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Summary
The cellular mechanisms driving mammalian epithelial morphogenesis are of significant
fundamental and practical interest. Historically, these processes have been difficult to study directly,
owing to the opacity and relative inaccessibility of mammalian tissues. Recent experimental advances
in time-lapse imaging and in 3D organotypic culture have enabled direct observation of epithelial
morphogenesis. In the mammary gland, branching morphogenesis is observed to proceed through a
novel form of collective epithelial migration. The active unit of morphogenesis is a multilayered
epithelium with reduced apico-basal polarity, within which cells rearranged vigorously. From within
this multilayered state, new ducts initiate and elongate into the matrix without leading cellular
extensions or dedicated leaders. We discuss the implications of these findings on our understanding
of epithelial morphogenesis in other organs and in cancer progression.

Introduction
Epithelia constitute an essential component of branching mammalian organs. Epithelial
structure is established during embryonic development and then dysregulated in epithelial
cancers. Despite tremendous fundamental and practical interest, the cellular mechanisms
driving mammalian epithelial morphogenesis have been, until recently, essentially unknown.

The mammary gland is an important model of mammalian branching morphogenesis.
Mammary development begins with the formation of an ectodermal placode in the mid-
gestation embryo, and proceeds to form a rudimentary ductal tree in the fetus. Unlike other
branched organs, the majority of branching morphogenesis is elaborated in the postnatal
female, and further modulated by reproductive hormonal signals during estrus, pregnancy,
lactation and involution [1]. The postnatal development of the mammary gland, coupled with
the development of mammary specific Cre transgenic mice, has enabled evaluation of the loss
of function phenotypes of dozens of genes and significant insights into the genetic regulation
of branching morphogenesis [2-4].

However, despite these advances, the cellular basis of mammary branching morphogenesis has
until recently been inferred. Histologic and ultrastructural analysis strongly suggested that the
major events of ductal elongation and bifurcation occur at the ends of mammary ducts, in
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specialized structures known as terminal end buds (TEBs) [5,6]. Quiescent mammary ducts
have a bilayered organization with a single luminal epithelial cells layer and basally positioned
myoepithelial cells. The luminal cells organize in a simple epithelium, with tight junctions
defining a fluid filled lumen (Figure 1A). In contrast, the TEB is composed of multiple luminal
epithelial cell layers (body cells) and an outer layer of myoepithelial-like cap cells (Figure 1B)
[1,5,6]. Direct observation of cell behaviors within in vivo mammary ducts or TEBs is made
difficult by an extracellular matrix (ECM) and adipocyte rich stroma that is highly diffractive
for standard fluorescent and confocal imaging techniques.

Importantly, advances on two fronts have made the real-time study of the cellular basis of
mammary epithelial development feasible. First, 3D organotypic culture techniques have
enabled a reasonable model of mammary epithelial development to occur in vitro in a highly
observable and manipulable format [7-9]. Second, long-term multi-position timelapse imaging
culture, has enabled robust observation of the cell movements and behaviors driving the
development of these cultures [10,11]. In this review, we focus on recent progress toward a
cellular description of mammary branching morphogenesis arising from these techniques, and
discuss their implications for our understanding of mammalian epithelial development in other
organ systems and in the invasion strategies of epithelial tumors.

The organoid model of mammary epithelial morphogenesis
Although the timing of mammary branching morphogenesis is controlled by systemic steroid
hormone signals, these signals are interpreted in the context of a signal-rich extracellular matrix
(ECM) and cellular stroma [1]. Decades of work have identified critical ECM-epithelial and
stroma-epithelial signaling interactions capable of modulating mammary development and the
progression of mammary tumors [9,12-14]. These studies have established that tissue
architecture and microenvironmental context can critically influence gene expression, cell
behavior and invasive potential [12,15,16].

