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Abstract

The problem of identifying proteins from a shotgun proteomics experiment has not been definitively
solved. Identifying the proteins in a sample requires ranking them, ideally with interpretable scores.
In particular, “degenerate” peptides, which map to multiple proteins, have made such a ranking
difficult to compute. The problem of computing posterior probabilities for the proteins, which can
be interpreted as confidence in a protein’s presence, has been especially daunting. Previous
approaches have either ignored the peptide degeneracy problem completely, addressed it by
computing a heuristic set of proteins or heuristic posterior probabilities, or by estimating the posterior
probabilities with sampling methods. We present a probabilistic model for protein identification in
tandem mass spectrometry that recognizes peptide degeneracy. We then introduce graph-
transforming algorithms that facilitate efficient computation of protein probabilities, even for large
data sets. We evaluate our identification procedure on five different well-characterized data sets and
demonstrate our ability to efficiently compute high-quality protein posteriors.

1 Introduction

Tandem mass spectrometry is an increasingly useful tool for identifying proteins in complex
mixtures, particularly as an agent for hypothesis generation. However, large data sets, which
benefit from the advantages of mass spectrometry, commonly lead to many spurious matches
between peptides and spectra. These errors substantially decrease the specificity of predictions
made by existing algorithms. For example, we have observed that ProteinProphet [Nesvizhskii
et al., 2003] may assign to a protein a very high posterior probability even when that protein
only contains a single peptide with a good match to an observed MS/MS spectrum or when a
protein contains several peptides with very poor matches to MS/MS spectra. These inflated
proteins often receive scores tying or exceeding proteins containing many high-scoring PSMs.
When larger proteins or many spectra are considered, the number of these incorrectly matched
spectra grows, and the set of proteins suggested by ProteinProphet becomes untrustworthy.

Attempts to compute statistically rigorous protein probabilities, with models derived using
relatively few, well-defined assumptions, are hampered by the problem of peptide degeneracy,
which arises when a single peptide maps to multiple proteins. In Figure 1, the peptides
EEAMPFK and VNILLGLPK are degenerate: EEAMPFK maps to two identically connected
proteins, and VNILLGLPK maps to two differently connected proteins. Degenerate peptides
are responsible for the apparent intractability of computing protein probabilities, because the
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posterior probability of one protein depends on the presence of other proteins when a peptide
maps to both proteins.

Existing approaches to protein identification solve the peptide degeneracy problem in quite
different ways. Several heuristic methods [Weatherly et al., 2005, Qian et al., 2005, Reiter et
al., 2009] use the distribution of decoy peptide scores to estimate protein false discovery rates
(FDRs), while ignoring the differences in peptide degeneracy between the target and decoy
databases. ProteinProphet, which is perhaps the most widely used procedure for solving the
protein identification problem, employs an iterative heuristic probability model to estimate
posterior protein probabilities. The similar EBP method [Price et al., 2007] takes a more
sophisticated approach for amalgamating replicate experiments, extending the ProteinProphet
method and using more explicitly stated assumptions. Both of these methods use a similar
expectation-maximization framework and perform very well in practice. However, both
methods are described procedurally rather than derived from assumptions, so the resulting
models are difficult to understand and improve upon.

In contrast, the nested model of Li et al. [2009], is derived clearly from well-described
assumptions but ignores the peptide degeneracy problem entirely. The result is that a protein
may be reported as present even though it is only associated high-scoring peptide is explained
by a second protein, which contains many more high-scoring peptides. PANORAMICS [Feng
et al., 2007] uses a numeric heuristic to jointly compute peptide probabilities from protein
probabilities and compute protein probabilities from peptide probabilities and efficiently solves
the resulting simultaneous equation in an iterative manner. Both of these models perform well,
but neither offers a substantial improvement in sensitivity when using a high threshold for
protein probabilities. Despite their shortcomings, these methods illustrate how sensitive
ProteinProphet can be when allowing very few false positive protein identifications.

IDPicker [Zhang et al., 2007, Ma et al., 2009] adopts a conservative, non-probabilistic
approach, thresholding peptides into “present” and “absent” sets and then using a greedy
algorithm to solve (or approximate a solution to) the resulting NP-hard minimum set cover
problem. The peptide-level threshold must be set quite strictly, because every present peptide
may permit identification of an associated protein. Furthermore, this approach does not
distinguish between a protein associated with a single moderately-scoring peptide
identification and a protein with several moderately-scoring peptide identifications. Although
non-probabilistic approaches are often easy to understand, they are in principle not as
informative as probabilistic methods, which can assemble large quantities of weak evidence
and use the evidence to estimate the probability that a given protein is present.

Recently, Li etal. [2008] developed perhaps the most rigorous existing treatment of the peptide
degeneracy problem. They use a Bayesian framework and a sampling procedure for estimating
protein probabilities, and their system slightly out-performs ProteinProphet on a small data set.
Unfortunately, their sampling approach requires training a complex model of peptide
detectability involving hundreds of parameters. Furtheremore, it has not been demonstrated
that the detectability model can be trained on one data set and then employed effectively for
protein identification on a different data set; detectability is widely recognized to fluctuate
between even similar experiments, and small errors in peptide detectability may result in a
large differences to the set of proteins identified. Finally, the running time of the sampling
method on this small data set is substantially longer than the running time of ProteinProphet.
Sampling methods are known to converge to exact posteriors, but in an infinite time, and the
actual time necessary for an acceptable approximation may be too great to be of utility on larger
data sets.
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In this paper we introduce a novel Bayesian method for computing posterior protein
probabilities. Our approach is motivated by our desire to derive a model using a few relatively
simple assumptions, but also to create accompanying algorithms that make computation very
efficient. Such a model will allow us to evaluate the assumptions and systematically make
improvements in a manner that is difficult with many current approaches. Our model uses only
three parameters, which can be easily estimated using the same data set used for identifying
proteins. With respect to the peptide deneracy problem, our model rewards protein sets that
contain independent evidence in addition to degenerate peptides. In particular, the model allows
a protein with strong independent supporting evidence to “explain away” supporting data that
is shared with other proteins. Thus, our method automatically apportions information from
degenerate peptides during the marginalization procedure, rather than requiring an ad hoc
adjustment.

