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This Journal feature begins with a case vignette highlighting a rare clinical
problem. The clinical problem and the underlying pathophysiology and molecular
mechanisms are then presented, followed by the evaluation and management of the
condition. The article ends with the authors’ thoughts and clinical
recommendations.

Clinical Case
A 29 yr-old woman presented with a long-standing history of fatigue, profound anxiety,
acne, hirsutism, menstrual irregularities and hypertension. The family history revealed
anxiety and hypertension in her father and a paternal aunt. On clinical examination, she was
noted to have acne, hirsutism and elevated blood pressure despite adherence to
antihypertensive treatment, but no clinical signs suggestive of Cushing syndrome. Her
weight was 79 kg, her height 170 cm, and her body mass index 27 kg/m2. Biochemical and
endocrinological evaluation at presentation revealed elevated 0800h serum cortisol
concentrations [56.2 ug/dL; normal range (nr), 8–19 ug/dL], increased 24-hour urinary free
cortisol excretion (187.6 ug/day; nr, 10–34 ug/day), and elevated 0800h plasma ACTH (80
pg/mL; nr, 10–60 pg/mL) and serum testosterone (93 ng/dL; nr, 10–55 ng/dL),
androstenedione (209 ng/dL; nr, 85–275 ng/dL), and dehydroepiandrosterone sulfate (458
ng/dL; nr, 60–255 ng/dL) concentrations. A low dose dexamethasone suppression test (0.5
mg dexamethasone every 6 hours for 48 hours) revealed resistance of the hypothalamic-
pituitary-adrenal axis to dexamethasone suppression (0800h serum cortisol, 13.9 ug/dL;
0800h plasma ACTH, 53 pg/mL). Additional investigations excluded Cushing syndrome,
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primary hyperaldosteronism and other causes of hypertension. How should her condition be
further evaluated and managed?

The Clinical Problem
The patient suffers from “Primary Generalized Glucocorticoid Resistance”, a syndrome first
described and elucidated by Chrousos et al. as a rare, familial or sporadic, genetic condition
characterized by generalized, partial, end-organ insensitivity to glucocorticoids (1–3). In this
syndrome, the resultant compensatory activation of the hypothalamic-pituitary-adrenal
(HPA) axis leads to inferred hypersecretion of hypothalamic corticotropin-releasing
hormone (CRH) and arginine-vasopressin (AVP) in the hypophysial portal system and,
hence, to elevated pituitary adrenocorticotropic hormone (ACTH) in the systemic circulation
(1–3). In turn, the excess ACTH secretion results in adrenal cortical hyperplasia and
increased cortisol secretion as a compensation for the reduced action of glucocorticoids at
target tissues regulating glucocorticoid negative feedback, while it increases production of
adrenal steroids with salt-retaining (mineralocorticoid) [cortisol, deoxycorticosterone (DOC)
and corticosterone] and/or androgenic activity [androstenedione, dehydroepiandrosterone
(DHEA) and DHEA-sulfate (DHEAS)] (1–3). In recognition of Professor George P.
Chrousos' extensive and ground-breaking research work in this field, and for the sake of
brevity, we propose that the term “Chrousos Syndrome” is heretofore used in place of
“Primary Generalized Familial or Sporadic Glucocorticoid Resistance”.

The clinical presentation of Chrousos syndrome reflects the pathophysiologic alterations
described above and is, therefore, mainly associated with, respectively, hypertension and/or
hypokalemic alkalosis and hyperandrogenism (1–3) (Table 1). Clinical manifestations of
glucocorticoid deficiency might occur, but are rare and were only reported in a young child
with hypoglycemic generalized tonic-clonic seizures during the course of a febrile illness
(4), in a newborn baby with severe hypoglycemia, excessive fatigability with feeding,
increased susceptibility to infections and concurrent growth hormone deficiency (5), and in
several adult patients with chronic fatigue. The latter might indicate inadequate
glucocorticoid target tissue compensation at the central nervous system (CNS) and/or the
skeletal muscles by the increased circulating cortisol concentrations (1–3). Clinical
manifestations of androgen excess include ambiguous genitalia in a karyotypic female at
birth and gonadotropin-independent precocious puberty in children of either gender; acne,
hirsutism and hypofertility in both sexes; male-pattern hair loss, menstrual irregularities and
oligo-anovulation in females; and oligospermia in males (1–3) (Table 1). The impaired
fertility in both sexes has been attributed in part to the feedback inhibition of gonadotropin
secretion by the elevated androgen concentrations, while the profound anxiety observed in
some subjects is probably due to compensatory increases in hypothalamic CRH and AVP
secretion. The latter might also predispose the patients to the development of an ACTH-
secreting pituitary adenoma. Finally, the elevated circulating ACTH concentrations may be
responsible for the observed growth of intratesticular adrenal rests and oligospermia (3).