The normal tissue architecture of the mammary epithelium is incompletely recapitulated in
classic 2D cultures and so extensive efforts have been directed at developing more organotypic
models of mammary development and neoplasia [7,17]. The “organoid assay” was developed
in the Bissell and Werb laboratories as a model for normal mammary development [10,11,
18-20]. In the organoid assay, epithelial fragments are isolated from the mammary gland by
chopping and enzymatic digestion, embedded in laminin I and collagen IV rich Matrigel and
fed a serum-free media containing defined growth factors (e.g. FGF2) (Figure 1C). Organoids
undergo a rich program of branching morphogenesis that recapitulates multiple cell biological
and histological characteristics observed in vivo, despite greatly reduced levels of adipocytes,
mesenchymal cells and collagen I. Branching epithelial ducts in 3D culture contain multiple
luminal epithelial cell layers, lack forward oriented protrusions and contain convoluted luminal
structures within the multilayered region, observed both in vivo and in vitro (Figure 1B vs.
2B-D) [10]. This close similarity is the basis of the term “organotypic” and the assay enables
the observation of the normal cellular mechanisms of branching morphogenesis in a convenient
and realistic model.

Biomedical engineering based assays complement the organoid assay and have enabled more
precise control of the ECM microenvironment. For example, culture of mammary epithelial
cells in precise, lithographically-patterned ECM enabled researchers to show that the geometry
of the ECM can determine the pattern of branching [21]. This approach has been highly
productive for isolating the influence of specific experimental variables, such as the effect of
local geometry on the diffusion of morphogenetic molecules (e.g. TGFβ [22], the importance
of competition among epithelial cells within a restrained geometry based on differential
expression of matrix metalloproteinases [23] and the ability of local alignment of collagen I to
promote tumor invasion [24]. Engineering based approaches provide a powerful complement
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to more cell biology oriented assays and enable independent modulation of experimental
variables that are present, but difficult to manipulate, in vivo.

The cellular program of mammary branching morphogenesis
Advances in microscope automation have enabled serial imaging of experimentally perturbed
epithelia under identical microenvironmental and imaging conditions (Figure 1D), and enabled
reliable identification and tracking of individual cell behaviors during branching (Figure 2B)
[10,11]. By combining organotypic culture and advanced microscopy, the normal sequence of
events underlying mammary branching morphogenesis has been defined [10]. Organoids
embedded in 3D Matrigel first clear their lumens and establish a polarized bilayered epithelial
architecture. Then, surprisingly, they fill their lumens with cells (Figure 1E). Luminal filling
can be partial or complete but is always observed to precede the initiation and elongation of
new ducts (Figure 1E [10]). Addition of pharmacologic inhibitors established that luminal
filling requires proliferation[10] and that growth factor induced proliferation requires Erk1/2
[10,11]. New ducts initiate, elongate, and bifurcate as a multilayered epithelium and eventually
spontaneously stop and recanalize to adopt a bilayered organization (Figure 1A-B, E and 2A).
During morphogenesis the multilayered mammary epithelium exhibits high levels of
proliferation and reduced apico-basal polarity, both in organotypic culture and in vivo (Figure
1B and 2D) [10].

Mammary branching involves the coordinate, and strikingly different, motility of two epithelial
cell types, the luminal and myoepithelial cells [10]. Luminal epithelial cells contribute to the
elongation of ducts while myoepithelial cells surround and define the basal surface of the
luminal epithelium [10]. Luminal cells within initiating and elongating mammary ducts shared
three key features: the end of the elongating duct was multilayered, there were no evident
subcellular protrusions into the ECM and there were extensive cell rearrangements during
elongation (Figure 2B; [10]). Subsequent staining for F-actin revealed no evidence for actin-
based protrusions extending into the ECM (Figure 2C, [10]). Though ductal elongation
appeared orderly and processive at the tissue level (Figure 2A), analysis of individual cell
behaviors revealed chaotic rearrangements and extensive mixing of cells in the elongation front
(Figure 2B).

Though no direct timelapse analysis of ductal elongation has been performed in vivo, previous
histological and ultrastructural studies of elongating mammary ducts in vivo also revealed a
multilayered epithelial organization within the TEB and a smooth elongation front, without
subcellular protrusions [6]. Myoepithelial cells are in direct contact with the basally located
basement membrane and ECM, while the most basally positioned luminal epithelial cells make
infrequent ECM contact, through gaps in myoepithelial coverage [10,25]. However, the
multilayered epithelial organization that underlies ductal elongation shows reduced apico-basal
polarity; as many cells are located outside of contact with ECM. (Figure 2D, [10]).

