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Abstract
Infectious diseases have been a prime testing ground for ecological theory. At the same time, the
ecological perspective is increasingly recognized as essential in epidemiology. Long-term,
spatially-resolved, reliable disease incidence data and the ability to confront them with
mechanistic models have been critical in this cross-fertilization. Here, we review some of the key
intellectual developments in epidemiology facilitated by long-term data. We proceed to identify
research frontiers at the interface of ecology and epidemiology and their associated data needs.

Historical Background
John Graunt, who in the 17th Century pioneered the collection of vital statistics, was a
seminal figure in epidemiology [1]. Because he was interested in an early warning system
for the spread of bubonic plague, his attention focused on disease mortality, but his
systematic analyses of vital statistics were highly influential and led to programs for the
regular documentation of demographic fluxes and causes of death [2]. One of Graunt’s most
substantial legacies is a wealth of data on infectious disease morbidity and mortality
systematically collected from the 16th Century. In England & Wales, for example,
notifications of deaths attributable to several high-profile diseases (e.g., measles, whooping
cough, diptheria, scarlet fever, plague) have been recorded since 1836 [3]. Fig. 1 illustrates
spatially replicated data spanning different eras: we plot weekly notifications of whooping
cough deaths (first two columns) and incidence (third column) for the largest population
centres in England & Wales from the first years of the 20th century. Similarly, the United
States Public Health Service has published the Weekly Abstract of Sanitary Reports since
1878 [4] and comparable collections are available in many other countries.

Although long-term epidemiological data sets vary in reporting fidelity, frequency, and
duration, relative to most other ecological time series they tend to be long and highly
resolved. Examples include excellent data sets on cholera and malaria mortality in the
former British India [5], recent dengue hemorrhagic fever incidence data from Thailand [6],
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raccoon rabies data from the eastern U.S. [7], and bubonic plague in gerbils in Kazakhstan
[8]. This wealth of ecological data is perhaps rivalled only by fisheries data [9], small
mammal trapping data[10], and forest insect outbreak data [11]. Another distinguishing
feature of infectious disease data is the availability of parallel information, often including
details of host demography, immunization practices, and societal and behavioral changes.
These kinds of information have proved invaluable in placing observed epidemiological
patterns within their ecological context (more on this below).

Long-term data were instrumental in the development of epidemiological ideas in the late
19th and early 20th Centuries, when a number of researchers explored the roles of
seasonality, immunity, and competition in infectious disease dynamics [13,14]. At the same
time, fundamental theoretical insights led to the formulation of the classic mathematical
models that underpin modern epidemiological research, including Hamer’s presentation of
the so-called SIR (Susceptible-Infectious-Recovered) model [15], Ross’s development of the
first malaria transmission model [16] and the influential work of Kermack & McKendrick
[17] on the threshold properties of the SIR system. In the mid-20th Century, Bartlett’s
ground-breaking analyses of measles epidemics and their extinction frequency led to the
important concept of the Critical Community Size (the smallest host population size above
which the pathogen persists; [18]) and the dynamical impact of demographic noise in
amplifying fluctations and sustaining oscillations in SIR models [19]. Epidemiological
theory was further boosted by the seminal contributions of Dietz [20] and Bailey [21]. In
many ways, however, the true marriage of epidemiological theory and long-term datasets
had to wait for the consummate work of Anderson & May.

Starting with their compelling 1979 treatise [22,23], Anderson & May drew attention to the
important parallels between ecological theory (especially predator-prey systems) and that of
infectious disease. They subsequently published a series of elegant studies in which
meaningful, policy-relevant conclusions were extracted from epidemiological data
(summarized in [24]). Subsequently, infectious-disease ecology has burgeoned as a field,
becoming a prime testing-ground for ecological concepts and theory [25,26]. Currently, the
cross-talk between ecology and epidemiology is exciting and productive: the examination of
epidemiological data from an ecological perspective informs public health issues [27-30]
and methodology developed for dealing with long-term epidemiological datasets are
usefully applied in ecological contexts [eg,31,32]. The abundance of long-term data
unquestionably continues to play a critical role in this blossoming.

