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Abstract

The development of high-throughput sequencing methods allows for the characterization of 

microbial communities in a wide range of environments on an unprecedented scale. However, 

insight into microbial community composition is limited by our ability to detect patterns in this 

flood of sequences. Here we compare the performance of 51 analysis techniques using real and 

simulated bacterial 16S rRNA pyrosequencing datasets containing either clustered samples or 

samples arrayed across environmental gradients. We find that many diversity patterns are evident 

with severely undersampled communities, and that methods vary widely in their ability to detect 

gradients and clusters. Chi-squared distances and Pearson correlation distances perform especially 

well for detecting gradients, while Gower and Canberra distances perform especially well for 

detecting clusters. These results also provide a basis for understanding tradeoffs between number 

of samples and depth of coverage, tradeoffs which are important to consider when designing 

studies to characterize microbial communities.
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Studies of complex microbial communities, including those found on and within humans 

(the human microbiome1) and those found in both natural and engineered environments, 

have been constrained by the enormous levels of diversity contained within these 

communities. The vast majority of this diversity cannot be observed using cultivation-based 

techniques2. However, recent advances in DNA sequencing technology such as 

pyrosequencing3 provide the opportunity to survey microbial diversity in unprecedented 

detail, through direct sequencing of the small ribosomal subunit rRNA gene. Hundreds of 

individual communities can now be analyzed simultaneously by coupling pyrosequencing 

with the use of error-correcting barcoded primers4, as has been demonstrated in a range of 

environments including rivers, the mammalian gut, multiple environments in the human 

body, soil, and the atmosphere1,4–6. Modern datasets from a single study may contain 

hundreds of thousands to millions of 16S rRNA sequences, drawn from hundreds of 

environmental samples. Such sequences are obtained without the biases inherent in culture-

dependant methods, and typically include many sequences representing undescribed and 

uncharacterized species. The ability to obtain such extensive data relatively easily and 

cheaply has revealed important constraints in our ability to detect patterns in these 

increasingly large and complex datasets, and to relate such patterns to underlying biotic or 

abiotic variables.

The problems associated with assessing and explaining patterns in complex datasets are not 

unique to the field of microbiology. For example, plant and animal ecologists have 

developed a variety of strategies for the analysis of the relationships between individual 

biological communities17–21. The major goal of many of the techniques for the comparison 

of biological communities among samples is the identification of an environmental gradient 

(or gradients) instrumental in structuring community diversity, and/or the identification of 

factors that contribute to the clustering of compositionally similar communities. Several 

approaches exist for elucidating diversity relationships among samples, including cluster 

analyses (where samples are assigned to discrete groups), ordination methods (where 

samples are arranged in low-dimensional space), and explicit hypothesis testing methods 

(such as ANOVA and Mantel tests).

Humans in particular host a wide variety of microbial communities: microbial cells 

outnumber human cells by an order of magnitude7, and microbial communities inhabiting 

different body habitats such as the mouth and the skin differ more from one another than do 

microbial communities inhabiting non-host-associated environments such as soil and 

water8. Microbial community composition has been associated with the health of the host, 

and variations in a host’s microbiome are linked to myriad disorders including obesity, 

vaginosis, and inflammatory bowel disease (IBD)1.

The interplay between environmental or host factors and microbial communities can be 

subtle and complex. However, many ecological systems are driven by environmental 

gradients; for example, pH has a major and consistent influence on soil microbial 

communities, whether traditional fingerprinting methods such as denaturing gradient gel 

electrophoresis (DGGE), restriction fragment length polymorphism (RFLP). or 

pyrosequencing analyses are used9. Whether equivalent gradients are found in human-

associated body habitats is less clear. Meta-analysis of large numbers of hand and gut 
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samples suggests that they might, although larger numbers of subjects with more careful 

phenotypic characterization will be required to define the patterns10. Previous work on the 

efficacy of different methods for identifying gradients, although useful, has typically relied 

on simulated datasets that are far smaller in scale than those currently being collected by 

pyrosequencing11–13. Although environmental gradients in host-associated microbial 

communities have not been frequently described, datasets that demonstrate clusters or 

categorical differences between host-associated microbial communities are relatively 

common. For example, different samples collected along the distal gut in three humans 

cluster by subject14, mammalian fecal samples cluster by diet15, and fecal pellets of mice 

cluster by diet and physiological state16. Do the methods that generally work well for 

gradient analysis in ecological systems also work well for cluster detection?

