating signal transduction,®® IL-1ra plays a
major role in counteracting the biological effects of IL-
18. Furthermore, both TGF-8 and IL-10 inhibit macro-
phage and microglia activation by downregulating the
expression of molecules associated with antigen presen-
tation and production of proinflammatory cytokines, che-
mokines, and nitric and oxygen free radicals.’®**> After
exposure to 6-hydroxydopamine (6-OHDA), increase
was observed in microglial production of brain-derived
growth factor (BDNF), insulin-like growth factor 1
(IGF1), and TGF-BZ,66 which led to improved neuronal
cell viability in this model. Exposure to hypoxic neurons
induced the production of BDNF and glial-derived neu-
rotrophic factor (GDNF) in microglia.®” Similarly, expo-
sure of microglial cultures to conditioned media from
NMDA- or AMPA-treated neurons resulted in increased
release of IL-1ra and was neuroprotective in this excito-
toxicity model.®®

Microglia can interact with other cells of the CNS and
have significant beneficial effects. Recent data reported by
Roy et al.® suggest that cell-to-cell contact between T
lymphocytes (Th2 cells) previously exposed to CNS anti-
gens and microglia promotes the expression of neurotro-
phins (e.g., BDNF) without inducing release of proinflam-
matory cytokines. In contrast, the Thl lymphocyte subtype
cells stimulate microglia to produce proinflammatory cyto-
kines rather than neurotrophins, demonstrating that T-cell
subsets are associated with differential effects on microglial
activity and gene expression. Note, however, that microglia
themselves inhibit the proliferation of CD4" T cells.”® Fur-
thermore, activated microglia recognize and phagocytose
infiltrating neutrophils, thereby limiting neutrophilic dam-
age to healthy tissue.”’

ROLE OF MICROGLIA IN SPINAL CORD
INJURY

Spinal cord injury (SCI) results from an initial, me-
chanical insult on spinal cord tissue and is followed by
secondary biochemical changes that produce long-term
dysfunction. This secondary injury includes delayed
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events, such as ischemia, lipid degradation, free radical
formation, excitotoxicity, and protease release,””? lead-
ing to demyelination, axonal degeneration, neuronal
death, cavitation, and glial scarring surrounding the area
of the initial damage.”*~"7 Inflammation, including the
activation of resident microglial cells, plays an important
role in these secondary changes.”>’®7%

Direct damage to neurons and surrounding cells
results in the release of a number of intracellular com-
ponents and changes in extracellular ion content, such
as glutamate and ATP, to which microglia are partic-
ularly sensitive.>®" For example, expression of micro-
glial cytokine, ATP, CD4, and glutamate receptors are
upregulated, as well as MHC class I and II antigens,
leading to an improved ability of microglia to respond
to signals at the site of injury.””*!~% Proinflammatory
cytokines and chemokines are also rapidly upregulated
and likely contribute to microglial activation. TNF-a,
for example, is produced by neurons, astrocytes and
microglia® %" and is upregulated rapidly after
SCIL.*"~% TNF-« acts to initiate a number of down-
stream signal transduction pathways, such as the
NFkB and MAPK systems,”® and may promote gluta-
mate-induced neurotoxicity by impairing microglial
uptake of extracellular glutamate.”!

Advances in molecular biology, including improvements
in microarray technology, have enabled more detailed anal-
yses of injury and cellular responses. Gene expression anal-
yses of SCI have demonstrated a strong inflammatory com-
ponent, with nearly 200 inflammatory-related genes
upregulated after injury, including genes for COX2, iNOS,
MnSOD, HSP70, IL-1 receptor, and IL-18.”>""> Microglia-
related genes, specifically, have also been profiled after
SCI, demonstrating a strong elevation of gene expression
both acutely and chronically after insult.”®

Macrophages and microglia together comprise the mono-
cytic reaction in the injured spinal cord, and there is signif-
icant upregulation of bromodeoxyuridine incorporation in
microglial cells within residual spinal cord tissue after
SCL”” Macrophages from the periphery and activated mi-
croglia appear in the spinal cord between 12 and 24 hours
after injury, with maximal infiltration at 4—8 days after
injury (FIG. 1).”*%° Recent data have revealed that there is
also a secondary peak of microglia and macrophage pres-
ence in the spinal cord at 60 days, with continued elevation
through 180 days after SCL'® Activated microglia and
macrophages demonstrate gene expression profiles that re-
flect an increase in phagocytosis, upregulation of antigen-
presenting capabilities, and secretion of proinflammatory
molecules, ROS, and RNS.'%!