The clinical spectrum of the Chrousos syndrome is broad, ranging from most severe to mild
forms, and a number of patients may be asymptomatic, displaying biochemical alterations
only (1–3) (Table 1). This variable clinical phenotype is owing to variations in the tissue
sensitivity of the glucocorticoid, mineralocorticoid and/or androgen receptor signaling
pathways; variations in the activity of key hormone-inactivating or -activating enzymes,
such as the 11β-hydroxysteroid dehydrogenase (6) and 5α-reductase (7); and other genetic or
epigenetic factors, such as the presence of insulin resistance and visceral obesity (2).
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The Molecular Mechanisms
Glucocorticoids regulate a wide spectrum of physiologic functions essential for life and
contribute to the maintenance of basal and stress-related homeostasis (8,9). At the cellular
level, glucocorticoids interact with their ubiquitously expressed, classic cytoplasmic/nuclear
receptors, the glucocorticoid receptors (GRs), through which they exert genomic and
possibly non-genomic actions. The genomic actions of glucocorticoids are mediated by the
cytoplasmic/nuclear receptors, which are activated by ligand-binding, liberated from protein
oligomers containing heat shock proteins and translocate into the nucleus, where they either
bind as dimers to glucocorticoid-response elements (GREs) or they interact – possibly as
monomers – with other transcription factors (Figure 1A). Glucocorticoids, thus, regulate the
expression of their own GRE-containing target genes and/or the target genes of interacting
transcription factors positively or negatively. Glucocorticoid receptors mediating the non-
genomic actions of glucocorticoids have not been elucidated as yet, however, they are under
intensive investigation.

The molecular basis of Chrousos syndrome has been ascribed primarily to mutations in the
human (h) glucocorticoid receptor (hGR) gene, which impair the molecular mechanisms of
hGR action and decrease tissue sensitivity to glucocorticoids. The pathologic hGR gene
mutations causing Chrousos syndrome that have been reported to date are shown in Table
1B and Figure 1B (4,5,10–21). Eight out of 12 of these mutations are heterozygous (4 are
homozygous), while 11 out of 12 partially inactivate GR function. Although studies of GR
knock-out mice suggested that complete loss-of-function of the GR is incompatible with
extrauterine life (22), one out of 12 of the mutations completely inactivated GR function (5).

The pathophysiologic mechanisms leading to the manifestations of Primary Generalized
Glucocorticoid Resistance, the first therapeutic use of a mineralocorticoid-sparing
glucocorticoid compound (dexamethasone) and the majority of the hGR mutations
associated with the syndrome were respectively elucidated, employed and identified by
Professor George P. Chrousos, his team at the National Institute of Child Health and Human
Development, National Institutes of Health, Bethesda, Maryland, USA, and various
collaborators (10–21). The pathologic hGR mutants reported were functionally characterized
by various members of his team and collaborators throughout the years. As a result, the
molecular mechanisms through which these various natural hGR mutants affected
glucocorticoid signal transduction were systematically investigated in all reported cases with
the condition. These mechanisms included: i) the transcriptional activity of the mutant
receptors; ii) the ability of the heterozygous mutant receptors to exert a dominant negative
effect upon the wild-type receptor; iii) the concentrations and affinity of the mutant
receptors for the ligand; iv) the subcellular localization of the mutant receptors and their
nuclear translocation following exposure to the ligand; v) the ability of the mutant receptors
to bind to GREs; vi) the interaction of the mutant receptors with the glucocorticoid receptor-
interacting protein 1 (GRIP1) coactivator, which belongs to the p160 family of nuclear
receptor coactivators and plays an important role in hGRα-mediated transactivation of
glucocorticoid-responsive genes; and vii) the motility of the mutant receptors inside the
nucleus (10–21).