Cellular mechanisms of mammalian branching morphogenesis
Real-time, organotypic imaging of branching morphogenesis has also been described in the
salivary gland [26], kidney [27-29], and pancreas [30]. Among these organs, the salivary gland
appears most similar to the mammary gland [31]; both organs undergo branching
morphogenesis as multilayered/stratified epithelia (Figure 3A), but ultimately produce simple
tubes [10,26]. Timelapse movies of epithelial cells within branching salivary gland explants
revealed a surprising degree of dynamic cell movements and rearrangements [26]. Similarly,
epithelial cells within the distal Wolffian duct of the kidney were observed to move actively
and to rearrange dynamically [27]. They then condensed to form a pseudostratified epithelium,
which extends collectively as ureteric bud (UB) epithelium [27]. While, the cell cycle is locally
active in regions preceding UB formation, directed migration of cells from distal regions of
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the Wolffian duct appears also to contribute to UB formation [27]. Moreover, subtle changes
in the level of Ret signaling drive the migration and clustering of cells forming the UB placode
[27]. These results highlight the importance of local mitosis, cell migration and cell shape
change and potentially differences in cell adhesion as mechanisms of endbud formation.

Epithelial bifurcation or ‘clefting’ involves the division of one epithelial unit into two or more
units. Although the molecular and physical mechanisms of cleft formation are largely
undefined, we know most about the progression of these events in the salivary gland. Cleft
formation and progression is hypothesized to result from the exchange of cadherin mediated
cell-cell adhesions for integrin mediated cell-matrix adhesions through the translocation of
fibronectin into the deepening cleft [26,32]. Interestingly, a recent study observed physical
indentations of the plasma membrane into the cytoplasm in luminal epithelial cells during cleft
formation and deepening [33]. These indentations are connected to cytoplasmic actin fibers
and are observed to shift to neighboring cells as the cleft progresses [33].

Two key features are observed during cleft initiation in the salivary gland; deposition of basally
positioned ECM proteins such as fibronectin, collagen I, III and IV [26,34,35] and the presence
of mesenchymal or myoepithelial cells in the branching cleft [33,34]. Robust branching
morphogenesis and deposition of collagen IV in the cleft is dependent on MT2-MMP
modifications of collagen IV matrix [35]. Thus, localized expression or activation of ECM
cleaving proteases may be regulating clefting. Recent work has shown that progression of
salivary clefts requires ROCK1 signaling to MLC2 [36]. One interpretation of this study,
coupled with observations of cellular indentations observed in luminal epithelial cells [33],
suggests that cleft formation deepen based on ROCK1/MLC2 dependent contraction of a
cytoplasmic indentation, possibly anchored to sites of integrin-fibronectin adhesion.
Downstream signaling is becoming clearer, with a recent study showing fibronectin dependent
induction of Btbd7, leading to Snail induction and E-cadherin supression; this loss of E-
cadherin allows local separation of the epithelium and generation of a cleft [37]. It will be
important to determine the cellular source and the molecular mechanisms regulating spatially-
selective deposition of ECM (Figure 3B).

Basal type cells in other branching organs
Basal cell populations are observed in adult branched organs of the prostate, breast, salivary
gland and lungs. These cells are contractile myoepithelial cells (salivary and breast),
nonmyoepithelial basal cells (prostate) or myofibroblasts (lung) [31]. During prostate
morphogenesis all epithelial cells express both luminal and basal cell markers, a subset of
which differentiate in the adult prostate to definitive basal cells [38]. The lung epithelium has
basally localized myofibroblasts. Moreover, these smooth muscle actin positive cells are
observed covering early lung epithelial buds yet are absent from the distal elongating endbud
tips. In addition, these cells are present in the clefts of branching lung epithelial endbuds [39,
40]. The location of these cells suggests that myofibroblasts may restrict or pattern lung
branching in an analogous manner to that of myoepithelial cells in mammary branching [10].
The dynamics and contributions of these basal cell populations for branching morphogenesis
of the lung, salivary gland and prostate remain largely unexplored. A major outstanding
question across the branching organs is the extent to which branching is autonomous to the
luminal epithelium or requires the instructive contributions of the ECM and/or specific stromal
cell populations (Figure 3B).