A study using bone marrow chimeric rats has shown
that microglia are responsible for much of the immune
response at the lesion site within the first days after
SCI, as well as in rostral and caudal regions.'* Yang
et al.'% also demonstrated that resident microglia,
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rather than infiltrating macrophages, are the primary
source of the proinflammatory cytokines IL-18, IL-6,
and TNF-« acutely after SCI. Moreover, at 14 and 28
days after injury there are areas of increased blood-
spinal cord barrier permeability rostral and caudal to
the lesion site that are associated with OX-42" micro-
glia expression.'® A recent study by Shechter et al.'®
demonstrated that ablation of circulating monocytes
and macrophages while maintaining microglial viabil-
ity impaired functional recovery, suggesting that mi-
croglia strongly contribute to the loss of function in
the injured spinal cord.

Studies have shown that ROS, components of NADPH
oxidase, and peroxynitrite are chronically upregulated
after SCL'® Many of these factors are cytotoxic,'%’~'%
as described earlier, or can inhibit cellular proliferation
or progenitor replenishment."'° Further, there is evidence
that microglia can cause axonal retraction through direct
interactions.'"!

Nonetheless, a variety of microglia-related factors
may also play a role in neuroprotection and axonal sur-
vival after SCI. For example, macrophages and acti-
vated microglia expressing the M2 phenotype (argi-
nase 1 and mannose receptor positive) are expressed
immediately after SCI to 14 days after injury, along
with the IL-4 receptor, which is associated with the
M2 phenotype.”* Expression of these M2 microglial
factors may promote CNS repair while limiting sec-
ondary inflammatory-mediated injury. Further, re-
search has shown that chondroitin sulfate proteogly-
cans, proteins expressed by astrocytes, can induce
microglial expression of IGF-1.'"2

Microglia also increase phagocytic activity after SCI
in an effort to eliminate cellular and myelin debris in the
injured spinal cord. Upregulation of EDI, a lysosomal
protein, is indicative of increased lysosomal bodies
within a cell and is a marker for increased cellular phago-
cytosis, whereas increased ED1 expression is highly cor-
related with the ability of microglia to phagocytose tar-
gets.''? Microglia response factor (MRF) and galectin-3
are also upregulated and correlated with phagocytosis by
microglia, as demonstrated by immunostaining for

phagocytosis of myelin in response to axonal transection
or SC96:114.115

ROLE OF MICROGLIA IN TRAUMATIC
BRAIN INJURY

Mechanical forces at the moment of traumatic brain
injury (TBI) cause rapid tissue deformation, resulting in
primary physical damage.''® The mechanisms involved
in cell death and tissue loss following TBI are complex
interactions between acute and delayed biochemical, mo-
lecular, and physiological events that collectively medi-
ate widespread neurodegeneration and loss of neurolog-
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ical function. These secondary injury mechanisms
include glutamate excitotoxicity, blood—brain barrier
disruption, secondary hemorrhage and ischemia, mito-
chondrial dysfunction, apoptotic and necrotic cell death,
and inflammation.''” Such secondary injury events begin
within seconds to minutes after the primary insult and
may continue for days, weeks, and months, progressively
contributing to worsening neurological function.

One of the central inflammatory responses to brain injury
is activation of microglia.''®!"® After acute injury, micro-
glia have been shown to react within a few hours with a
migratory response toward the lesion site. In fact, elegant in
vivo two-photon microscopy imaging studies of fluores-
cently labeled microglia in transgenic mice following laser-
induced injury demonstrated rapid proliferation and move-
ment of ramified microglial cells to the site of injury in
response to extracellular ATP released by the injured tis-
sue.'>'?° The microglial processes then fused to form an
area of containment between healthy and injured tissues,
suggesting that microglia may represent the first line of
defense following injury.'? In humans with TBI, microglial
activation has been reported as early as 72 hours after

FIG. 3. Timecourse of microglial activation following experi-
mental traumatic brain injury (TBI). Sham, 3 day TBI, and 7 day
TBI brain samples were immunostained with anti-lba-1 to label
activated microglia. Upon activation, microglia contract their
processes and change from a ramified to an ameboid shape
(inset), proliferate and migrate to the site of injury.

injury,'?! and it can remain elevated for months after inju-
ry.'?*!% This activation profile is mirrored in rodent mod-
els of TBI (FIG. 3), and chronic microglial activation sur-
rounding the lesion is evident weeks and months after the
initial brain injury.'?*~'2¢