We consider only ordination analyses here, as they have been most useful for revealing 

patterns in large-scale surveys (Supplementary Table 1). In addition, we chose to address 

taxon-based (non-phylogenetic) methods in this paper because modeling phylogenetic 

approaches requires substantial additional decisions about the phylogenetic tree and the rate 

of environment switching, which make it more difficult to isolate the effects of ordination 

methods from the effects of model parameters. A discussion of such phylogenetic methods 

and their utility have been addressed previously10,19,22. We also consider only 

unconstrained ordination methods. Constrained methods (or direct gradient analysis 

methods) such as Canonical Correspondence Analysis (CCA) are useful when investigating 

the effect of measured environmental variables (sample pH, host health, or sample location) 

on microbial species present in a sample - in these methods the ordination axes are 

constrained to represent linear combinations of the measured environmental variables. 

However, here we assess techniques based on their ability to correctly reveal the diversity 

patterns inherent in microbial community sequence data, regardless of whether the 

researcher measured the underlying environmental variables responsible for shaping the 

communities. Finally, it is worth noting that although ordination methods allow 

simultaneous display of samples and species (biplots), we display only the samples here, as 

identification of the specific taxa responsible for differentiating samples does not affect a 

method’s usefulness at revealing sample clusters or gradients.

The optimal analysis approach depends on factors such as the size of the expected effect, the 

number of samples, the number of sequences per sample, the degree of replication, and the 

environmental data available for the sample set. The analysis techniques we compared were 

Principal Components Analysis (PCA) on raw abundance data as well as data subjected to 

chi-square, chord, hellinger, and species profile transforms, as well as both Principal 

Coordinates Analysis (PCoA) and Nonmetric Multidimensional Scaling (NMDS) techniques 

using each of the common dissimilarity metrics listed in Supplementary Table 2.

To assess the performance of these various analysis techniques, we used real and simulated 

pyrosequencing datasets modeling different microbial communities that we suspect are 

either shaped by a gradient in environmental conditions or partitioned by environmental 

factors into distinct groupings, or clusters of samples. We compared the performance of each 

analysis technique on real community data to the performance on simulated datasets where 

the inherent gradients and clusters of communities are known a priori. By using these 
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simulated datasets we were able to distinguish between techniques that accurately reveal 

gradients and clusters inherent in the data versus those techniques that artificially generate 

patterns where they do not exist.

Results

Revealing Environmental Gradients

Our simulated gradient was fit from a soil microbial community dataset, where 16S rDNA 

sequences were acquired from samples of arable soil along an artificial pH gradient23,24 

(Fig. 1a). We found that some techniques (notably those involving a χ2 distance: CA, or χ2 

distance + PCoA or (NMDS) performed substantially better by our correlation quality 

metrics (see Methods) than other analysis techniques surveyed. These techniques also 

revealed a clear pH gradient when applied to the soil microbial community data described 

above (Fig. 2, and see Supplementary Table 3 for the full list of techniques surveyed). The 

close correspondence between the performance of these techniques with the soil pH data and 

the simulated data suggests that the simulations are relevant to analyses done on 

experimental data. The arch effect25 (where samples along a single environmental gradient 

are misleadingly placed in an arch configuration) is prominent in the simulated data, where 

we know there is only a single gradient. The presence of the same effect in the soil data 

suggests that the pH gradient in the soil is the single driving factor in these communities 

(compare top row and middle row of Fig. 2). Interestingly, the effects of noise differed 

substantially among methods: for example, the Gower distance + PCoA performs well in the 

absence of noise but is severely degraded in its presence (Fig. 2f and Fig. 2i), whereas the χ2 

distance performed almost as well in the presence of noise as on the perfect dataset (Fig. 2d 

and Fig. 2g). Euclidean distance methods, as expected13, showed a strong arch effect. None 

of the methods we tested escaped the arch effect. See also Supplementary Tables 3 and 4 for 

more information on the performance of each method.

In addition, we generated simulated data with varying numbers of samples and depth of 

sequencing to determine how sequencing depth affects the performance of the ordination 

methods. We discovered that beyond approximately 100 sequences per sample, including 

more sequences was of rapidly diminishing utility for revealing the underlying gradient, 

provided one of the more effective ordination methods was used, and the gradient was 

sufficiently prominent. By resampling our empirical soil dataset, we saw that only below 

about 100 sequences per sample did analyses return substantially different results from 

analyses performed on the complete dataset (data not shown). These results are consistent 

with previous studies demonstrating that increasing the number of sequences per sample 

does not necessarily lead to an improvement in the ability to detect ecological patterns22,26. 