The molecular defects that have been elucidated in cases with Chrousos syndrome and have
been reported to date are summarized in Table 1B. Compared with the wild-type receptor,
all mutant receptors demonstrated variable reduction in their ability to transactivate
glucocorticoid-responsive genes following exposure to dexamethasone, with the most severe
impairment observed in the cases of R477H, I559N, V571A and D641V mutations (10–21).
Furthermore, the mutant receptors hGRαI559N, hGRαF737L, hGRαI747M and hGRαL773P
exerted a dominant negative effect upon the wild-type receptor, which might have
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contributed to the manifestations of the disease at the heterozygote state (10,14,17,19,21).
All mutant receptors in which the mutations were located in the ligand-binding domain
(LBD) of the receptor showed a variable reduction in their affinity for the ligand, with the
most severe reduction observed in the cases of I559N, I747M and V571A mutations (10–
21). The only mutant receptor that demonstrated normal affinity for the ligand was the
hGRαR477H, in which the mutation was located at the DNA-binding domain (DBD) (20).

In subcellular localization and nuclear translocation studies, the pathologic mutant receptors
were observed primarily in the cytoplasm of cells in the absence of ligand, except for the
hGRαV729I and hGRαF737L receptors, which were localized both in the cytoplasm and the
nucleus of cells. Exposure to dexamethasone induced a slow translocation of the mutant
receptors into the nucleus, which ranged from 20 min (R477H) to 180 min (I559N and
F737L) compared with the wild-type hGRα, which required only 12 min for complete
translocation (10–21). These findings suggest that all hGR mutations affect the
nucleocytoplasmic shuttling of the receptor, probably through impairment of the nuclear
localization signal (NL)-1 and/or NL2 functions (23).

All mutant receptors in which the mutations were located in the LBD preserved their ability
to bind to DNA (10–21). The only mutant receptor that failed to bind to DNA was the
hGRαR477H, in which the mutation was located at the C-terminal zinc finger of the DBD
(20). A major function of the C-terminal zinc finger of the DBD of hGRα is to contribute to
receptor homodimerization, a prerequisite for potent receptor binding to GREs and efficient
transactivation of glucocorticoid-responsive genes (24). All mutant receptors except
hGRαR477H displayed an abnormal interaction with the GRIP1 (SRC-2) coactivator in vitro
(10–21). Finally, all mutant receptors had dynamic motility defects inside the nucleus of
living cells, possibly caused by their inability to properly interact with key partner nuclear
molecules of the transcription initiation complex necessary for full activation of
glucocorticoid-responsive genes (25).

Evolutionary and Phylogenetic Aspects of Glucocorticoid Resistance: An
as yet Unresolved Enigma

The glucocorticoid receptor (GR) is a member of the subfamily of steroid hormone receptors
of the superfamily of nuclear receptors. Vertebrate genomes contain six evolutionarily
related nuclear receptors for steroid hormones: two for estrogens (ERα and ERβ) and one
each for androgens (AR), progestins (PR), glucocorticoids (GR) and mineralocorticoids
(MR). Steroid receptors evolved in the chordate lineage after the separation of
deuterostomes and protostomes, prior to or at the base of the Cambrian explosion about 540
million years ago (26). The genome of ‘higher’ vertebrates is thought to be the result of two
genome duplication events that occurred early in chordate evolution (26,27). The first gene
duplication created an estrogen receptor (ER) and a 3-ketosteroid receptor, whereas the
second duplicated the latter gene to produce a corticoid receptor and a receptor for 3-
ketogonadal steroids. Therefore, the ancestral vertebrates had three steroid receptors: an
estrogen receptor (ER), a corticosteroid receptor (CR) and a receptor that bound androgens,
progestins or both. At some later stage within the gnathostome lineage, each of these three
receptors duplicated yet again to yield the six steroid receptors currently found in jawed
vertebrates: the ER to create ERα and ERβ, the CR to yield the GR and the MR, and the 3-
ketogonadal steroid receptor to create the PR and the AR. The GR and MR are thought to
have evolved approximately 450 million years ago (28).