In this opinion piece, we review the major epidemiological lessons learned from long-term
data, outline some of the outstanding challenges to epidemiological theory, and identify an
urgent need for new long-term datasets different in kind and scale.

Lessons learnt (so far)
To address issues of causality in natural systems, dynamical models are indispensable [33].
The most natural and rigorous means of evaluating such models is to confront them with
long-term time-series data. In the ecology of many infectious diseases, two circumstances
make such models relatively easy to formulate. The first is the pronounced separation
between the generation times of micro-parasites (viruses, bacteria, protozoa) and those of
their hosts. The second is the close ecological connection between many obligate specialist
parasites and their hosts. Even given the relative simplicity of the ecology in such cases, it is
remarkable that the very simplest models have proved surprisingly efficient at explanation
of data. This is in stark contrast to the experience in ecology where, by and large, the
simplest models are thought to be of limited use in explaining nature, with the notable
exception of well studied laboratory systems (eg, [34-36]). This degree of success probably
stems from a combination of factors. First, at the macroscopic scale (eg, long-term epidemic
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dynamics in a metropolitan centre), many infectious disease systems are characterised by
well-understood biology and a reasonably simple natural history (host specificity, known
durations of latency and infectiousness, and long-lasting immunity). Second, and
intriguingly, many heterogeneities seem to average out in such infectious disease systems so
that admittedly oversimplified descriptions often effectively capture prominent dynamical
patterns [37].

Nonlinearity, Seasonality and Stochasticity—One of the earliest attempts to confront
an epidemiological model with data was by Hamer [15], who noted the inconsisntecy
between the constant prevalence predicted by the simplest transmission model and the
violent, high amplitude oscillations observed in London measles case notifications. Hamer
speculated that a missing component of the model was rhythmic variation in the number of
susceptibles. This topic was re-examined by Soper [14], whose exploration of Glasgow
measles data led him to suspect seasonal variation in transmission rates, attributable to the
opening and closing of schools. This conclusion, that in large populations measles epidemics
(and those of other childhood diseases) are driven by school-term driven seasonal changes in
contact rates, has since been reaffirmed [38,39]. Interestingly, a recent study of measles in
sub-Saharan Africa has revisited the mechanism of transmission seasonality. Ferrari et al.
[40] explored measles incidence in Niger and suggest that seasonal human migration
associated with agricultural practices is a key driver there (see Fig. 2). In the data from
Niger’s capital, the estimated amplitude of seasonality is much greater than it is in London
(Fig. 2). This difference is thought to be largely responsible for the unpredictable and
perhaps chaotic oscillations in measles in Niger.

Compared with the pattern in Niger, measles data from England & Wales, Europe, and the
US show a striking temporal regularity (eg, Fig. 3). In England & Wales, from 1950 until
the introduction of national paediatric immunization in 1968, measles epidemics in larger
towns and cities exhibited a predictable two-year cycle [24,41]. The fact that the most basic
SIR transmission model with school-term forcing reproduces this and other qualitative
features of measles epidemics in large populations [42] has led some to comment on the
essentially deterministic nature of these data [37]. As Fig. 3 shows, however, infectious
diseases vary in their predictability and in the apparence of stochasticity and seasonality in
their dynamics [43]. For example, epidemics of chickenpox (Figure 3a) are highly regular,
with a constant inter-epidemic period. Similarly, while measles outbreaks (Figure 3b)
exhibit distinct dynamical shifts, these are well explained by changes in birth rates (see
below and [42]). In contrast, mumps (Figure 3c) and pertussis (Figures 3d and 1), display
more unpredictable dynamics, an observation that presents both challenges and
opportunities: challenges, inasmuch as increased noise levels obscure patterns that reveal the
underlying ecology; opportunities, because increasing variability broadens the system’s
dynamic range, thereby potentially revealing more about the mechanisms shaping the
dynamics. From an ecological perspective, this observation is particularly interesting
because of the historical, recurrent, and occasionally charged debate over the relative
importance of exogenous (stochastic) and endogenous (density dependent) forces in shaping
population dynamics [44,45]. Analyses of childhood disease data have shed light on when
stochasticity is dynamically important, identifying the epidemiological traits (eg, infectious
pertiod and transmission rate) that determine the outcome of seasonality and demographic
noise [46,47]. Emerging theory on this front has very elegantly unpacked the necessary
ingredients for noise amplification in such systems [48-50] and the accompanying response
to seasonality [43].