We then describe a series of three mathematical transformations, which substantially increase
the computational efficiency of computing posterior probabilities, while still recognizing
peptide degeneracy. The resulting algorithm is mathematically equivalent to the result achieved
by marginalizing, the process of computing every possible set of present proteins and
evaluating their net contribution. In contrast to sampling, marginalizing yields an exact, closed-
form solution in a finite amount of time. Naively marginalizing would require enumerating
every possible set of proteins, which is exponentially complex and hence impossible even for
small problems, but our optimized marginalization procedure is significantly more efficient
and computes the same result as the naive approach. Using our method, it is possible to compute
discriminative and interpretable posterior probabilities quickly, even on large data sets. This
combination of efficiency and rigor allows us to compute accurate and well-calibrated posterior
probabilities quickly, and lays the groundwork for more complex models and more optimized
procedures.

2 Materials and Methods
2.1 Data sets

We have compared our method to ProteinProphet [Nesvizhskii et al., 2003] on four data sets,
yeast lysate [Kall et al., 2007], H. influenzae lysate [Nesvizhskii et al., 2003], the ISB 18 mix
protein standard [Klimek et al., 2008], and C. elegans lysate [Hoopmann et al., 2009], and
compared to MSBayes [Li et al., 2008] on one additional data set, the Sigma Aldrich 49 protein
standard [Zhang et al., 2007]. Each collection of spectra was searched against a combined
database of target and decoy proteins. For the purposes of the analyses, when a protein
identification method identifies a protein from the database, that identification is considered a
“true positive” or a “false positive,” depending on whether the protein is a target or a decoy,
respectively. It should be noted that treating the targets as true positives is not perfectly correct,
because the target database is actually a mixture of true and false positives. Consequently, our
true positive counts may be slightly inflated; however, because we are only using this estimate
of the true positives as a relative comparison between methods, the slight bias introduced will
not influence the comparison. Summary statistics describing each data set are given in Table
1.

H. influenzae—H. influenzae lysate was digested with trypsin and analyzed by LC-MS/MS
on an ESI-ITMS machine. The spectra were searched with SEQUEST [Eng et al., 1994] against
a database containing H. influenzae (targets) and human proteins (decoys). The resulting PSMs
were scored using PeptideProphet with a minimum peptide probability of 0.0.

Yeast—Saccharomyces cerevisiae strain S288C were grown to mid log phase on rich media
at 30°C. The proteins were digested with trypsin and analyzed using data dependent acquisition
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and LC-MS/MS, using an LTQ machine. The resulting spectra were searched using Crux [Park
et al., 2008] against a database consisting of all yeast ORFs plus a shuffled version of each
ORF. PSMs were assigned probabilities by PeptideProphet using a minimum peptide
probability of 0.05.

ISB 18 mix—The ISB 18 protein data was created using proteins purchased from Sigma
Aldrich. This data set consisted of four prepared samples, which were analyzed on a variety
of mass spectrometry machines with several technical replicates. The proteins were digested
together using trypsin, and in one of the four samples, digestion was aided by sonication. These
peptides were analyzed using LC-MS/MS on a variety of machines, including LTQ, LCQ Deca,
Q-TOF, QSTAR, AGILENT XCT Ultra, Applied Biosystems ABI 4800, AppliedBiosystems
4700, and Thermofinnigan LTQ-FT. The spectra obtained from each experiment were searched
using SEQUEST against a database containing these 18 proteins, a set of closely related
homologs (obtained from the authors), which are indistinguishable from or may have been
purified with the 18 proteins, possible contaminants, and a collection of H. influenzae proteins.
PSMs were assigned probabilities by using PeptideProphet with a minimum peptide probability
of 0.05. The contaminant proteins were not treated as present or absent, because they were
identified using the Trans Proteomic Pipeline
(http:/ftools.proteomecenter.org/wiki/index.php?title=Software: TPP), which includes the
ProteinProphet algorithm. We analyzed the replicate experiments in two ways: individually,
and after pooling all experiments together.

C. elegans—cC. elegans were grown to various developmental stages on peptone plates
containing E. coli. After removal from the plate, bacterial contamination was removed by
sucrose floating. The lysate was sonicated and digested with trypsin and subject to six technical
replicate LC-MS/MS analyses using LTQ machine and data dependent acquisition. The spectra
were searched against a database containing the target proteins, the C. elegans proteome and
known contaminants, as well as a reversed copy of every target protein. PeptideProphet was
run using a minimum PSM probability of 0.05.

Sigma 49 mix—The Sigma 49 mixture was prepared using 49 human proteins from Sigma
Aldrich. The proteins were digested with trypsin and subjected to three replicate LC-MS/MS
analyses using a Thermo LTQ machine. The spectra were searched using MyriMatch16 [Tabb
etal., 2007] against a database composed of all Swiss-Prot (54.2) proteins with the . HUMAN
aswell as areversed copy of each protein. During the database search, any spectra that matched
multiple peptide sequences and that also received equal scores for these matches were excluded.
The remaining PSMs were scored using PeptideProphet and any PSMs with probability less
than 0.05 were thrown out.

3.1 The protein identification problem

In tandem mass spectrometry, a complex protein mixture is first digested with a restriction
enzyme to create a population of peptides. These peptides are separated by hydrophobicity
using liquid chromatography (LC) and subsequently separated by their mass-to-charge ratios
(m/z) using the mass spectrometer. This procedure isolates a population of peptides with a
common hydrophobicity and precursor m/z. ldeally, this population of peptides is
homogeneous. Each such population is then fragmented, and the fragments are subjected to a
second scan with the mass spectrometer to recover the m/z values of the fragments. Together,
these fragments produce an MS/MS spectrum. In a typical shotgun proteomics experiment,
this process is performed several thousand times, producing many MS/MS spectra and their
associated precursor m/z values. Protein identification is the task of ranking the proteins by
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the evidence that they are in the sample, given these fragmentation mass spectra. Ideally, each
ranked protein also is assigned a score with a well-defined semantics, specifying our confidence
in the assertion that the protein was present in the sample.