These phylogenetic data suggest many commonalities between the steroid hormone and
possibly other nuclear receptors. In the early 80’s, Chrousos et al. showed that many or,
most likely, all New World primates, which evolved from a common ancestor that separated
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from Old World primates approximately 60 million years ago, exhibited a “physiologic”
form of Chrousos syndrome (29). These species have markedly elevated plasma total and
free cortisol concentrations, increased urinary free cortisol excretion, marked increases in
plasma ACTH concentrations and resistance of their HPA axis to dexamethasone
suppression, without any clinical evidence of hypercortisolism. Studies of the glucocorticoid
receptors in circulating mononuclear leukocytes and cultured skin fibroblasts from both New
and Old World primate species showed that the receptor content was the same in all species,
but the New World monkeys had a markedly decreased binding affinity for dexamethasone.
These alterations in the affinity of the glucocorticoid receptors for the ligand must have
occurred after the bifurcation of the New World from the Old World primates and before the
diversion of the New World monkeys from each other (29–31).

More recent studies demonstrated that the generalized glucocorticoid resistance in squirrel
monkeys arose as a result of both naturally occurring mutations in the GR gene that led to
inefficient transactivation and overexpression of FKBP51 that inhibits ligand binding (32).
These hypotheses indicate that the glucocorticoid resistance seen in New World monkeys
may be caused in part through the introduction of de novo harmless and well tolerated over a
long time mutations, different from those that underlie the Chrousos syndrome observed in
human patients that were recent and apparently not well tolerated.

In the early 80’s, Chrousos et al. and other investigators demonstrated that New World
primates had what could be called “pansteroid/sterol” resistance to steroid and sterol
hormones, including all steroid hormones and the sterol hormone 1, 25-dihydroxy Vitamin
D (29–31). Indeed, the circulating levels of all these hormones are markedly elevated
compared to those of Old World Primates and, accordingly, the target tissues are resistant to
them. Chrousos proposed that these findings could only be explained by changes of a
molecule common and crucial in the signal transduction of all steroid/sterol hormones,
possibly a nuclear receptor coactivator or a corepressor, predicting the presence of such
molecules many years before their discovery by O’Malley and co-workers (29,33). This
molecule(s) has(ve) eluded attempts to identify it(them) and the pansteroid/sterol resistance
of New World primates remains an interesting enigma to be resolved.

Clinical Implications of Glucocorticoid Signaling Changes beyond the
Syndrome

Chrousos et al. early on formulated two hypotheses related to potential human
glucocorticoid signaling system-associated pathophysiology: First, that tissue-specific
changes of glucocorticoid action could lead to a variety of human diseases and, second, that
tissue-specific glucocorticoid hypersensitivity would be equally or more important than
tissue-specific glucocorticoid resistance (Table 2) (2,8,9,34). Chrousos and co-workers
identified two mutations associated with glucocorticoid hypersensitivity, one as early as
1993 and the other recently (12,35). This condition represents the mirror image of Chrousos
syndrome and is not discussed further in this review.

Clinical Evaluation of the Patients
The first step in evaluating a patient with suspected Chrousos syndrome is to obtain a
complete personal and family history, with particular attention to evidence suggesting
hyperactivity of the HPA axis and ACTH hypersecretion-related pathology. In addition, any
evidence suggesting possible CNS dysfunction, such as headaches, visual impairment or
seizures, should be noted. In female subjects, the regularity of menstrual cycles should be
documented. In children and adolescents, growth and sexual maturation should be evaluated
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carefully, given that progressive hyperandrogenism is almost invariably associated with an
increased growth velocity, an advanced bone age and changes in pubertal development.

