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Studies in populations of forest tree hybrids have
shown a negative correlation of biomass growth (usu-
ally measured as wood volume) and lignin content
(Kirst et al., 2004; Novaes et al., 2009). The control of
growth and lignin appears to be highly regulated,
implying that selection for improved growth rate
could effect a reduction in lignin content. Trees with
increased biomass and reduced lignin would provide
a yield advantage for pulp and paper production, as
well as for production of biofuels. The purpose of this
article is to briefly review the evidence for the corre-
lation between lignin content and biomass growth and
to discuss this correlation in a metabolic context. We
review evidence that the regulation of the balance
between lignin biosynthesis and biomass growth is
mediated, at least in part, at the level of transcription,
and expand previous results to show specific regula-
tion within gene families of monolignol biosynthesis.
Finally, we suggest a model of physiological control
for the regulation of the relationship of wood forma-
tion and lignin content in trees.
Wood, used by human societies for millennia, re-

mains one of the world’s most abundant rawmaterials
for industrial products and renewable energy. Wood is
the secondary xylem of vascular plants, a tissue
formed from the terminal differentiation of the inner
side of the cambial meristem for vertical and horizon-
tal transport of water, nutrients, and extractives. The
secondary cell wall structure and composition of wood
are the primary determinants of its physical and
chemical properties, and of its energy content. Wood
is typically composed of about 25% lignin, and 70%
cellulosic carbohydrates, with roughly 45% cellulose
and 25% hemicelluloses (Sjostrom, 1993).

THE PROPERTIES OF LIGNIN IN WOOD

Lignin is a complex phenolic polymer that provides
an embedding material for the cellulosic polymers of
the secondary cell walls. It is also the major polymer in
the middle lamellae between adjacent cell walls
(Plomion et al., 2001; Boerjan et al., 2003). Lignin
provides the hydrophobic surface that allows plants
to transport water to heights greater than 100 m
(Carder, 1995; Koch et al., 2004) and contributes to
the mechanical strength that can support trees weigh-
ing more than 2,000 metric tons (Fry and White, 1938).
Lignin’s physical and chemical properties also serve as
a barrier against the invasion of pests and pathogens
(Vance et al., 1980; Bhuiyan et al., 2009). For the forest
products industries, lignin is the major barrier to
efficient extraction of cellulose fibers for pulp and
paper production. For the bioenergy industries, lignin
is a barrier to saccharification for production of liquid
biofuel (Li et al., 2003; Chen and Dixon, 2007).

LIGNIN VARIATION

While lignin is fundamental to growth andadaptation
ofherbaceousandwoodyplants (SarkanenandLudwig,
1971; Boerjan et al., 2003; Ralph et al., 2007;Heitner et al.,
2010; Vanholme et al., 2010), it is not clear how much
lignin is needed or howmuch its compositionmay vary.
Within a plant, lignin content can vary greatly in differ-
ent tissues; for example, lignin is very low in young
shoots and high in wood. In different tree species the
lignin content of wood can vary from 15% to 40%
(Sarkanen and Ludwig, 1971). Within a species, average
lignin content of wood is much less variable, often
ranging only a few percent (Einspahr et al., 1964; van
Buijtenen et al., 1968). Lignin content is also increased or
decreased in wood formed under gravitropic stimula-
tion or mechanical stress (known as reaction wood;
Timell, 1969, 1986; Andersson-Gunneras et al., 2006). In
softwoods (gymnosperms), compression wood may be
up to 40% lignin, and in hardwoods (angiosperms),
tension wood fibers have a specialized gelatinous cell
layer that is almost devoid of lignin (Timell, 1969).

Lignin composition is also highly variable. There are
two main types of subunits in lignin. One derived
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from coniferyl alcohol monomers forms guaiacyl (G)
units, resulting in a lignin typical of softwoods. A
second monomer sinapyl alcohol forms syringyl (S)
units after polymerization. Amixed type of lignin with
both G and S units is typical of hardwoods, and is
characterized by the ratio (S/G ratio) of subunits. The
S/G ratio varies greatly among hardwoods (Sarkanen
and Ludwig, 1971).

In herbaceous and field crops, significant reductions
in lignin have been achieved by traditional breeding,
spontaneous mutation, and by transgenesis. In gen-
eral, reduced lignin is associated with depressed
yields (Pedersen et al., 2005). However, in many cases,
lignin can be reduced without reducing yield or fit-
ness. Genetic background and diverse environments
have a significant role.