Patterns of branching morphogenesis
Separate from the question of the formation and elongation of ducts is the question of the
patterning of duct number, geometry and location. Fixed time series analysis of lung
development demonstrated deeply stereotyped branching patterns and proposed that complex

Gray et al. Page 4

Curr Opin Cell Biol. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



branching patterns can be generated from three simpler mechanisms: domain branching, planar
bifurcation and orthogonal branching [40]. By contrast, mammary branching morphogenesis
both in vivo and in organotypic cultured appears non-stereotyped. Imaging of branching
morphogenesis in the kidney revealed that that dipodial terminal branching dominates over
lateral budding [27-29]. Similar analysis in the pancreas illustrates a predominance of lateral
branching behaviors [30]. While future research may reveal unifying themes in the patterning
of all branched organs, at present there appear to be fundamental differences in the branching
patterns of different mammalian organs. It is also possible that geometric or ECM aspects of
the culture conditions employed could be influencing the pattern of branching [22].

Mammary branching morphogenesis and its relevance to cancer pathogenesis
Insights from real-time imaging of mammary branching morphogenesis may also be instructive
for our understanding of at least three stages of cancer pathogenesis: development of in situ
carcinoma, transition to the invasive state, and dissemination.

Luminal filling is an early step in ductal carcinoma in situ
A critical event in carcinoma progression is the development of the preinvasive state. Breast
tumors frequently originate in the terminal duct lobular unit (TDLU), a developmental
analogue of the mouse terminal end bud [41]. One of the earliest steps in breast cancer
progression is the development of a preinvasive lesion called ductal carcinoma in situ (DCIS).
DCIS is defined histologically by the accumulation of cells within the ductal lumen. These
cells are often abnormal in appearance, but are confined within the lumen and are surrounded
by myoepithelial cells and basement membrane [42]. Significantly, luminal filling and loss of
apico-basally polarized epithelial architecture are both long-established features of epithelial
cancers and are frequently observed in both benign and invasive breast lesions [7,43]. Studies
in MCF-10A cells have revealed that overexpression of constitutively active growth factor
receptors, or related signaling molecules, is sufficient to induce a persistently filled lumen
[7]. Separately, it was observed that activation of Erk1/2 was sufficient to induce luminal filling
and motility in luminally confined cells [44]. In this context, the transient, reduced-polarity,
multilayered state seen in mammary organoid culture may represent a common tissue
architectural motif recapitulated in the MCF10A cell line and aberrantly maintained in
carcinoma in-situ [10].

Myoepithelial loss correlates with the in situ to invasive transition
The transition from in situ to invasive carcinoma is pathologically defined by loss of basement
membrane and the myoepithelial cell border at sites of invasion [45]. In addition to this
pathological correlation, there is accumulating evidence that loss of myoepithelial cells has
functional consequences [46-49]. A human breast cancer cell line initially forms DCIS lesions
that subsequently progress to invasive carcinoma [50]. However, when this cell line is co-
injected with myoepithelial cells, progression to invasive carcinoma is significantly reduced
[50]. One proposed mechanism for these observations is that myoepithelial cells may exert
direct effects on the proper polarity of luminal cells in a collagen matrix [51]. Real-time
imaging of mammary branching morphogenesis has revealed highly dynamic interactions
between luminal and myoepithelial cells [10]. These data are consistent with the hypothesis
that myoepithelial cells actively restrict luminal cell movement and direct the growth of normal
ducts [10] and raise the possibility that a similar cellular mechanism may restrain the DCIS to
invasive transition in breast cancer [10,46-50].

Organotypic modeling of cancer invasion
Cancer cells clearly demonstrate the capacity to invade tissues, disseminate, and metastasize.
More recently, advances in confocal and 2-photon microscopy have enabled direct
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visualization of the cellular basis of cancer invasion. These studies have revealed a diversity
of invasion strategies(Figure 4A) [52,53]. Cancer cells have been found to invade singly into
tissue, but also to migrate collectively with intact cell-cell junctions [52] (Figure 4A). These
different modes of invasion can also coexist within the same tumor [54]. Importantly, cancer
cells can also transition between invasion modes. For example, TGF-beta activation has been
associated with single cell movement in breast cancer, and blockade of TGF-beta signaling
reverts cancer cells to a collective invasion strategy [55]. In addition, individual invasive breast
cancer cells can proteolytically expand tracks through the ECM to allow collective invasion
[56] (Figure 4C). In contrast to these findings, during normal mammary branching
morphogenesis, disseminative invasion is not observed, despite dramatic reductions in apico-
basal cell polarity and active epithelial motility [10]. In this context, it is clear that additional
cellular and molecular mechanisms must be dysregulated in invasive cancers.