However, we did notice an improvement in the extent to which simulated subtle gradients 

were revealed at higher numbers of sequences per sample (Supplementary Fig. 1), 

suggesting that investigation of more subtle effects requires deeper sequencing.

Correlation-based distance methods (Pearson and Spearman) performed well at displaying 

the sample locations in a manner consistent with the underlying environmental gradient, as 

did chord distance methods, while the Gower distance performed notably poorly. Qualitative 

methods generally performed worse than quantitative (abundance-weighted) methods, and 
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NMDS performed about as well as PCoA when the techniques were compared using the 

same distance measure (Supplementary Tables 3 and 4).

Revealing Sample Clustering

We now focus on the analyses of microbial communities that are not structured by a 

continuous gradient in environmental conditions, but rather are partitioned into discrete 

clusters of communities. As in the generation of simulated gradient datasets, we varied the 

number of samples and depth of sequencing. For some of the analysis, we set the relatedness 

between clusters, and the relatedness between samples within the same cluster to values that 

produced simulated data with similar clustering behavior to a dataset of 16S rDNA 

sequences from microbial communities on keyboards and human fingertips27 (between-

cluster distance of 1.0, within-cluster distance of 0.5; see Fig. 1b for an outline of the 

simulation methodology). However, in some simulations, we simulated a more subtle effect 

(between-cluster and within-cluster distances of 0.1). We applied various ordination 

techniques to each simulated dataset, and quantitatively assessed each technique’s 

effectiveness at revealing the inherent clustering of the samples.

We found that the relative efficacy of different analyses was dependent on the relatedness of 

clusters, and that different analysis techniques applied to the same data were of substantially 

different effectiveness at revealing the underlying clusters (Fig. 3 and Supplementary Tables 

3 and 5). The visual similarities between the results for the simulated prominent clusters and 

the results using actual keyboard data suggest that the model provides useful insight into the 

real dataset, and that the three-cluster structure is a good fit for the real data. Different 

methods behave differently. For example, the Jaccard distance + PCoA is able to recover the 

clusters well when they are prominent, although not when they are subtle, at a depth of 

coverage of 1,000 sequences per sample. In contrast, although they explain far more of the 

variance in the data, the Soergel and Morisita-Horn distance measures do not clearly recover 

the three-cluster pattern. Consequently, evaluating a method based on the percentage of the 

variance it explains rather than the biological insight it provides is likely to be a poor 

approach.

Notably, the chi-squared distance measure, which performs superbly on gradient data, 

performs only moderately on cluster data (Supplementary Table 3). More generally, 

performance of methods on gradient and cluster data was weakly but negatively correlated 

(Spearman rank correlation r = −0.49), suggesting that high-performing methods from both 

classes should be applied to maximize the information extracted from a given dataset. For 

distance matrix based methods, the choice of distance measure typically had a more 

profound effect on the qualities of the analyses than did the choice of multivariate reduction 

technique (for example PCoA vs. NMDS, see Supplementary Tables 3 and 5).

When we investigated the effects of sequencing depth on the results of various analysis 

techniques, we again found that the recommended analysis methodology depends on the 

degree of separation between the underlying clusters and that even excessive sequencing 

does not provide reasonable resolution if the wrong analytical method is chosen. Resampling 

of our empirical keyboard dataset revealed that 100 sequences per sample is generally 

sufficient to obtain good analysis qualities, relative to the clustering observed when 
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analyzing the complete dataset (data not shown). This result was confirmed in simulated 

data when the clusters were modeled as very prominent (cluster distance 1.0, sample 

distance 0.5), and additional sequencing beyond 1,000 sequences per sample did not 

substantially improve our ability to resolve the patterns relating the samples (Fig. 4a–c). 

However, when clusters were far less prominent (cluster/sample distance 0.1/0.1), we found 

that increasing sequencing depth beyond 10,000 sequences per sample was required to 

achieve any analysis of good quality (k-means quality above .85 and relative distance 

quality above 2.0, see methods). The Gower distance measure is effective on clustered data - 

it demonstrates that deep sequencing is required if and only if the sample clustering is subtle 

(Fig. 4d–i). The extent of variation explained by the axes is not a proxy for effectiveness of 

the technique, and many sequences per sample is insufficient to overcome an inappropriate 

technique, as the Morisita-Horn distance demonstrates (Fig. 4j–l).