Bifurcations, Chaos and Natural Experiments—One of the guises under which the
noise vs. non-linearity controversy re-appeared was the 1980s and 1990s discussion
surrounding the possibility of chaos in ecological systems [51]. The idea was that the
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nonlinearity inherent in pathogen transmission conjoined with seasonal forcing make
childhood diseases prime candidates for chaotic dynamics. The high-profile work of
Schaffer and colleagues [52,53], Sugihara & May [54] and Ellner & Turchin [55] exploited
long case notification time series for childhood diseases and novel theoretical approaches to
identify the fingerprints of chaos. Ultimately, unequivocal evidence for chaos in these
systems remains elusive, with perhaps the most likely example being that of measles in
Niger discussed above [40]. In retrospect, the lasting impact of the hunt for chaos in ecology
has been methodological. The question of whether any particular ecological system is
chaotic has been eclipsed by a more basic question: What features must a mechanistic model
have to explain ecological dynamics?

More recently, Earn et al. [42] argued that because measles is highly transmissibile and
elicits long-lasting immunity, its epidemics are determined by the replenishment rate of the
susceptible pool: ‘supply-side’ epidemiology. They pointed out that changes in the influx of
susceptibles resulting from, for example, secular trends in birth rates or vaccination
coverages might result in shifts in dynamical patterns and suggested that the observed
recurrent annual epidemics of measles in developing nations [56] might be explained as a
consequence of high fecundity, while the aperiodic dynamics observed in the vaccine era
developed countries, previously considered to be an example of chaos, can be more
parsimoniously attributed to the interaction between stochasticity and multiple attractors.

Direct experimental confirmation of the changes predicted by bifurcation analyses and
stochastic simulations have here, as elsewhere in ecology, proven practically impossible.
However, informative studies have exploited natural experiments of four types: (i) changes
in host demography have afforded some of the most elegant and direct confirmations of
predicted bifurcations [27,42,57], (ii) the commencement of mass vaccination campaigns
[58], (iii) differential immunization strategies across countries, (iv) comparison of outbreak
data among communities (towns, countries) of different sizes, which has allowed assessment
of the relative importance of demographic stochasticity and extinction dynamics [37,59-61].

Metapopulations, Spatial Synchrony, Travelling Waves & Transmission
Networks—The systematically collected and spatially resolved UK measles and whooping
cough incidence data represent a special, perhaps unique, resource. Recognising the
significance of these data for long-standing questions in population ecology, Grenfell
spearheaded a campaign to digitize such information [62]. Subsequent analysis revealed that
the measles metapopulation in England & Wales in the pre-vaccine era was characterised by
highly synchronous biennial outbreaks [37]. In the vaccination era, however, a significant
reduction in spatial synchrony is observed [58,62]. Phase differences among outbreaks in
different populations have been mooted as a possible explanation for the paradoxical
observation that the critical community size has not risen substantially as a result of
vaccination. If correct, this is a prominent manifestation of the ecological concept of ‘rescue
effect’ [63] and, importantly, suggests a strategy of spatially-targeted immunization
programs [25].