In mammary branching morphogenesis, invasion through the fat pad is dependent on luminal
cell interactions with stromal components such as fibroblasts and macrophages, as well as with
extracellular matrix including laminin and collagen [1]. These observations suggest that
components of the tumor microenvironment also may be essential for disseminative styles of
invasion [14,57]. In support of this concept, diverse stromal-epithelial interactions have been
observed in cancer invasion (Figure 4B); these include cancer cell interactions with fibroblasts,
pericytes, endothelium, and bone marrow derived cells, most prominently macrophages [57,
58]. It remains an open question to what extent these stromal cell types serve to assist or resist
the invasion and dissemination of cancer cells in human patients.

Directional Guidance in Cancer Invasion
Histologic studies and intravital imaging suggest that stromal components interact with tumor
to promote productive movement toward lymph nodes and blood vessels [57,58]. Various
guidance mechanisms have been identified, and include reciprocal gradients between stromal
components and cancer cells, path-clearing through the ECM, and reorganization of the ECM
matrix (Figure 4C). For example, tumor cells can secrete colony-stimulating factor and attract
macrophages, which in turn secrete epidermal growth factor to guide tumor cells toward blood
vessels, in a process termed macrophage-led tumor invasion [58,59]. In contrast to these
findings, cell-non-autonomous chemoattractant may not be necessary for productive
movement; a self generated chemotaxis gradient can be generated in the presence of even a
small flow rate toward a draining lymph node [60] (Figure 4C). A non-paracrine cellular
mechanism has also been described for stromal fibroblasts. In this form of single cell invasion,
cancer cells undergo strand migration along tracks of extracellular matrix remodeled by leading
fibroblast [61]. The importance of matrix remodeling is further underscored by observations
that alignment and rigidity of collagen are key determinants of direction of tumor invasion
[16,62]. Live cell imaging studies suggest that tumor cells traverse in parallel rather than
perpendicular to collagen tracks as determined by second harmonic generation [62-64]. Some
of these pathologic guidance mechanisms may also function to facilitate, restrict or direct
normal branching process.

Conclusions
Real-time imaging of branching morphogenesis has enabled resolution of this complex tissue
process into a series of events (Figure 1E-F and 2A). Insights from these studies raise a number
of important questions. First, it remains an open question whether morphogenesis is
autonomous to the luminal epithelial cells or requires the contributions of other cell types
(Figure 3B). Second, it remains to be determined how similar the programs of branching
morphogenesis are in different organs. Real-time imaging and organotypic culture provide a
convenient framework within which to resolve the program of branching morphogenesis
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further, into discrete, molecularly-regulated changes in the behavior and properties of
individual cells. The potential for stromal-epithelial recombinations and loss-of-function
experiments ex vivo will enable identification of the critical cellular and molecular regulators
of branching morphogenesis (Figure 3B). The combination of advanced cellular imaging and
molecular genetics will enable us to distinguish whether there is a common developmental
program unifying branching morphogenesis across organ systems.