Discussion

The difference in the performance of the various ordination methods is large, underscoring 

the importance of using an appropriate analysis strategy. For example, Morisita-Horn + 

PCoA frequently cannot reveal clusters in the data even at a depth of 10 million sequences 

per sample under conditions where methods based on other distance measures, such as the 

Canberra distance, are easily able to reveal the biological patterns with only 1,000 sequences 

per sample. Similarly, Spearman distance + PCoA was able to find the same quality of 

clustering with 1,000 sequences per sample that Euclidean distance + PCoA could only 

resolve with 10 million sequences per sample, showing that by using the appropriate 

analytical method, it is not necessary to gather as much sequence data per sample to detect 

the underlying patterns.

Several statistical artifacts remained resistant to analysis. Although several techniques were 

able to minimize the arch effect, none of the techniques considered here eliminated it. 

Certainly, the arch can be eliminated by detrending, using Detrended Correspondence 

Analysis28 (DCA). However, this technique rests on a poor theoretical foundation (or 

requires the a priori assumption that there is only one underlying environmental gradient) 

and has been found to be misleading in some cases, for example when there are multiple 

underlying environmental gradients11,29 Resolving the arch effect so that multiple gradients 

can be studied remains an important challenge for the field. In addition, the differences 

between NMDS and PCoA were usually minimal compared to the differences in which 

distance measure was used, and in general, qualitative methods performed well on cluster 

data but poorly on gradient data, while the reverse was true for quantitative methods. These 

results suggest that both types of methods should be applied to most datasets if it is 

unknown whether cluster or gradient structure is more likely.

Most methods that performed well for prominent clusters also performed well for subtle 

clusters, the exceptions being the qualitative methods which, as a class, performed much 

better on prominent than on subtle clusters. This suggests that effect size is important in 

choosing a method. Note that our simulations of prominent clusters were fit to the 

differences between the fingertips of three different subjects: these distances are small 

compared to, for example, the distances between different body sites or different free-living 
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environments8. Furthermore, the required sequencing depth is inversely related to the size of 

the effects separating different samples (Fig. 5). However, the effect sizes for specific 

diseases, and hence the required depth of coverage, remains unknown, although differences 

between IBD (Inflammatory Bowel Disease) and non-IBD subjects have been reported at 

depth of coverage of only ~100 sequences per sample30. In contrast, lean and obese 

individuals do not cluster separately at depth of coverage of ~10,000 sequences per sample5, 

either because the clustering is subtle or because other genotypic or phenotypic 

characteristics cause more prominent clustering. The simulations presented here were 

performed by varying many of the simulation parameters, allowing one to generalize the 

conclusions we reached beyond simply which methods are ideal for the soil and keyboard 

data we used as reference. However, it is infeasible to simulate all effects found in the wide 

variety of microbial sequence data now being collected, and the reference empirical datasets 

used here were chosen for their relative simplicity and clarity. Clearly, additional work is 

needed to estimate the effect sizes in other environments, and simulations using more 

complex empirical data as references would be welcome.

In general, our results are encouraging: on datasets with effect sizes comparable to the 

effects seen in real datasets, simple simulations are able to recapture the same trends, and 

powerful analysis methods are available to reveal the patterns in those datasets. The 

advantages of having large numbers of samples at shallow coverage (~1,000 sequences per 

sample) clearly outweigh having a small number of samples at greater coverage for many 

datasets, suggesting that the focus for future studies should be on broader sampling that can 

reveal association with key biological parameters rather than on deeper sequencing. 

However, if nothing is revealed by broad, shallow sampling it is possible that the 

community structuring effects are subtle, in which case deeper sequencing can be 

illuminating.

Methods

Ordination Methods

Most ordination methods considered here comprise two stages: first the abundance matrix is 

converted into a distance matrix that relates each sample to each other sample. That distance 

matrix is then used to produce a low dimensional representation of the samples via a 

multivariate reduction method such as Principal Coordinates Analysis (PCoA) or Non-

metric Multi-Dimensional Scaling (NMDS). Some methods, such as Principal Component 

Analysis (PCA), skip the distance matrix step and proceed directly from the abundance 

matrix to the completed ordination.