Typically, the protein identification process consists of two stages. In the first stage, the
observed spectra and precursor m/z values are matched to peptides by a database search tool
(reviewed in [Nesvizhskii et al., 2007]). During this stage, probability scores may be computed
for each match using a tool such as PeptideProphet [Keller et al., 2002]. In the second stage,
the proteins are scored and ranked using the scored peptides. We will focus on the second stage.

The process by which proteins create spectra, and the resulting problem of identifying proteins
from these spectra, can be represented using graphs. After the first stage, the proteins, peptides,
and spectra can be represented by a tripartite graph (Figure 1A). Following previous methods
[Nesvizhskii et al., 2003], we collapse the tripartite graph into a bipartite graph by keeping
only the edges connecting the best peptide match for each spectrum and the edges connecting
the best spectrum match for each peptide. Once each spectrum associates with only one peptide
and each peptide associates with only one spectrum, each of these pairs can be merged together
to form a layer of “peptide spectrum matches” (PSMs), which are weighted by the quality of
the match between the paired peptide and spectrum (Figure 1B). Like ProteinProphet and unlike
MSBayes, we currently do not consider peptides that have not matched a spectrum. This
bipartite graph serves as the input to the second stage, in which we rank the proteins according
to the estimated probability that they are present in the sample.

3.2 A probability model for scoring candidate solutions

To compute the desired protein posterior probabilities, we model the tandem mass spectrometry
process using a Bayesian probability model. Our model follows directly from a series of seven
simple assumptions, which are illustrated in Figure 2 and described in detail below. First,
however, we introduce some terminology. We say a peptide was emitted by a protein if that
peptide was created by digesting a protein, retrieved by the precursor scan, and analyzed by
the fragmentation scan. We say that a PSM is created by the noise model if the peptide was
identified by the fragmentation scan but the scan was not derived from that peptide.

The seven assumptions underlying our model are as follows:

1. Conditional independence of peptides given proteins. The process by which one
peptide is retrieved from the precursor scan does not influence the retrieval of other
peptides from the precursor scan given the set of proteins in the sample.

2. Conditional independence of spectra given peptides. The process by which a
spectrum is created and observed does not influence the creation and observation of
other spectra given the set of peptides selected by the precursor scan.

3. Emission of a peptide associated with a present protein. We model the probability
with which a sample peptide is generated from a protein containing it with a constant
probability a. This event is independent of all other emission events. Although the
probability that a peptide is retrieved may depend on properties of the peptide, the
model can account for these variations by adjusting the probability of the PSM.
Adjusting the probability of a PSM is equivalent to adjusting the probability that the
peptide was retrieved from the precursor scan. These events are only observable in
conjunction, so it is not possible to distinguish between the event where a peptide is
retrieved from the precursor scan but its spectrum is mistakenly assigned from the
event where a peptide is not retrieved from the precursor scan and undergoes no
fragmentation scan.

J Proteome Res. Author manuscript; available in PMC 2011 October 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Serang et al.

Page 6

Creation of a peptide from noise. We model the probability that a truly absent
peptide (i.e. not created by an associated protein) is erroneously observed with the
constant probability B.

Prior belief a protein is present in the sample. We model our prior belief that any
protein is present in the sample with probability y. It would be possible to later
introduce a more complex prior, but doing so may increase the runtime of the
algorithm.

Independence of prior belief between proteins. The prior probabilities of all
proteins are independent.

Dependence of a spectrum only on the best-matching peptide. Each spectrum
depends exclusively on the peptide that it best matches and is paired with to form a
PSM.

We consider the validity of these assumptions in more detail in the Discussion section.

From this probability model, we are able to compute the likelihood of a particular set of proteins
given the the observed set of spectra, which is proportional to the probability that these proteins
would create the observed spectra:

L(R=r|D) c Pr(D|R=r) (1)

=2 | [PH(D:lE.=e.) Pr(Ec=e.lR=r)
Ve & (2)

:Z Z l_[Pr(Dg\Eb:eg) Pr(E.=e.|R=r)

Ve Yee) € 3)

=) Pr(D,|E1=e1) Pr(Er=e1|R=r) ) | |Pr(DIE.=e.) Pr(E.=ecR=r)

V(’l

Yeie e#1 (4)

=[ D Pr(D.|E.=e.) Pr(E.=ecR=r)
£ Ve (5)

where R is the set of present proteins, E is the set of present peptides, D represents the observed
spectra, and ¢ is used to index the peptides. Both R and E are random variables representing
the truly present protein and peptide sets; r and e are specific values taken on by these random
variables. Equation (1) removes uncertainty from the unknown peptide set E by marginalizing
over all possible peptide sets (i.e., all possible values E can take on, denoted Ve). For example,
if the set of spectra match 10,000 distinct peptides, then the enumeration over all possible
values of e must consider 210.000 possibilities.

We compute values proportional to Pr(D¢|E, = e;) using PeptideProphet and Pr(E; = e¢R =)
using our model of peptide generation. This former is actually computed by an intermediate
step in the PeptideProphet algorithm and can be recovered by applying Bayes’ rule to
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PeptideProphet’s probability scores and prior probability estimates; we show this procedure
in detail in the supplement. The conditional independence of peptides given proteins allows us
to compute the sum over all peptide sets in linear time (rather than exponential time), by
transforming the sum into an equivalent product over peptide indices. Essentially, the
procedure between Equations (2) and (4) can be repeated on the right sum in Equation (4) using
a different peptide index. This operation can be continued inductively on each successive sum,
effectively unrolling the sum of products into a product of sums. In the product of sums form,
each sum has only two states (a particular peptide is present or absent), so each term in the
product is trivial, permitting the likelihood of a set of proteins to be computed in linear time
relative to the number of peptides. From a graphical model perspective, once the set of proteins
is specified, all of the PSMs are disconnected from each other, making an independent graph
for each PSM. The likelihood is thus computable by a product over these independent graphs.
A more complete derivation, as well as other derivations used for our model and optimizations,
are provided in the supplement.