The physical examination should include an assessment for signs of hyperandrogenism and/
or virilization, such as acne, hirsutism, pubic and axillary hair development, male-pattern
hair loss and clitoromegaly. Hirsutism should be assessed using the Ferriman-Gallwey score
(36), while pubic hair development should be classified according to Tanner (37,38).
Arterial blood pressure should be recorded and preferably monitored over a 24-hour period.
All subjects should be screened for signs suggestive of Cushing syndrome and undergo a
complete neurologic examination.

Endocrinologic Evaluation of the Patients
The concentrations of plasma ACTH, plasma renin activity (recumbent and upright) and
aldosterone, as well as those of serum cortisol, testosterone, androstenedione, DHEA and
DHEAS should be recorded in the morning. Determination of the 24-hour urinary free
cortisol (UFC) excretion on 2 or 3 consecutive days is central to the diagnosis, given that
patients with Chrousos syndrome demonstrate increased 24h UFC excretion in the absence
of clinical manifestations suggestive of hypercortisolism. Plasma ACTH concentrations may
be normal or high. However, the circadian pattern of ACTH and cortisol secretion and their
responsiveness to stressors are preserved, albeit at higher concentrations.

The responsiveness of the HPA axis to exogenous glucocorticoids should also be tested with
dexamethasone. Increasing doses of dexamethasone should be given orally at midnight
every other day, and a serum sample should be drawn at 0800h the following morning for
determination of serum cortisol and dexamethasone concentrations. Affected subjects
demonstrate resistance of the HPA axis to dexamethasone suppression, which may vary
depending on the severity of the condition. The concurrent measurement of serum
dexamethasone concentrations is suggested in order to exclude the possibility of increased
metabolic clearance or decreased absorption of this medication.

Molecular Studies in the Patients
Thymidine incorporation assays and dexamethasone-binding assays on peripheral blood
mononuclear cells in association with sequencing of the hGR gene are necessary to confirm
the diagnosis in patients suspected to have Chrousos syndrome and to be able to provide
genetic counseling (10–21) (Table 1A). In affected subjects, the thymidine incorporation
assays reveal resistance to dexamethasone-induced suppression of phytohemaglutinin-
stimulated thymidine incorporation, while the dexamethasone-binding assays often show
decreased affinity of the hGR receptor for the ligand compared to control subjects (3).
Sequencing of the coding region of the hGR gene, including the intron/exon junctions, will
reveal mutations or deletions in most (10–21) but not all (39) cases with Primary
Generalized Glucocorticoid Resistance. Finally, once the structural defect is determined, its
adverse effects on receptor function should be confirmed using in vitro mutagenesis and
standardized assays that examine the ability of the mutant receptor to transactivate
glucocorticoid-responsive genes.

Management of the Patients
The aim of treatment in Chrousos syndrome is to suppress the excess secretion of ACTH,
thereby suppressing the increased production of adrenal steroids with mineralocorticoid and
androgenic activity. Treatment involves administration of high doses of mineralocorticoid-
sparing synthetic glucocorticoids, which activate the mutant and/or wild-type hGRα, and
suppress the endogenous secretion of ACTH in affected subjects (1–3). Adequate
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suppression of the HPA axis is of particular importance in cases of severe impairment of
hGRα action, given that long-standing corticotroph hyperstimulation in association with
decreased glucocorticoid negative feedback inhibition at the hypothalamic and pituitary
levels may lead to the development of an ACTH-secreting adenoma (10). Long-term
dexamethasone treatment should be carefully titrated according to the clinical manifestations
and biochemical profile of the affected subjects (1–3).

Conclusions and Recommendations
In the case described in the vignette, the profound anxiety, acne, hirsutism, menstrual
irregularities and hypertension, along with the increased 24h UFC excretion and resistance
of HPA axis to low-dose dexamethasone suppression in the absence of Cushing’s
manifestations, suggested the diagnosis of Chrousos syndrome or Primary Generalized
Glucocorticoid Resistance. Written informed consent was obtained from the patient and
additional molecular studies were undertaken. The thymidine incorporation assays revealed
resistance to dexamethasone-induced suppression of phytohemagglutinin-stimulated
thymidine incorporation in the patient white cells compared with cells from a matched
control subject. The dexamethasone-binding assays showed that the affinity of the hGR for
the ligand was 2.7-fold lower in the patient than in the control subject. No difference was
noted in the number of binding sites between the two subjects. Sequencing of the hGR gene
in the patient revealed a single heterozygous thymine to cytosine (T → C) substitution at
nucleotide position 2318 (exon 9α), resulting in leucine (L) to proline (P) substitution (CTG
→ CCG) at amino acid 773 in the ligand-binding domain of the receptor (19).