The simulated and empirical data were subjected to the most widely used ordination analysis 

methods. We performed PCA on the abundance matrix data (the raw data, as well as 

transformed data as described in Legendre & Gallagher13), using the package ‘vegan’ in the 

R programming environment (specifically the function rda, using covariance: 

SCALE=FALSE). We computed the pairwise distance between samples using a variety of 

commonly used measures, such as the Bray-Curtis distance and the manhattan distance 

(Supplementary Table 2), using PyCogent. We performed Principal Coordinates Analysis 

(PCoA) on the distance data using PyCogent31, and 2 dimensional Nonmetric 
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Multidimensional Scaling (NMDS) using the MASS package in the R programming 

environment (specifically the function isoMDS, seeded with results of a PCoA analysis, and 

limited to a maximum of 50 iterations or a convergence specified by a tolerance of 10−3, 

following the function’s default values). The NMDS results were rotated such the variance 

along the horizontal axis was maximized (this was for display purposes only, as the axes 

have no intrinsic meaning in NMDS). See Supplementary Table 2 for a list of all distance 

measures used, and Supplementary Table 3 for a list of all ordination methods considered 

here. In all cases, the result of the analysis was displayed in two dimensions.

Evaluation of Analysis Methods

To evaluate the efficacy of analysis methods applied to gradient data, we wanted to 

determine how faithfully the analysis revealed the underlying environmental gradient. An 

ideal technique would display all samples in the same order as they exist along the 

environmental gradient, with inter-sample distances proportional to the their separation 

along the gradient. To quantitatively assess this, we computed the Pearson correlation 

coefficient between the positions of the samples after analysis along the primary axis of 

variation (principal axis 1 for PCA and PCoA methods, and the axis of greatest variance for 

NMDS methods), with the position of those samples along the gradient from which they 

were drawn. Because we were also interested in whether samples were shown in their 

correct gradient order, we also evaluated the Spearman rank correlation coefficient of the 

samples’ displayed position and their order along the gradient. Also, because the direction of 

the gradient is not meaningful, we considered only the absolute value of the Pearson 

correlation and Spearman rank correlation coefficients when evaluating the quality of 

gradient analysis methods.

To address the efficacy of analysis methods applied to clustered data, we wanted to 

determine which analyses partitioned samples correctly, revealing the true clustering of the 

samples. We used three metrics to evaluate this. The first was the average displayed distance 

between two samples from separate clusters, divided by the average distance between two 

samples from the same cluster. The second was to apply k-means clustering to the results of 

the analyses (using the package ‘MASS’ in R), and computed the fraction of sample pairs 

whose k-means clustering matched the actual clustering of the data (samples from the same 

cluster found in the same k-means cluster, and those from different clusters found in 

different k-means clusters). The third was to perform UPGMA clustering on the pairwise 

sample distance as displayed in the ordination plots, and to test the extent to which the 

members of the clusters formed distinct groups in the tree. In general, the three quality 

assessment methods agreed well for assessing a given ordination analysis.

Empirical Data

We used two experimental datasets for comparison: a bacterial community survey of 

different fingertips and keyboards27, and a study examining the effects of soil pH change on 

bacterial communities23. These communities provide examples of relatively low- and high-

diversity habitats (respectively), and span human and environmental datasets of practical 

importance to researchers. Both studies were pyrosequenced using error-correcting 

barcoding on the V2 region as previously described4,32.
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Simulated Gradient Data

In a manner similar to Legendre & Gallagher13, we modeled each species as having peak 

abundance at a randomly chosen location along an artificial gradient, and a unimodal normal 

abundance curve (species response curve) centered at that gradient location. The relative 

abundances of the species were adjusted to match the species abundance distribution found 

in the combined samples from the soil dataset described in Methods (species-level 

phylotypes were defined as organisms with ≥ 97% 16SrRNA identity33). We did not 

assume any correlation between overall species abundance and location of peak abundance 

on gradient. To simulate the stochastic effects in species abundances, we then perturbed 

each species’ relative abundance by adding gaussian noise of a width proportional to that 

species’ relative abundance. Subtle gradients were those perturbed by noise drawn from a 

distribution of mean 0 and width equal to the species’ abundance, prominent gradients used 

a width of .5 times the species’ abundance. Each simulated environment was then sampled 

at either random or uniformly spaced positions along the gradient. Each sample consisted of 

a series of random selections, with replacement, from the species present, weighted by the 

relative abundances of the species at that gradient location. In other words, the abundance of 

each species was inferred using the probability distribution for each species, the total was 

renormalized to sum to a probability mass of 1, and individuals were sampled from the 

resulting distribution for that point. Sampling continued until a specified number of 

sequences were obtained. The number sequences varied from 10 per sample to over 10,000. 