3.3 Computing posterior probabilities for each protein

By applying Bayes rule to the likelihood proportional to Pr(D|R) and marginalizing over the
set of proteins, we can compute a posterior probability for each protein. This approach appears
to be prohibitively expensive, because a naive implementation of this marginalization requires
explicitly enumerating every possible set of proteins (a so-called “power set”). The
computational cost of enumerating this power set is exponential in the number of proteins,
making the naive implementation impractical for even small data sets. However, in practice,
we do not need to enumerate the power set of peptides, because we have assumed conditional
independence of peptides given proteins because, when a protein set is specified, our
assumptions allow us to marginalize over all peptide sets using a single product.

In order to make computation of our posterior probabilities computationally feasible for large
data sets, we introduce three graph-transforming procedures: partitioning, clustering, and
pruning. These procedures, illustrated in Figure 3, dramatically increase the efficiency of
computing posterior probabilities for the proteins.

3.3.1 Speedup #1: Partitioning—In our model, a protein is dependent on other proteins
within connected subgraphs, but not dependent on proteins that share no peptides with proteins
in the connected subgraph. We exploit this property to compute posterior probabilities for
proteins in a subgraph by enumerating over the power set of proteins in the subgraph. We
accomplish this by partitioning the original graph into connected subgraphs. When a specific
digest, such as trypsin, is used, this transformation considerably decreases the number of
protein sets that need to be evaluated.

3.3.2 Speedup #2: Clustering—We prove (see supplement) that in our probability model,
proteins with identical connectivity can be clustered together to compute their posterior
probabilities with greater efficiency. In Figure 3, proteins 1 and 2 are indistinguishable;
therefore, the case in which protein 1 is present and protein 2 is absent has the same probability
as the case in which protein 1 is absent and protein 2 is present. Thus, these two proteins can
be merged into a single node (Figure 3B), which can occupy three distinct states: a state with
both proteins absent, a state with only a single protein present, and a state with both proteins
present. The state where a single protein is present must now be counted twice because there
are two ways for it to occur. Using this transformation, we enumerate the power set in three
steps rather than four. Generally, merging n proteins reduces the number of states that must be
enumerated from 2"ton + 1.
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3.3.3 Speedup #3: Pruning—We also prove (see supplement) that within a connected
subgraph, any two partitions of proteins that are only connected by peptides with a probability
of zero can be transformed into two subgraphs that do not connect to one another. These zero-
probability peptides are often produced by PeptideProphet when the best spectrum match for
the peptide is a very poor match. Because they are a special case, each zero-probability peptide
implies two necessary events: first, the peptide cannot be emitted by any protein, and second,
the peptide cannot be created by the noise model; for if the peptide were emitted by a protein
or created by the noise model, it would necessarily raise its probability above zero, resulting
in a contradiction. When two protein partitions within a subgraph are connected only through
zero-probability peptides, then neither partition may emit any of those zero-scoring peptides.

The pruning operation copies each zero-probability peptide so that each of these protein
partitions connects to its own copy; therefore, these necessary events remain the same, except
the event that the peptides are not created from noise is now counted twice instead of once,
because a copy has been added. We correct for this overcounting, transforming the original
problem into two partitioned subproblems.

In Figure 3C, proteins 4 and 5 are only connected by a zero-probability peptide. The only
possible events that would produce the observed data require that neither protein 4 nor 5 emit
the peptide and require that the peptide not be created by the noise model. Creating a copy of
the peptide for each of these proteins and then correcting so that the noise model is only counted
once will produce the same posterior probability for each protein.

Table 2 illustrates the effects of these three speed-ups on five different data sets. The first three
rows of the table indicate the size of the input graph, the next four rows list the size of the
corresponding search space initially and after each of the three graph transformations, and the
remaining row shows the runtime of the algorithm. In the most extreme case, H. influenzae,
the graph transformations reduce the size of the search space by nearly 10,000 orders of
magnitude. By reducing the theoretical complexity of the procedure, these graph optimizations
lead to efficient runtimes, as shown in the last row of Table 2. In comparison, ProteinProphet
took 13.3s on the yeast data and 10.7s on the ISB 18 data. MSBayes took 2m23.5s on the Sigma
49 data. We did not have access to the proper files to time ProteinProphet on the H.
influenzae data.

Unfortunately, even after the transformations, the search space associated with the larger data
sets is still prohibitively large. In order to guarantee the efficiency of our algorithm on large
data sets, we approximate the original problem by pruning low-scoring PSMs as if they were
zero-scoring PSMs. With this approximation, the pruning procedure creates subgraphs with
many fewer proteins. Because the user is only interested in using the smallest threshold that
will sufficiently break apart the connected subgraphs, we perform this process recursively and
divide each subgraph using a successively greater flooring threshold. This process is continued
until the total number of steps necessary for marginalization is less than a user-specified value.
The result is that, rather than choosing one strict threshold for the entire data set, the user can
specify a permitted computational complexity, and then different thresholds are employed to
ensure that the method is as efficient as the user requires.