Molecular studies were undertaken to systematically investigate the molecular mechanisms
through which the natural hGRαL773P mutant impaired glucocorticoid signal transduction.
Compared with the wild-type hGRα, the mutant receptor hGRαL773P demonstrated a 2-fold
reduction in its ability to transactivate glucocorticoid-responsive genes, exerted a dominant
negative effect on the wild-type receptor, had a 2.6-fold reduction in the affinity for ligand,
showed delayed nuclear translocation and, although it preserved its ability to bind to DNA,
displayed an abnormal interaction with the GRIP1 coactivator in vitro (19).

Following treatment with high dose of dexamethasone (2 mg at night), the clinical
manifestations of the condition subsided, the serum cortisol concentration was suppressed,
and the concentrations of plasma ACTH and serum testosterone, androstenedione, and
dehydroepiandrosterone sulfate were normalized. The patient’s father did not provide
consent or tissues for any additional endocrinologic or genetic testing despite our advice to
the contrary (19).

The variable clinical phenotype of Chrousos syndrome, including chronic fatigue, mild
hypertension and hyperandrogenism, in association with the difficulties encountered in
establishing the correct diagnosis may account for the low reported prevalence of the
condition, given that many cases may be unrecognized and misclassified. We recommend
screening with 24h UFC excretion and sequencing of the hGR gene in patients with
manifestations of mineralocorticoid and androgen excess (hypertension, hirsutism,
menstrual irregularities, oligo-anovulation, impaired fertility), in whom detailed
investigations fail to reveal an underlying etiology.
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Figure 1.
Heuristic, simplified representation of the glucocorticoid signaling system and gene and
pathologic mutations of the GR gene causing Chrousos syndrome. (A) Nucleocytoplasmic
shuttling of the glucocorticoid receptor. Upon binding to the ligand, the activated hGRα
dissociates from heat shock proteins (HSPs) and translocates into the nucleus, where it
homodimerizes and binds to glucocorticoid response elements (GREs) in the promoter
region of target genes or interacts with other transcription factors (TFs), such as activator
protein-1 (AP-1), nuclear factor-κB (NF-κB) and signal transducer and activator of
transcription-5 (STAT5), ultimately modulating the transcriptional activity of respectively
GRE- or TFRE-containing genes. (B) Location of the known mutations of the glucocorticoid
receptor (hGR) gene causing Chrousos syndrome. DBD: DNA-binding domain; GR:
glucocorticoid receptor; GREs: glucocorticoid response element; HSP: heat shock protein;
LBD: ligand-binding domain; NTD: amino terminal domain; TF: transcription factor;
TFRE: transcription factor response element.
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TABLE 2

Expected Clinical Manifestations in Target Tissue Hypersensitivity or Resistance to Glucocorticoids *

Target area Glucocorticoid excess = Glucocorticoid hypersensitivity Glucocorticoid deficiency = Glucocorticoid
resistance

Central nervous system Insomnia, anxiety, depression, defective cognition Fatigue, somnolence, malaise, defective cognition

Liver + Gluconeogenesis, + lipogenesis Hypoglycemia, resistance to diabetes mellitus

Fat Accumulation of visceral fat (metabolic syndrome) Loss of weight, resistance to weight gain

Blood vessels Hypertension Hypotension

Bone Stunted growth, osteoporosis

Inflammation/immunity Immune suppression, anti-inflammation,
vulnerability to certain infections and tumors

+ Inflammation, + autoimmunity, + allergy

*
Modified from References 2,8,9.

Eur J Clin Invest. Author manuscript; available in PMC 2011 October 1.