LIGNIN EVOLUTION

Because of its roles in water transport, mechanical
support, and biodefense, lignin is intimately associ-
ated with the evolution of vascular plants (Robinson,
1990). Early large plants may have had higher lignin
contents than we find today. Ferns and lycopods, the
predominant plants of the middle to late Paleozoic
(350–250 million years ago [Mya]), are likely to have
had lignin contents of 30% to 50% or more. During the
Mesozoic (250–65 Mya), when gymnosperms were
dominant, lignin contents of wood were 30% to 35%.
In the late Cretaceous (80 Mya) and following, angio-
sperms and pinaceous gymnosperms with lignin con-
tents of 30% or less, replaced earlier flora. Although
the lignin content of angiosperms varies greatly, with
grasses having 5% to 10% (van Soest, 1982; Schaefer
et al., 1985) and some tropical hardwoods were reported
to have more than 40% (Fengel and Wegener, 1983), an

average lignin content of 20% has been estimated for
modern land plants (Robinson, 1990).

LIGNIN IS AN ENERGY-RICH CARBON SINK

While lignin clearly confers an adaptive advantage,
it is also a substantial metabolic sink for reduced
carbon (C). The strength of the C sink for lignin versus
other cell wall components may have implications that
extend beyond the simple balance of C partitioning.
Lignin has a higher energy content than cellulose or
hemicelluloses. One gram of lignin has on average 2.27
KJ, 30% more than the energy of cellulosic carbohy-
drate (Shafizadeh and Chin, 1977; White, 1987). The
energy content of lignin is similar to that of coal
(McLaughlin et al., 1996). Because lignin is more
reduced than the cellulosics, the energetics of plant
growth suggests that more wood could be formed if
the content of lignin were reduced. Analysis of met-
abolic stoichiometry indicates that it takes the energy
equivalent of 2.7 to 3.0 g of Glc to produce 1 g of lignin
(Amthor, 2003).

EARLY INDICATIONS

An early indication of a negative correlation be-
tween biomass growth and the lignin content of wood
was proposed for loblolly pine (Pinus taeda) carrying a
natural mutation in the gene encoding CINNAMYL
ALCOHOL DEHYDROGENASE (CAD), the last en-
zyme of the monolignol biosynthetic pathway. A null
allele cad-n1 was associated with a significant increase
in second year shoot elongation and fourth year wood
volume (Wu et al., 1999). This effect was significant but
variable, depending on genetic background, in subse-
quently tested populations of 15-year-old pines (Yu

Figure 1. A, Diameter growth and transcript level for CAld5H (for coniferaldehyde 5-hydroxylase; also known as F5H, for
ferulate 5-hydroxylase) are negatively correlated (r = 20.62; P value , 0.0001) in a hybrid backcross population of Eucalyptus
(Kirst et al., 2004). CAld5Hwas the gene with the highest correlation to diameter growth. Similar results from Populus are shown
in Figure 2. B, The negative correlation (r = 20.48; P value , 0.0001) between growth and lignin is based on measurements
made in 396 genotypes of Populus family 52-124 (Novaes et al., 2009).
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et al., 2006). In another survey using loblolly pine
clones (age 6), the clone means ranged from 30.0% to
32.6% in lignin content. A negative correlation of
growth and lignin content was small with an r2 of
0.13 (B. Li, unpublished data). A negative correlation
between lignin and biomass growth in woody angio-
sperms was observed in a transgenic aspen (Populus
tremuloides) down-regulating 4-COUMARATE-CoA
LIGASE (4CL) in the monolignol biosynthesis pathway
(Hu et al., 1999). 4CL transgenic plants exhibited a 45%
reduction in lignin levels that was compensated by a
15% increase in cellulose and 17% to 57% increase in
hemicelluloses. This reduction in the lignin to cell wall
carbohydrate ratio was associated with significantly

enhanced growth in all vegetative organs (Hu et al.,
1999).

NEGATIVE CORRELATION OF LIGNIN
WITH BIOMASS

Analyses of lignin and growth in interspecific map-
ping populations of Eucalyptus and Populus indicate a
clear association between cell wall composition and
plant growth. Microarray analysis of transcript abun-
dance in a segregating population of Eucalyptus
grandis 3 globulus hybrids found that transcripts from
most of the genes encoding enzymes of the monolignol

Figure 2. Correlations (Spearman) of biomass growth (biom) and lignin levels with transcript abundance of specific monolignol
biosynthetic genes in a interspecific pseudo-backcross pedigree of Populus (family 52-124). Analysis of lignin and microarrays
estimates of relative abundance are from Novaes et al. (2009) and Drost et al. (2010). Each step of the pathway is shown with the
specific genes known to be highly expressed in differentiating xylem in P. trichocarpa (Shi et al., 2010). Abbreviations of the
monolignol biosynthetic enzymes are as follows: PAL, Phe ammonia-lyase; C4H, cinnamate 4-hydroxylase; HCT, hydroxy-
cinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase; C3H, p-coumarate 3-hydroxylase; CCoAOMT, caffeoyl-CoA
O-methyltransferase; CCR, cinnamoyl-CoA reductase; CAld5H, coniferaldehyde 5-hydroxylase; COMT, caffeate 3-O-methyl-
transferase.