Occasionally, it is necessary to apply the pruning procedure to a PSM with a larger probability.
In these cases, a collection of proteins are connected through a collection of high-scoring PSMs.
These cases are already known to be difficult; in the extreme case, when all PSMs have
probability 1.0, this problem closely resembles the NP-hard minimal set coverage problem
(except, in our case, marginalization requires that each permutation of present and absent
protein states must be considered). Fortunately, any error introduced by pruning will only
distort the probabilities of proteins connected in this way; therefore, accurate protein posteriors
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may be achieved as long as these cases are relatively rare. In the supplement, we show the
distribution of PSM probabilities that must be pruned to achieve no more than 218
marginalization steps, and demonstrate that few pruned PSMs have probabilities greater than
zero. When such a PSM is pruned, the two partitions it joins are approximated as being
independent (even though they may not be). In these cases our method behaves similarly to
the first iteration of ProteinProphet, by treating the peptides as independent.

3.4 Comparison of our method, ProteinProphet and MSBayes

We evaluate a C++ implementation of our method using the five data sets described in Materials
and Methods. The source code of this implementation is publicly available
(http://noble.gs.washington.edu/proj/fido). Starting from the scored peptides, each method
computes a probability for each protein, and these probabilities are used to rank the proteins.
Groups of identically connected proteins are merged for evaluation, and are treated as a single
protein group. Whenever we refer to the number of target proteins or decoy proteins identified
at a threshold or use these values in a calculation, each protein group is counted once, rather
then once for each protein it contains. Groups containing both targets and decoys are not
counted in evaluation; such groups are so infrequent that their treatment doesn’t visibly change
the figures presented.

From each ranked list of proteins, we evaluate the method by creating a receiver operator
characteristic (ROC) curve, which plots true positive counts (i.e., the number of target proteins)
as a function of false positive counts (the number of decoy proteins). A curve is produced by
varying the probability threshold above which a protein is deemed to be present. Because we
are particularly interested in the performance of the algorithms when the false positive rate is
low, we only plot the curve out to 100 false positives along the x-axis. We also evaluate each
ranked list of proteins using a calibration false discovery rate (FDR) plot, which plots the
empirical FDR as a function of the estimated FDR. The empirical FDR is calculated as the
number of decoys identified divided by the total number of proteins identified. In order to
estimate the FDR using posteriors, we exploit the fact that the probability that a protein is
absent is equal to one minus the posterior assigned to the protein; therefore, by assuming that
the posterior probabilities are independent, we can estimate the FDR for any set of proteins by
computing the expected number of false positives (found by the number of proteins minus the
sum of their posteriors) divided by the number of proteins identified at the threshold. If our
method is perfectly calibrated and if the empirical FDR estimate is accurate, then the empirical
FDR and estimated FDR should be equal at every threshold.

Figure 4 shows, for each data set, ROC curves for our method and either ProteinProphet or
MSBayes. We compare against ProteinProphet for the first four data sets, and MSBayes for
the Sigma 49 protein mixture. ProteinProphet has previously been demonstrated to perform
similarly to MSBayes on this data set [Li et al., 2008]. We do not compare against MSBayes
on any other data sets, because the model it employs was trained to be used for the Sigma 49
protein mixture; hence, attempting to compare performance on another data set would be unfair.
The ISB 18 protein data set includes many replicate analyses, so we show the ROC for protein
inference using the pooled replicate data sets. On the yeast data set, our method performs better
than ProteinProphet. On the H. influenzae data, our method performs nearly identically to
ProteinProphet. On the Sigma 49 data set, our method performs similarly to MSBayes, but
achieves a smaller minimum FDR. For the pooled ISB 18 data set, we observe a substantial
improvement over ProteinProphet in the low false positive region. The diagonal line produced
by ProteinProphet for the ISB 18 data set corresponds to 25 proteins that each receive a
probability of exactly 1.0; because this data set includes many spectra, many PSMs associated
with the decoy proteins are assigned scores larger than zero, and the ProteinProphet algorithm
assigns these decoy proteins scores of 1.0.

J Proteome Res. Author manuscript; available in PMC 2011 October 1.


http://noble.gs.washington.edu/proj/fido

1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Serang et al.

Page 10

In addition to ROC curves, the plots in Figure 4 contain series labeled “Overlap,” corresponding
to the number of proteins identified by both methods at a given number of false positives. In
every case, the overlap line is very close to the ROC curves, indicating that the methods are
consistent with one another and identify a largely overlapping set of proteins at each score
threshold.

Table 3 depicts the sensitivity of the methods at different empirical FDRs. Our method
outperforms ProteinProphet on the yeast data and performs significantly better than
ProteinProphet on the ISB 18 data set. On the H. influenzae data set, our method performs
almost identically to ProteinProphet; this similarity can also be observed in the ROC plot in
Figure 4A. On the C. elegans data set, our method performs better at the 0.0 FDR, worse at the
0.01 FDR and better for higher FDRs. On the Sigma 49 data set, our method performs better
than MSBayes, which does not achieve a FDR less than 0.10.

Figure 5 shows, for each data set, the calibration of the posterior probabilities assigned by the
different methods. In these figures, we compare the estimated FDR to the empirical FDR. On
the yeast data set our method has better calibration accuracy compared to ProteinProphet. For
the Sigma 49 data set we achieve better calibration than MSBayes. On the ISB 18 data set our
method is much better calibrated than ProteinProphet. On the H. influenzae data set, both our
model and ProteinProphet are very well calibrated and achieve similar results. On the C. elegans
data set, our method’s calibration is similar or slightly inferior to ProteinProphet.

It should be noted that our empirical FDRs are estimates, which necessarily include some error.
In particular, all decoy proteins are known false positives but not all target proteins are always
present. As a result, we may underestimate the empirical FDR in Figure 5. However, this
observation does not alter our conclusion that our model is similarly or better calibrated
compared to ProteinProphet and MSBayes. For four of the five sets (H. influenzae, ISB 18,
C. elegans, and Sigma 49) our FDR calibration curve is nearly identical to or below the curve
from ProteinProphet, indicating that our method is at least as conservative as ProteinProphet.
Furthermore, on these data sets ProteinProphet is less conservative than an ideal model. Due
to the high level of agreement among the algorithms in Figure 4, it is reasonable to assume that
both curves would similarly move upward; therefore, any negative bias to the empirical FDR
estimation would move both curves similarly upward, causing our model to remain better
calibrated than ProteinProphet. In other words, after correcting for absent targets, it is
preferable to have a more conservative model, and our model is more conservative on these
data sets. Furthermore, the ISB 18 and Sigma 49 data sets consist of several proteins directly
purified into the sample. In these cases, there should be little or no error to the estimated
empirical FDR, because no proteins from the target database should be absent.