Spatially-explicit epidemiological models make spatiotemporal predictions, and a good deal
of attention has been focused on synchrony and traveling waves in disease systems [64].
Since Grenfell et al. [62] described such waves in measles incidence in England & Wales,
they have been identified in a number of other systems, including spatially pulsed dengue
outbreaks in Thailand, emanating from Bangkok [6]. A very active area of research has
focused on the mechanisms of host and/or vector movement affecting such spatio-temporal
patterns. It has been shown that “gravity” models generate patterns that are consistent with
the waves of measles outbreaks in England & Wales [65]. Such models (borrowed from
transportation theory) assume that the extent of epidemiological interaction (or ‘coupling’)
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between two centres is determined by the geographical distance between them and their
respective population sizes. In contrast, the pronounced spatial waves of seasonal H3N2
influenza epidemics in the United States have been explained via coupling predicted by
commuter movement between states [28].

Methodological development—Mechanistic models of epidemiological processes are
nonlinear dynamical systems and as such are amenable to the tools of that field: most
importantly numerical solution, stability and bifurcation analyses for deterministic models
[24,66] and simulation, computation of stationary distributions and stochastic resonance for
probabilistic models [46,48,50]. To date, less attention has been focused on formal statistical
inference in disease systems (estimating key parameters and evaluating competing
hypotheses) than on analysis of models. The most widespread approach to formal statistical
inference has used the “time-series SIR” (TSIR) approach [39], in which the dynamics of
transmission are approximated by a simple discrete-time stochastic model that can be fit to
time series data via nonlinear regression. Although this approach has been applied to a
variety of diseases [43,67] and has proven a rough-and-ready tool, the approximations it
makes begin to break down the further one goes from the measles regime. Novel approaches
based on the state-space framework have been applied to diseases such as influenza [68],
cholera [29], and plant diseases [69] and show promise for dealing with strain dynamics, age
structure, and environmental drivers. In a state-space framework, the underlying, not directly
observable eco-epidemiological processes responsible for observable patterns are viewed as
distinct from the observation process itself. Statistical inference on state-space models is
computationally demanding but recent algorithmic breakthroughs have greatly improved the
outlook for rigorous inference. Worthy of special note are tailored MCMC approaches
[68,69], indirect inference approaches based on nonlinear forecasting [70], and iterated
filtering [29,71,72], the latter two of which enjoy the “plug-and-play” property: they require
only model simulation, obviating the need for analytical tractability of model. These
methods have enjoyed considerable success in infectious-disease settings and will likely lead
to important insights in other ecological systems.

Theoretical Challenges & Data Needs
Here, we look to the future, outlining some of the research frontiers in disease ecology and
advocating for new and different kinds of long-term data.

Strain evolution, phylodynamics, and the community perspective
The broader ecological stage on which infectious disease dynamics play out, their
community context, is increasingly recognized as critical [12,26,73]. While the single host-
single pathogen paradigm deepened our understanding of the epidemiology of measles and
chickenpox, for example, there are many systems for which its explanatory power is limited.
Obvious examples include strain-polymorphic pathogens, such as those responsible for
malaria, influenza, dengue, and polio. There remain numerous open questions that can only
be adequately answered by additional data. For instance, in disease systems with antigenic
variability, much uncertainty surrounds the determinants of strain diversity [74], the limits to
strain coexistence [75], the mechanisms responsible for the observed patterns of strain
replacement and the strength, duration and impact of immunity [76,77].

In the context of pathogens with limited diversity (eg, cholera and dengue), existing theory
is complex but relatively straightforward [75,78]. When genetic novelty continually arises,
as in the case of influenza A, the theoretical challenges are greater. The so-called
“phylodynamics” perspective attempts infer aspects of the ecology and evolution of hosts
and pathogens from the shapes of pathogen phylogenies [74,79,80]. Finding ways of better

Rohani and King Page 5

Trends Ecol Evol. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



integrating genetic and epidemiological data beyond visual or descriptive comparisons of
phylogenies remains a challenge.

Beyond multi-strain systems, we now recognise “polymicrobial diseases”, in which
transmission and pathogenicity involve interactions among distinct pathogens. Examples
include opportunistic bacterial and viral infections (with numerous high-profile
demonstrations in HIV/AIDS patients), periodontal diseases and some respiratory infections,
including Haemophilus influenzae and Streptococcus pneumoniae [81]. Despite the
recognised importance of multi-pathogen diseases in general, appropriate long-term data
remain in very short supply. We believe breakthroughs in the understanding of these
processes will require the collation of data of different kinds, especially serological cross-
sectional information shedding light on the kinetics of population immunological profiles
and interactions among infectious agents.