Negative Correlation of Biomass and Lignin
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biosynthesis pathway were coordinately down-regu-
lated in fast-growing individuals (Fig. 1A; Kirst et al.,
2004). Chemical analysis of wood from individual
trees demonstrated a 10% reduction in lignin among
the fastest-growing trees relative to slow growers and
an increase in the S/G ratio in slow-growing trees
(Kirst et al., 2004).

More recently, an interspecific pedigree of Populus
(Populus trichocarpa 3 deltoides) with 396 clonally rep-
licated genotypes was characterized for growth and
wood composition under two nitrogen levels (Novaes
et al., 2009). Highly significant negative genetic corre-
lations (r = 20.48, P value , 0.001) were observed
between plant growth and lignin content (Fig. 1B). The
above-ground biomass was also negatively correlated
with S/G ratio (20.59). Cellulose was positively cor-
related with growth (r = 0.58%, P value , 0.001).

While the primary points of regulation of C parti-
tioned to lignin or cellulose biosynthesis, are not
known, it is clear that there is coordinated transcrip-
tional control of genes involved in monolignol biosyn-
thesis. Similar to the results previously observed in
Eucalyptus (Kirst et al., 2004), expression of lignin
biosynthesis genes was coordinated with above-
ground growth in the segregating family of Populus
analyzed by Novaes et al. (2009). Analysis of this
population with whole-transcriptome microarrays de-
veloped to discriminate among members of gene
families (Fig. 2; Drost et al., 2009, 2010) detected a
negative correlation between biomass growth and
transcript levels for most of the genes recently inferred
to be important in lignin biosynthesis in P. trichocarpa
(Shi et al., 2010). The correlation with biomass is not
observed in most gene family members not signifi-
cantly expressed in xylem tissue.

COORDINATE CONTROL

The coordinated regulation of lignin biosynthesis
genes is associated not only with developmental var-
iation (e.g. growth) but also occurs in response to

environmental cues, such as nitrogen, Suc, and Phe
availability (Anterola et al., 2002; Kirst et al., 2004;
Scheible et al., 2004). This coordinated transcription
extends beyond the phenylpropanoid pathway, in-
cluding genes in the biosynthesis of aromatic amino
acid precursors for Phe and S-adenosylmethionine
(Anterola et al., 2002; Kirst et al., 2004). Quantitative
trait locus (QTL) mapping of phenotypes and expres-
sion QTL mapping of transcript level variation
provides locations of genomic regions containing
candidate genes responsible for coordinate control.
Quantitative trait mapping in the P. trichocarpa 3
deltoides population identified the location of many
potential pleiotropic regulators. A major QTL, identi-
fied on LGXIII, is responsible for an estimated 56% of
the heritable variation in the cellulose to lignin ratio,
and at least 20% of the heritable variation of several
growth traits, including stem diameter and biomass
accumulation in root and shoot (Novaes et al., 2009).
Transcription factors may underlie many QTLs and
more generally, the negative association of lignin and
biomass.

TRANSCRIPTION FACTORS
AND LIGNIN BIOSYNTHESIS

Several transcription factors have been implicated in
the control of lignin biosynthesis during formation of
secondary xylem (Raes et al., 2003; Zhou et al., 2009;
Zhong et al., 2010). NAC domain transcription factors
have been implicated in both Arabidopsis (Arabidopsis
thaliana) and Populus, including wood-associated NAC
domain factors that are functional orthologs of SND1
(for secondary wall-associated NAC domain protein 1;
Zhou et al., 2009; Zhong et al., 2010). One LIM factor,
up to eight MYBs, and a KNOX transcription factor are
direct positive and negative regulators of genes in the
monolignol biosynthetic pathway, affecting transcript
abundance, enzyme activity, and lignin content or
composition (S/G ratio; Tamagnone et al., 1998;
Kawaoka et al., 2000; Dixon et al., 2002; Mele et al.,

Figure 3. Model for C partitioning during wood
formation. Suc is the substrate for cellulose biosyn-
thesis via Suc synthase (SUSY) in wood-forming cells.
Glycolytic breakdown of Suc generates the precur-
sors for hemicelluloses and starch accumulation. Phe
may be transported from phloem or be synthesized in
the cells. Precursors for hemicelluloses are derived
from UDP-Glc (UDPG) through oxidation by UDP-
Glc dehydrogenase (UDPG-DH; Tenhaken and
Thulke, 1996). aa, Amino acids; DHAP, 3-deoxy-D-
arabino-heptulosonate 7-phosphate; E4P, erythrose
4-P; G6P, Glc-6-P; OPP, oxidative pentose phos-
phate; PEP, phosphoenolpyruvate.
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2003; Goicoechea et al., 2005; Bomal et al., 2008; Zhou
et al., 2009; Zhong et al., 2010). No microRNAs have
yet been implicated in control of lignin biosynthesis.