Numerous gene profiling studies of TBI have been
conducted using microarray technology, and genes re-
lated to inflammation are strongly upregulated in the
acute phase after injury in both rats and mice.'?’~'*
Follow-up studies on microglia-related genes and their
temporospatial localization after TBI demonstrated that
markers of activation (e.g., CD68, MHC-II), stress re-
sponses (e.g., p22P"* heme oxygenase 1), and chemo-
kine expression (e.g., CXCL10, CXCL6) were markedly
increased after injury.'*® Consistent with the early acti-
vation profile of microglia following injury, there is rapid
upregulation of proinflammatory IL-18 mRNA within
hours of experimental TBL'*'~!3* The damaging effects
of IL-18 are mediated through IL-1RI, which is strongly
expressed on microglia and neurons.'*''** This damage
is not due to the cytokine itself, but rather to its effect on
activating other proinflammatory pathways, such as
TNF-a.'?° Inhibiting IL-18 in experimental models of
TBI has been shown to be neuroprotective, improving
functional ret:ove:ry.l3l’132’l36_138 In addition, TNF-a
levels are elevated in both the serum and CSF of patients
with severe TBIL.'**'** TNF-« expression after experi-
mental TBI is detectable after 1 hour, peaks between 3 to
8 hours, and returns to normal levels at 24 hours after
injury.'*'~'*3 However, the role of TNF-« in the patho-
genesis of TBI is somewhat controversial and complex in
nature, with different functional outcomes in the acute
and delayed phases after TBIL.'**!4°

Anti-inflammatory cytokine levels are also modulated by
TBI. In humans, IL-10 and TGF-f levels are elevated
acutely after injury,'*®'*” and experimental studies have
shown that IL-10 has beneficial effects following trauma.'*®
For example, intravenous administration of IL-10 after ex-
perimental TBI in rats improved neurological recovery and
significantly reduced TNF-« and IL-1f8 expression in the
traumatized cortex and hippocampus. These neuroprotec-
tive effects may be a result of suppressed microglial acti-
vation, in that IL-10 treatment has been shown to decrease
production of proinflammatory cytokines.'** Furthermore,
injection of the anti-inflammatory cytokine TGF-B1 after
injury in rodents reduces lesion size,'>* improves function,
and reduces iNOS production.'>!

It is well accepted that age influences microglial activa-
tion.*®'>? Exacerbated microglial and astrocytic responses
to injury are thus likely to be involved in enhanced suscep-
tibility to and poor recovery from TBI in elderly pa-
tients.'>>'>* Recent studies have demonstrated that the
microglial response to experimental TBI was exaggerated
and prolonged in aged mice, relative to adult mice.'>
These differences included increased microglial activation
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(CD11b and Iba-1 immunoreactivity) in the hippocampus
of aged (21-24 months) versus adult (5—-6 months) mice.
This observation is consistent with reports of elevated mi-
croglial activation in the aged brain following injury such as
facial nerve axotomy'>® and cerebral ischemia.'”” It has
been proposed that, after injury, microglia in the aged brain
are primed to respond more rapidly, produce more pro-
nounced inflammatory responses,*' and proliferate more
vigorously than microglia in the younger brain.'® Thus,
hyperactivated and dysfunctional microglia in the aged hip-
pocampus following TBI may contribute to enhanced neu-
ronal loss in the hippocampus and worse neurological out-
come in the elderly.

Compelling data from several epidemiological studies
demonstrate that a history of TBI is one of the strongest
risk factors for the development of Alzheimer’s disease
(AD) later in life.'>®71%° Further, it has been shown that
AP plaques, a hallmark of AD, may be found in patients
within hours of TBL'®'~'%* Several possible pathophys-
iological mechanisms linking brain injury and AD, such
as the accumulation and clearance of A3 peptides fol-
lowing TBI, have received much attention recently (for a
review, see Johnson et al. 164). However, chronic neuroin-
flammation is a common neuropathological feature of
TBI and AD, and chronic microglial activation may be a
key causative factor. In AD, AB is implicated in the
pathology, both through direct toxicity to neurons'®> and
by potentiating neuronal damage by microglial activa-
tion.* In patients with AD, activated microglia cluster at
sites of aggregated A and penetrate the neuritic
plaques.'®®'%” Furthermore, A is proinflammatory and
activates microglia to release neurotoxic factors such as
NO, TNF-«, and superoxide.zg’l68 Following TBI, acti-
vated microglia surround the lesion and remain chroni-
cally activated for weeks and months after the initial
brain trauma.'?® Persistent long-term microglial activa-
tion was observed in the traumatized cortex 3 months
after experimental brain injury and was associated with
increased expression of proinflammatory cytokines,
IL-18 and TNF-a.'® In humans, long-term microglial
activation and chronic inflammation may persist for
many years in head injury survivors,'?®> with increased
microglial activation detected in both parasagittal and
hippocampal white matter in head-injured cases up to 16
years after injury. These long-term persistent inflamma-
tory changes may cause post-traumatic neurodegenera-
tion, which could form the basis of the cognitive decline
that is often observed in long-term survivors of TBI.