Within-host dynamics
Most epidemiological models that track the prevalence of an infectious disease within a
population categorize individuals according to infection and immunity status, e.g.,
susceptible, infectious, or recovered and immune. Conceptually and mathematically, this
resembles the Levins metapopulation model, in which habitat patches are either empty or
fully colonized, irrespective of population densities [82]. This approach has limited value in
a number of applications [83], including attempts to understand the epidemiological
outcome of mixed infections [84], the evolutionary consequences of pathogen life-history
traits [59,85], and the evolution of drug-resistance [86]. In such cases, attempts to
understand the underlying processes using mathematical models have been frustrated by the
absence of long-term data at the scale of the individual infection [87]. Short-term or
snapshot data for the initial stages of an infection are often available, but greater longitudinal
information is likely to be the key to further progress for persistent infections such as HIV
[88] and pathogens that can reinfect, such as influenza [89].

Another venue that increasingly calls for a finer-scale understanding is immunity dynamics.
While infections by chickenpox, smallpox, and morbilliviruses (including measles,
rinderpest, and canine and phocine distemper viruses) induce life-long immunity, this does
not appear to be the norm. Population-level data have been used to infer the dynamics of
immunity relating to cholera [29,67], Haemophilus Influenzas Type B [90] and pertussis
[30]. Ultimately, however, this question will need resolution via confrontation of better
specific within-host models of infection with appropriate empirical information, to some
extent obtainable from animal models.

Environmental drivers
From a public health and wildlife management perspective, research on the ecology and
evolution of infectious diseases would ideally translate into the development of early-
warning systems. This effort has for the most part focused on using climatological variables
to inform epidemic predictions. This is largely because mechanisms linking environmental
conditions, such as rainfall and temperature, with disease transmission are known [91]. For
example, temperature determines the developmental rate of the malaria parasite Plasmodium
falciparum [92], and the persistence of avian influenza viruses in aquatic environments [93],
with qualitative impacts for transmission dynamics [94]. Perhaps the best-studied aspect has
been the impact of climatic variables on disease vectors; ecological niche models have been
used to predict the presence of vectors by reference to abiotic determinants of habitat
suitability [95]. Though plausible, climatological determinants of epidemic risk and reliable
early warning systems based on them require further empirical support. This has led a
number of scientists to use long-term data to examine the statistical association between
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climate variation and the incidence and dynamics of infectious diseases [91], especially
cholera [5] and lyme disease [96], with an eye to making predictions about the consequences
of climate change [97]. These efforts are likely to be transformed by the increasingly
abundant spatially highly-resolved satellite data on environmental drivers, while the
acquisition of similarly resolved epidemiological data remains an active frontier.

Surveillance networks & policy
We have highlighted several epidemiological success stories made possible by long-term
data sets accumulated through surveillance systems. Naturally, improved understanding of
such systems leads to an expectation of reliable quantitative predictions. Indeed,
epidemiological models are increasingly expected to quantify unobserved variables in an
outbreak in progress (so-called ‘nowcasting’) and to make forecasts. For example, in the
2001 outbreak of foot-and-mouth disease in the UK, policy-makers and politicians relied
heavily on mathematical modelling in their selection of epidemic control measures, with
great success [98,99]. The recent H1N1 pandemic, however, provides a sobering counter-
example. Following the first wave of transmission in the northern hemisphere in the summer
of 2009, epidemiological models were scrutinized for predictions about the severity and
impact of the autumn influenza season. The models dramatically over-predicted the size of
the winter ’flu outbreaks and numbers of likely fatalities. This prominent setback can be
largely attributed to inadequate information, both as to the epidemiology of the virus
(particularly the case fatality rate) and the true extent of the rst epidemic. The recent study
by Miller et al. [100] goes a long way towards explaining why: they demonstrate that the
first wave of the epidemic in the UK is likely to have ten times more children than was
initially estimated. The resulting over-estimation of the number of susceptible individuals
appears to have led directly to over-estimation of the second wave’s severity. This
observation points to the need for systematic cross-sectional serological surveys as a
prerequisite for better real-time modeling of the dynamics of emerging threats.