Suc May Be a Key Regulator of Growth and Lignin

The negative correlation between growth and lignin
content may be thought of as a competition for C
allocation to lignin versus C allocation to cellulosics
(cellulose and hemicelluloses) because these two clas-
ses of molecules are the major C sinks in the formation
of the wood cell wall (Sjostrom, 1993; Higuchi, 1997).
Lignin biosynthesis requires the formation of mono-
lignol precursors from Phe with methylation from
S-adenosylmethionine, and the cellulosics are derived
from Suc (for cellulose) and hexoses (for hemicellu-
loses; Fig. 3). Differentiating xylem itself, is a sink
tissue and its cells are entirely dependent on the
import of reduced C from the photosynthetically ac-
tive leaves via the phloem. Suc and amino acids,
including Phe, are transported in the phloem and
unloaded into wood-forming cells through specific
transporters (Couturier et al., 2010; Merchant et al.,
2010). Suc imported from the phloem can either be
directly converted to cellulose or other cell wall car-
bohydrates through the activity of Suc synthase
(Konishi et al., 2004). Suc can also be stored in the
vacuole or be cleaved into Glc and Fru by invertases,
principally for glycolysis (Trethewey et al., 1998). The
relative activities of Suc synthase and invertase in sink
tissues are the key determinants of C partitioning
between cell wall synthesis, storage, or biosynthesis of
other cell components required for growth (Winter
and Huber, 2000; Koch, 2004; Coleman et al., 2009). Suc
also functions as a signal that regulates metabolic
pathways through changes in transcription and en-
zyme activities mediated through Suc-non-fermenting
Related protein Kinases (Halford and Paul, 2003;
McKibbin et al., 2006). In addition, Suc stimulates
cell division through activation of cyclins (Riou-
Khamlichi et al., 2000; Beemster et al., 2002). Although
growth may be controlled at least in part by Suc, there
are many ways the composition of the walls might be
altered, and components negatively correlated.

METABOLIC REGULATION OF
LIGNIN BIOSYNTHESIS

Wood-forming cells are heterotrophic and have to
import all of their energy and many other components
for biosynthesis. Phe as the precursor for lignin bio-
synthesis is either imported from the phloem or syn-
thesized de novo by the plastid-localized shikimate
pathway. Glc-6-P and phosphoenolpyruvate can be
transported into plastids (Kammerer et al., 1998). Glc-
6-P can be metabolized in the plastid to synthesize
starch or erythrose 4-P through the oxidative pentose
phosphate pathway. A positive correlation between
lignin biosynthesis, starch accumulation, and reduced

growth rates in poplar (Populus fremontii3 angustifolia)
has been observed (Harding et al., 2009). Erythrose 4-P
and phosphoenolpyruvate are the substrates for
3-deoxy-D-arabino-heptulosonate 7-phosphate syn-
thase, the first critical commitment of the shikimate
pathway and subsequent synthesis of aromatic com-
pounds, including the phenylpropanoids. The relative
contributions of Phe synthesized de novo through
the shikimate pathway versus its import through the
phloem is unclear and likely to vary with environmen-
tal conditions such as drought or nitrogen availability
(Fritz et al., 2006). Specific reduction in lignin, without
reduction in other secondary metabolites would have
to be regulated downstream in the phenylpropanoid
pathway. Phenolic conjugates (Dauwe et al., 2007) may
limit the accumulation of phenolic acids and serve a
storage function to limit feedback inhibition of the
secondary C pathway, thus potentiating the continued
flux of C to this pathway at the expense of growth.

Many other potential points of regulation could
exist based upon signaling by phenolics, carbohy-
drates, or compounds of nitrogen metabolism. All
major classes of phytohormones may have important
roles in xylogenesis (Aloni et al., 1990; Uggla et al.,
1998; Andersson-Gunneras et al., 2006), and therefore
could affect both growth and lignin. An integrated
genetic, transcriptional, and metabolic approach could
provide a systematic path to determine the mechanism
of control.
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