We cannot be certain whether we are better calibrated on the remaining yeast data set. However,
at the 0.05 estimated FDR level (which will not be influenced by the potential empirical FDR
bias), we estimate the empirical FDR at 0.034. Even if the empirical FDR was underestimated
by 50%, our method would be nearly perfectly calibrated. For our method to have significantly
worse calibration than ProteinProphet, the bias towards absent targets would need to be
substantial.

Our probability model requires the estimation of three free parameters, a, B, and y. We
empirically choose the set of parameters that jointly maximizes the ROCsg score (the average
sensitivity when allowing between zero and 50 false positives) and minimizes the mean squared
error (MSE) from an ideally calibrated probability. We compute the calibrated MSE by
integrating the square of the difference between the estimated and the empirical FDR over the
estimated FDR range [0, 0.1]. We then perform a rough three-dimensional grid search in the
range [0.01, 0.76] at resolution of 0.05 for a, in the range [0.00, 0.80] at resolution 0.05 for
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B, and in the range [0.1, 0.9] at resolution 0.1 for y. For each triplet of parameters, we compute
both the ROCs5p and the calibration MSE. For each data set we then select the triplet of
parameters that result in an acceptable compromise between the most accurate model and the
best-calibrated model. In order to demonstrate that this comprimise can be achieved
objectively, we minimize (1 — A)MSE — AROCs, where A is a parameter selected to emphasize
ROCs5q or MSE; a A approaching 1.0 will shift the emphasis to the most accurate model, and
a A approaching 0.0 will result in a more calibrated model. We have used A = 0.15 for every
data set.

Because we choose the parameters for each data set, we cannot be certain that the observed
differences in performance between our method and ProteinProphet or MSBayes are not
partially due to overfitting. On the other hand, the optimal o.and 8 parameter values are similar
for these data sets. Furthermore, the influence of the y parameter is limited because we estimate
it with very low resolution, and very few bits of precision are used to define it. Also, the y
parameter almost exclusively contributes to calibration because it upweights or downweights
all proteins in a similar manner; using a fixed y of 0.5, which is equivalent to using a uniform
prior for all protein sets, and performing the grid search for only o and B resulted in nearly
identical ROC figures. The risk of overfitting is also decreased because we are jointly
optimizing both the accuracy and calibration, which are independent values. To demonstrate
the robustness of our model to suboptimal parameters, we also used the values of a, B, and y
that were selected using the H. influenzae data set, but we applied the parameters to a each of
the experiments in the ISB 18 data set. Our method attains a greater ROCsq score than
ProteinProphet for 193/236 (81%), even when using parameters chosen from completely
different data.

Table 4 shows that our method compares favorably to ProteinProphet and MSBayes when
identifying proteins that contain a high-scoring degenerate peptide. On all of these data sets,
our method identifies no decoy proteins that contain a high-scoring degenerate peptide.
Furthermore, it does so without blindly introducing a systematic bias against such proteins.
For instance, on the yeast data, we identify 88 proteins with degenerate peptides without
introducing any false positives. On the ISB 18 and Sigma 49 data sets, our method identifies
nearly the same number of target proteins containing high-scoring degenerate peptides as the
competing methods but without identifying any decoy proteins. In contrast, ProteinProphet
and MSBayes identify six and two decoy proteins on these data sets, respectively. The only
data set where our method does not increase either the sensitivity or specificity without
sacrificing the other is the H. influenzae data, on which we identify four fewer degenerate target
proteins but still maintain perfect specificity. These proteins are not a significant percent of
the targets identified. It should be noted that on the C. elegans data set, we identify many fewer
target and decoy proteins that contain high-scoring degenerate peptides, but on this data set,
ProteinProphet is overly permissive, while our method is overly conservative (as shown by
Figure 5D). Lowering the protein threshold to 0.8 on our method yields a superior sensitivity
and identical or superior specificity for both categories of proteins.

Rather than treating the PeptideProphet values as probabilities and making an ad hoc
correction, our method analyzes all of the data in a gestalt manner. As a result, our emission
model can prevent a degenerate peptide from being counted twice, and the noise model in our
method can prevent spurious evidence from accumulating and awarding an absent protein a
high score. On large, somewhat noisy data sets like the ISB 18 data set, ProteinProphet
effectively aggregates a great deal of noise, resulting in many decoy proteins with estimated
probabilities of 1.0. In contrast, our method gives these decoy proteins smaller probabilities
than ProteinProphet, and more importantly, gives the decoy proteins smaller probabilities
relative to several target proteins.
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In Figure 6, we show a decoy protein (gi|1573516|gb|AAC22189.1|) that matches several
PSMs, but the majority of these PSMs have fairly low scores and are the result of the enormous
number of spectra. In contrast, most of the PSMs associated with the target protein sp|P02643]
TNNI2_RABIT have scores above 0.99. Our method estimates that the target and decoy
proteins have respective posterior probabilities of 1.0 (which is higher than any decoy protein
posterior) and 0.00092. ProteinProphet assigns both proteins posteriors of 1.0, preventing them
from being effectively ranked. For completeness, we also show the decoy protein gi|1573522]
gb|AAC22195.1|, which shares a common PSM with the target. Our method likewise
accumulates the relatively weak evidence supporting this decoy protein to estimate a weak
posterior of 0.019 (which is lower than any target protein posterior). ProteinProphet estimates
a 0.0 probability for the protein gi|1573522|gb|AAC22195.1).