THERAPEUTIC IMPLICATIONS

A number of therapeutic interventions have been de-
veloped that target microglia or microglia-related inflam-
mation after traumatic CNS injury, such as minocycline,
peroxisome proliferator-activated receptor y (PPARYy)
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agonists, and anti-inflammatory cytokines, among oth-
ers. Minocycline is a second-generation tetracycline
that is known to have anti-inflammatory properties
independent of its antimicrobial activity.'’® Studies
have shown that minocycline inhibits microglia-medi-
ated neurotoxicity'’! and suppresses the production of
several proinflammatory cytokines.'’*'”*!"* In experi-
mental models of TBI and SCI, minocycline treatment
reduced tissue loss and improved functional recovery
after injury.'”>'7¢~'81 PPARs are ligand-activated tran-
scription factors of the nuclear hormone receptor fam-
ily'®%; activation of the PPARY isoform has demon-
strated significant anti-inflammatory effects, including
attenuation of proinflammatory cytokine, iNOS, and
COX2 expression.'®* PPARy agonists, such as rosiglita-
zone and pioglitazone, confer neuroprotection in models
of acute CNS injury and neurodegeneration.'®*~'*® In SCI
and TBI models, anti-inflammatory cytokine administra-
tion, such as IL-10 and TGF-B1, has been shown to im-
prove functional outcome.'*®'¥>!5% The proinflammatory
cytokine receptor antagonist IL-1 receptor antagonist (IL-
1ra) has also been found to have anti-inflammatory actions.
In experimental models of TBI, neutralization of IL-1ra or
IL-1 resulted in attenuated proinflammatory cytokine and
chemokine production, reduced hippocampal damage, and
improved neurological behavior after injury.'?!-!3%136-138

Nonetheless, the dual role of microglia must be kept in
mind."?*'?! Although treatment to suppress microglial
activity may reduce inflammation and improve neuronal
survival or plasticity,'?*'?? it is possible that the bene-
ficial effects of microglia may also be lost. For example,
proinflammatory cytokines released by microglia are as-
sociated with increased nerve growth factor production
by astrocytes.'®® In addition, studies have shown that
upregulation of microglial activity, by granulocyte-mac-
rophage colony-stimulating factor (GM-CSF) injection
or addition of activated microglia, can improve recovery
after CNS injury.'?>'°° These studies indicate that much
research remains to be done to fully understand the con-
tribution of microglia to CNS injury recovery.

SUMMARY

Microglia are the primary mediators of the innate im-
mune response to injury and disease in the CNS. These
cells respond rapidly and specifically to the signals pre-
sented to them, and have the potential to play either a
neuroprotective or a neurotoxic role after injury. Further
understanding of the microglial cellular responses to
traumatic injuries, including the initiating events, the
signal transduction pathways involved, and the mediators
produced, may facilitate identification of future therapies
that promote the beneficial effects while preventing the
detrimental and neurotoxic effects.

To date, a number of therapeutic interventions have
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been developed that target microglia or microglia-related
inflammation after traumatic CNS injury. Although it is
not necessary that these interventions act exclusively on
microglia to elicit their beneficial effects, the evidence
suggests that attenuating microglial activation and asso-
ciated inflammation is a major mechanism of action of
these therapies. In fact, several lines of research indicate
that multipotential therapies that target microglial acti-
vation in addition to other secondary injury mechanisms,
such as apoptotic cell death, are most likely to succeed in
treating acute CNS injury and improving long-term func-
tional outcome.'®”-'%®

In conclusion, it is clear that the microglial response to
injury is complex and multifaceted. The influence of
microglia on both propagation of secondary injury and
continuing neuronal damage, as well as their influence on
the beneficial, reparative, and wound-healing effects fol-
lowing injury, is beginning to be understood. These com-
plex microglial responses need to be considered when
investigating traumatic CNS injuries, and research must
now focus on identifying the signals and mechanisms by
which microglia can be guided to promote optimal re-
covery. In addition, a clear understanding of the influ-
ence of the various CNS injury models, severity of in-
jury, and time on the microglial phenotypic responses
would greatly enhance therapeutic approaches that target
microglia. Finally, while the discovery of the M1 versus
M2 microglial phenotypes is a considerable advance
within the field, a detailed understanding of the role of
the classic and alternatively activated microglial pheno-
types, particularly with relation to chronic microglial
responses to injury, is essential.
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