Increasing reliability of models for forecasting and nowcasting will depend on better data on
the contact patterns and transmission networks within and between populations. Promising
recent developments in this regard include detailed studies of contact networks in Portland,
Oregon [101] and self-reported mixing-pattern data from European populations [102]. We
are also better placed to understand the mechanistic basis of individual movements thanks to
mobile phone geolocation data [103] and the geographical dynamics of monetary currency
(the ‘where is George?’ project; [104]).

A universal challenge in the interpretation of incidence data is reporting bias that arises, for
example, when subclinical infections play an important epidemiological role yet are less
likely to be reported than severe disease [29]. More troubling are the potential dynamic
interactions between reporting fidelity and epidemiological processes. For example, the
2009 H1N1 pandemic showed that sensationalism and fear can lead to increased clinic visits
and thus higher reported incidence. Making the best use of long-term incidence data will
require a better understanding of interactions between disease dynamics, transmission,
behavioural changes, and the processes by which incidence data are recorded.

Data sharing policies
Policies and practices for systematic data sharing and access have yet to be formulated and
adopted by the epidemiological research community. This leads to tension between those
who have invested in the collection and digitization of data and those who have invested in
the development of analytic tools. Whatever community-wide (or more likely funding
agency-mandated) policies are eventually agreed upon must take care to adequately reward
the initial investment in data mining and collection efforts.
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Summary & Conclusions
Infectious disease ecology is a vibrant field of research. Long-term epidemiological data
continue to feature prominently in the development and utility of the field. Epidemiology
has furnished some of the most definitive tests of ecological principles and has proved an
unrivalled testbed for ecological theory and method. In turn, epidemiology is beginning to
benefit from an ecological perspective on complex multi-host and multi-pathogen systems.
Continued progress will depend on our ability to gather new and different long-term data
and effectively query them using more realistic models.
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Figure 1.
Long-term data on whooping cough (pertussis) in the largest cities of England & Wales [12].
The first two panels depict weekly notifications of pertussis deaths from the largest 95 towns
and cities in England & Wales for (a) 1904–1913 and (b) 1922–1931. Panel (c) depicts
weekly case data for the 60 largest cities from 1944–1957. In the line graph at the top of
each panel we present data from London, while the coloured panels present the spatial log-
transformed data. The figures demonstrate changing epidemiological patterns of pertussis
through the decades; in London, for example, pertussis outbreaks from 1904–1913 were
annual, gave way to biennial cycles in 1922–1931 and were characterised by a mixture of
annual and multiennial oscillations after World War II. The lower panels show that in
between large outbreaks, pertussis becomes locally extinct (fades out) in small populations,
as illustrated by regions of white.
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Figure 2.
Dynamics of measles outbreaks in Niamey, Niger. Mean monthly rainfall from 1995 to 2004
(blue) are plotted together with 62 standard deviations (blue shading). In red, the estimated
seasonal transmission rate for Niamey is depicted, with the shaded grey regions representing
the 95% bayesian credible intervals; the dashed line depicts the seasonality (scaled for
population size) for the pre-vaccine era in (1950-1968) London for comparison. Reproduced
with permission from [40].
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Figure 3.
Depiction of long-term epidemiological data sets. We plot monthly case notifications from
Copenhagen for (a) chickenpox, (b) measles, and (c) rubella. In (d), we plot weekly
incidence of whooping cough in London (note that national immunization commenced in
1957 in England & Wales). For each panel, with the axis on the right hand side, we also plot
the statistically significant dominant period through time as detected by wavelet spectral
analysis.
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