In general, even after partitioning, clustering and pruning zero-probability peptides, we cannot
be sure that the running time of our algorithm will not be prohibitively high. Therefore, as
described above, we allow the user to specify the log of the maximum size of the search space.
If, after the graph transformations, one or more connected components contain too many nodes,
then the probabilities of low-scoring PSMs in the offending components are temporarily set to
zero, increasing the separability. The threshold for this zeroing procedure is adjusted
recursively, on a per-component basis, to achieve the desired search space size (and, hence,
running time). To test how the performance of our method varies as we adjust the size of the
search space, we ran the H. influenzae analysis multiple times with a fixed value for a and
but different search space sizes. Figure 7 shows that the performance (as measured by
ROCsq score) improves in a step-wise fashion as the search space increases.

4 Discussion

We have demonstrated that, using a straightforward probability model, we can efficiently
marginalize to compute protein posterior probabilities with respect to a given collection of
PSMs. The resulting posteriors provide rankings that often out-perform accurate and widely
used existing methods, thus providing evidence that finding an exact or near-exact solution to
this problem is beneficial.

As pointed out by one of the reviewers of this manuscript, the timing results shown in Table
2 are slightly unfair, because we only ran our procedure once rather than multiple times to
select the parameters o and f. In the experiments reported in Figure 4, for example, we ran our
procedure ~1900 times; however, we do not expect users to do such an exhaustive search in
practice. Some parameter values do not make much sense; for instance o = 0, § = 1 would
award all identified proteins with identical scores. Furthermore, empirically, the optimal
parameters from our dense grid search are all fairly similar and would easily be found by a
much lower resolution grid search. For instance, a search over o € {0.01, 0.04, 0.09, 0.16, 0.25,
0.36}, B €{0.01,0.025, 0.05}, y € {0.1, 0.5, 0.9} requires 54 iterations (9 x 3 x 3) and produces
produces similar parameter sets and very similar results. Running our method 54 times (i.e.
loading the data once and marginalizing 54 times) would take less time on the yeast data and
20 seconds longer than ProteinProphet on the ISB 18 data. Note, however, that our method
results in substantially better performance on the latter.

When the marginalization is too expensive, we have proposed a pruning procedure that
approximates the full marginalization. Importantly, the effects of this approximation are
restricted to the graph components in which they are carried out. Thus, when a PSM with a
non-zero probability must be split during the pruning procedure, the pruning will only change
the probabilities assigned to the proteins in that subgraph. In the future, it may be possible to
bound the error introduced by pruning around non-zero nodes. This bound could be used to
design pruning strategies that would minimize the error incurred. When multiple proteins share
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a large group of high-scoring peptides, the problem becomes very similar to the minimum set
coverage problem, which is already known to be very difficult; it resides in the complexity
class NP-Hard, making it equivalent to the Traveling Salesperson Problem. Hence, in these
scenarios even a locally inaccurate approximation may be welcome if the runtime is efficient.

In this work, we have used a relatively simple enumeration strategy to select values of the three
parameters, a, B, and y. A more rigorous approach would set these parameters using cross-
validation. However, such an approach would still require users to provide a decoy database.
We have shown that a, B, and y are robust across different data sets. It would be interesting,
therefore, to investigate strategies for estimating these parameter values without using a decoy
database.

These experiments demonstrate that the quality of ProteinProphet’s analysis depends heavily
on the data set being analyzed. ProteinProphet’s strength and weakness are derived from its
implicit assumptions and its reliance on PeptideProphet. ProteinProphet implicitly assumes
that PeptideProphet scores are true, unbiased probability estimates. ProteinProphet does not
use protein length or the number of associated peptides to correct the PeptideProphet scores
associated with a protein. In a similar manner, ProteinProphet does not correct for the total
number of spectra observed. When myriad spectra are observed, nearly every peptide has a
strong chance of being matched to a spectrum with a high PeptideProphet score. When
ProteinProphet’s assumptions prove to be reasonable, they add extra information and result in
a very accurate and well-calibrated model (e.g., the H. influenzae data set). On data sets where
these implicit assumptions are not helpful and may even be harmful, ProteinProphet performs
similarly or worse than our method (e.g., the yeast and ISB 18 data sets).

One significant difference between our model and ProteinProphet is that our model explicitly
allows the possibility that a high-scoring PSM is the result of an error. In data sets containing
many spectra, the chance of a protein associating with an erroneous high-scoring PSM becomes
higher. This effect can be represented in our model by using a larger value of the  parameter.
It is important to note that even if the B parameter is larger than the o parameter, this does not
mean that a peptide is more probably created from noise rather than from an associated protein.
This is because B is used as the probability that a peptide is matched to a fragmentation scan
given that the peptide was absent. When each protein is associated with several identified
peptides, then the collective effect of these peptides make it very unlikely that they are absent,
substantially lowering the influence of the noise model. ProteinProphet does consider the
number of sibling peptides (NSP), the sum of other peptide scores sharing a protein association
with a candidate peptide, when interpreting a score from PeptideProphet. But the manner by
which this NSP correction lowers inflated peptide scores will not remove a systematic bias
from all peptide scores.

The different manner in which our model handles noise is indicative of a larger fundamental
difference in how our model employs PeptideProphet scores. ProteinProphet uses
PeptideProphet scores as true probabilities and conditions on the NSP score to distinguish
multi-hit proteins from so-called “one-hit wonders.” Without conditioning on NSP, association
with a single high-scoring peptide may be indistinguishable from association with many high-
scoring peptides. In contrast, our model removes the prior probability estimates used by
PeptideProphet and converts them back into discriminant score-based likelihoods. The
difference is that ProteinProphet initially interprets PeptideProphet scores as the probability
that a peptide is present given a paired spectrum was observed, whereas our method initially
uses these scores to compute a value proportional to the probability that a spectrum would be
created given that its paired peptide was present. For a given hypothesized set of present
proteins, our model will compute the likelihood that the spectra were observed given that set
of proteins was present. This subtle distinction lets our model use protein-level information
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when utilizing the PeptideProphet scores to compute protein posteriors. A protein associated
with many high-scoring peptides will score higher than a protein associated with a single high-
scoring peptide, but without using an iterative heuristic like ProteinProphet’s NSP score.