The count of each species sampled at each sample location along the gradient formed the 

simulated dataset used to evaluate the ordination techniques.

Simulated Cluster Data

To generate simulated clustered data, we began with a species abundance distribution 

identical to that found in the keyboard dataset described in Methods (again, species-level 

phylotypes were defined as organisms with ≥ 97% identical 16S rRNA). We then perturbed 

each species’ relative abundance by multiplying the species abundance by a number drawn 

from a normal distribution of mean 1 and varying width (Fig. 1b). The resulting species 

abundance vectors were renormalized to sum to 1. These formed the basis for each cluster. 

These cluster level abundance vectors were again perturbed with gaussian noise of specified 

mean and standard deviation, and renormalized to form the sample abundance vectors. Each 

sample then consisted of a series of selections, with replacement, from these species 

abundance distributions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of simulations and analysis of data. (a) 6 stages for the analysis of a simulated 

environmental gradient (b) Clustered samples. A hypothetical sample is formed at the root 

of a hierarchy which defines the relatedness of samples both inter- and intra-cluster (d1 and 

d2; stage 1). The species abundances at the root node (stage 2) are perturbed by an amount 

proportional to d1, and the results are renormalized to form the species abundances at each 

cluster (stage 3). The cluster nodes are then perturbed by d2 to produce species abundances 

at each sample (stage 4). Sample data is generated and analyzed similar to (a), and the 

analysis methods are then evaluated based on their ability to reveal the underlying cluster 

structure of the samples (stages 5–8).
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Figure 2. 
Comparison of different gradient methods on the soil dataset, a simulated gradient dataset 

with or without noise. Axes represent the first two principal coordinates maximizing the 

variance in the data, obtained via PCoA (the percentage of the total variance explained by 

each axis is shown in parentheses). Each data point is a microbial community sample, 

colored according to either a real gradient (soil pH) or a simulated gradient (arbitrary units). 

For simulated data, sequencing depth was 1,000 sequences per sample, and species rank-

abundance distributions were fit from empirical data.
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Figure 3. 
Choice of analysis method reveals or obscures clusters. Keyboard data, simulated data 

resembling the keyboard data (distinct clusters), and simulated data representing less 

prominent sample clusters (subtle clusters) were analyzed by the indicated techniques All 

simulated data shown in this figure had 90 samples divided into 3 clusters, with 1,000 

sequences per sample. Axes are labeled as in Figure 2.
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Figure 4. 
Deep sequencing is superfluous when clusters are prominent, but critical when clusters are 

subtle. Data representing either prominent or subtle clusters was generated (see methods) 

with varying sequencing depths. (a–c) Jaccard distance followed by PCoA was applied to 

prominent cluster data with 10, 1,000, or 100,000 sequences per sample. No substantial 

improvement in the effectiveness of the method was found above 1,000 sequences per 

sample. (d–f) Gower distance followed by PCoA was applied to the same data (g–i) Gower 

distance applied to more subtle clusters.. (j–l) Morisita-Horn distance followed by PCoA 

applied to the subtle clusters. Although substantially more of the variance is explained by 

this method, the clusters are not easily interpretable: this situation persists even with 10 

million sequences per sample (data not shown).
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Figure 5. 
Tradeoff between number of samples and number of sequences per sample with prominent 

and subtle gradients and clusters. Panels show (a) subtle clusters, (b) prominent clusters, (c) 

subtle gradients, and (d) prominent gradients, with a survey budget of 500,000 sequences 

allocated to varying numbers of samples, and thus an inversely varying number of sequences 

per sample. Insets show examples of data at specific sampling depths. The inset panels show 

examples of the gradients and clusters at 5, 100, and 2,000 samples, corresponding to 

100,000 5,000 and 250 sequences per sample respectively (arranged right to left in each 

panel). All comparisons use the Pearson distance + PCoA ordination method. Note that the 

fraction of the variance explained by the PCoA decreases as the number of samples 

increases, even when the patterns are clearer with more samples. Error bars represent ± 

s.e.m. of 12 simulations.
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