Organotypic culture and time-lapse imaging also have the potential to elucidate the cellular
and molecular basis of cancer invasion. As in the normal setting, it will be critical to build
suitably realistic organotypic models for specific cancer subtypes and to develop reliable means
to validate conclusions from these studies in human tissue samples. Just as developmental
programs can differ between tissues, there may be different programs for epithelial
morphogenesis in different cancers and cancer subtypes. Understanding the specific
differences between the mechanisms driving cancer and developmental invasion may allow
the identification of novel cancer-specific molecular regulators (Figure 4). More broadly,
understanding the cellular mechanisms driving epithelial branching and invasion will enable
a more nuanced understanding of the molecular mechanisms guiding these processes. Our goal
is to determine how individual genes regulate branching morphogenesis through modification
of discrete cellular behaviors and properties, within the context of a developing tissue and
organ.
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Figure 1. 3D primary organotypic culture makes mammary branching morphogenesis observable
(A, B) Confocal images of anti-body stained sectioned in vivo mammary duct (A) and terminal
endbud (B), illustrating the normal in vivo composition of apical tight junctions (ZO-1; red)
and the basal myoepithelial cell layer (SMA; green). (C) The mammary “organoid” assay
involves isolation of epithelial fragments each initially consisting of 100-500 cells
(“organoids”) from mammary glands through a combination of mechanical and enzymatic
disruption [14,15,35]. These organoids are then subsequently embedded in Matrigel – a
laminin, collagen IV, heparin sulfate rich matrix- and fed a serum-free media containing
defined growth factors (e.g. FGF2). Fragments then develop over a period of 5-10 days and
undergo a complex program of branching morphogenesis. (D) Mice can yield 1-5,000
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organoids each, thereby enabling organoids from the same mouse to be cultured in different
microenvironmental conditions [13,14]. The large scale enables parallel experimental design
in which epithelium from the same mouse is allocated to different ECM, solution or
perturbation (e.g. siRNA) conditions and enables the consequences of these variables to be
assessed individually or parametrically with genetically identical starting material. Advances
in timelapse imaging automation make it possible to image 100-500 movies in parallel and
monitor individual cell behaviors within branching mammalian epithelia over 10s to 100s of
hours. (E) Organoids first clear their lumen to a simple, bilayered architecture, then fill their
lumen with cells prior to initiating, elongating and bifurcating new ducts. Images courtesy of
Kim-Vy Nguyen-Ngoc, Johns Hopkins Medical School. (F) Mammary branching
morphogenesis involves large, but transient, changes in apico-basal polarity, proliferation and
epithelial organization. The functional unit of morphogenesis has high proliferation, low
polarity and multilayered organization (pink). As elongation ceases the epithelium reorganizes
and restores highly polarized simple epithelial organization (green). Images from A-B are
reprinted with permission from [10]. Scale bars are 20 microns.
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Figure 2. The basic program of mammary branching morphogenesis
(A) Epithelial fragments (“organoids”) isolated from the mammary gland will undergo a
complex program of branching morphogenesis in 3D ECM culture. This program involves the
de novo initiation, elongation and bifurcation of new ducts. (B-B′) Cells within the elongation
front rearrange vigorously and there do not appear to be dedicated leader cells [14]. (C-C″)
Elongating mammary ducts have a multilayered organization at the elongation front and do
not have actin based subcellular protrusions into the ECM [14]. (D) Within the multilayered
endbud there is typically a tight junction (ZO-1) lined main lumen as well as isolated
microlumens within the multilayered region (arrows) [14]. ECM = extracellular matrix, ZO-1
= zona occludens 1, a tight junction marker. Images from B-D are reprinted with permission
from [10]. Scale bars are 20 microns.
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Figure 3. Conserved developmental mechanisms for branching morphogenesis
(A) Most mammalian epithelial tubes have a simple organization. However, during active
morphogenesis both the mammary [14] and salivary [26] epithelia are multilayered or
stratified. By contrast lung appears to retain a simple organization during branching
morphogenesis [40]. (B) During branching morphogenesis in each of the epithelial organs there
is a rich diversity of ECM proteins and stromal cell types, including diverse leukocytes and
fibroblasts. Functional evidence has been provided for the importance of macrophages during
mammary development [22,26], but it remains a relatively open question which stromal cell
types are required for, or assist in, the normal development of the epithelial organs. ECM =
extracellular matrix.
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Figure 4. Cellular mechanisms driving epithelial cancer invasion
(A) Cancer cell invasion has been observed to proceed by both individual and collective
mechanisms. Collective migration strategies can include: chains, files and connected, largely
epithelial groups such as pushing boundaries [52]. In addition, single cell invasion can involve
large numbers of individually migrating cells, but the term collective cell migration is reserved
for connected groups of cells. (B) Stromal cells, including macrophages [58] and fibroblasts
[69], have been observed to assist in the invasion of tumors. It remains an open question which
stromal cell types in vivo serve to assist or resist the invasion and dissemination of cancer cells.
Stromal cells could influence the invasion of singly or collectively migrating cancer cells. (C)
A diversity of mechanisms have also been reported to explain the guidance of cancer cell
invasion, including: reciprocal gradients of EGF and CSF-1 between macrophages and cancer
cells [58], autologous chemotaxis whereby molecules released by cancer cells are shifted
towards the lymphatics by interstitial fluid flow [60], pathclearing through the ECM, for
example by fibroblasts ahead of squamous cell carcinoma cells [69] or alternately
reorganization of the ECM to promote the invasion of cancer cells [63]. ECM = extracellular
matrix.
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