In a similar manner, our method uses protein-level information in a rigorous, gestalt manner
when handling degenerate peptides, rather than by using a correction in hindsight.
ProteinProphet partitions every degenerate peptide’s probability between its associated
proteins. Initially, the peptide is split equally between them to compute the protein probabilities,
but in the next iteration, each protein is afforded a stake proportional to its most recent
probability. Like the NSP correction, this approach works well, but it does so in a somewhat
opaque manner; hence, identifying its implicit assumptions and improving their effects is not
trivial. Rather than heuristically partitioning each identified peptide amongst its associated
proteins, our graphical model allows a protein with strong independent supporting evidence to
“explain away” supporting data that is shared between itself and other proteins (e.g., degenerate
peptides). This happens simply because the likelihood increases only slightly by including the
protein with little independent supporting evidence, but the likelihood decreases substantially
when a protein with substantial independent supporting evidence is omitted. In this manner,
our method automatically apportions information from degenerate peptides during the
marginalization procedure and does not require an ad hoc adjustment.

Like other methods, our model’s assumptions are not perfect. But because we have derived
our model from clear, explicitly stated statistical assumptions, it may be possible to evaluate
their accuracy and replace them with more relaxed assumptions. For instance, when using data
dependent acquisition, assumption #2 may be inaccurate, because the population of peptides
with equal hydrophobicity effectively compete in the MS1 to be selected for collision induced
dissociation. Assumption #4 could be improved by treating spurious peptide identifications as
mismatches between the observed spectrum and peptides that produce similar spectra at that
precursor mass. Assumption #5 may be improved for certain samples by using more complex
priors that more aggressively enforce competition between proteins for ownership of shared
peptides. But perhaps the most fruitful avenue for future work involves relaxing the
assumptions regarding the peptide emission model and the noise model (assumptions #3 and
#4). Using the current model, we have observed that likelihood estimates of a and {3 are not as
good as the empirical estimates, suggesting that relaxed assumptions will better model the type
of data observed in practice. It is intuitive that the likelihood estimates do not match the
empirical estimates, because likelihood estimates essentially infer a uniform prior on all a, B
pairs despite the inherent relatedness between the parameters (the contribution of B decreases
as a increases or as graph connectivity increases). A more accurate model of these probabilities
may preserve the optimizations we have introduced, while taking into account peptide-specific
information. Furthermore, a more sophisticated model would make far greater use of the entire
graph by including peptides that are not matched to any spectra (without unfairly penalizing
proteins that contain many undetectable peptides).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The tandem mass spectrometry process as a graph
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(A) Proteins are connected to peptides that they would theoretically yield when digested.
Spectra are connected to matching peptides, with weights represented the quality of the match.
(B) By taking only the highest scoring peptide match for each spectrum and highest scoring
spectrum match for each peptide, the peptides and spectra can be merged into a single layer of

PSMs.
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Figure 2. Assumptions

The assumptions of the model are illustrated graphically and numbered by their corresponding
assumption numbers from Section 3.2. Solid arrows represent dependencies. Peptides depend
on the proteins and the noise model; present proteins emit associated peptides with probability
a, and peptides that are not created by associated proteins are created by the noise model with
probability B. Spectra depend exclusively on the best-matching peptide. Proteins have identical
and independent prior probabilities y. The marked-out dashed arrows depict dependencies that
do not exist within the model.
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Figure 3. Three speedups
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(C) Pruning

(A) The graph is partitioned into connected subgraphs (enclosed by dashed boxes). Posterior
probabilities can be computed individually for each connected subgraph. (B) Proteins with
identical connectivity are clustered together. In this example, proteins 1 and 2 are clustered to
more efficiently enumerate the power set. (C) Graph components joined only by zero-
probability peptides are separated by creating a copy of each of these peptides for each
subsection. This operation further divides existing partitions to create partitions containing

fewer proteins.
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Figure 4. ROC plots
For each data set, we plot the number of true positives as a function of the number of false
positives. We compare our method to ProteinProphet in (A)—(D) and compare to the ABLA
model of MSBayes in (E). The figure also shows the overlap between the sets of true positive
proteins found at each false positive level. Our method is run on each data set with the same
set of parameters used for the same data set in Figure 5.
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Figure 5. FDR calibration plots
For each data set, we plot the decoy database estimate of the empirical FDR as a function of
the estimated FDR. We compare our method to ProteinProphet in (A)—(D) and compare to the
ABLA model of MSBayes in (E). We also plot the line along which the two axes are equal,
which represents an ideally calibrated model (without considering bias introduced in the
estimation of the empirical FDR). Our method is run on each data set with the same set of
parameters used for the same data set in Figure 4.
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Figure 6. Example of differently ranked ISB 18 proteins
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We show an example of three proteins from the ISB 18 data set, one target (sp|P02643|

TNNI2_RABIT) and two decoys (gi|1573522|gh|AAC22195.1| and gi|1573516|gb|

AAC22189.1)). ProteinProphet assigns posteriors of 1.0 to the target protein sp|P02643|

TNNI2_RABIT and to the decoy protein gi|1573516|gh|AAC22189.1.
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Figure 7. Accuracy against the number of states

The accuracy of the procedure on the H. influenzae data (measured by unnormalized ROCsg
score) increases as the number of states allowed grows. A larger number of states corresponds
to less aggressive pruning; a smaller number of states corresponds to pruning many moderately-
scoring PSMs. The number of states can be thought of as the number of possible protein and
peptide configurations that must be enumerated when marginalizing a connected subgraph with
our optimizations. The H. influenzae has the most complex graph connectivity (due to the
human decoy database used), as illustrated by the number of edges in Table 2.
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